1
|
Esposito G, Glukhov E, Gerwick WH, Medio G, Teta R, Lega M, Costantino V. Lake Avernus Has Turned Red: Bioindicator Monitoring Unveils the Secrets of "Gates of Hades". Toxins (Basel) 2023; 15:698. [PMID: 38133202 PMCID: PMC10747548 DOI: 10.3390/toxins15120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Lake Avernus is a volcanic lake located in southern Italy. Since ancient times, it has inspired numerous myths and legends due to the occurrence of singular phenomena, such as coloring events. Only recently has an explanation been found for them, i.e., the recurring color change over time is due to the alternation of cyanobacterial blooms that are a consequence of natural nutrient inputs as well as pollution resulting from human activities. This current report specifically describes the red coloring event that occurred on Lake Avernus in March 2022, the springtime season in this region of Italy. Our innovative multidisciplinary approach, the 'Fast Detection Strategy' (FDS), was devised to monitor cyanobacterial blooms and their toxins. It integrates remote sensing data from satellites and drones, on-site sampling, and analytical/bioinformatics analyses into a cohesive information flow. Thanks to FDS, we determined that the red color was attributable to a bloom of Planktothrix rubescens, a toxin-producing cyanobacterium. Here, we report the detection and identification of 14 anabenopeptins from this P. rubescens strain, seven of which are known and seven are newly reported herein. Moreover, we explored the mechanisms and causes behind this cyclic phenomenon, confirming cyanobacteria's role as reliable indicators of environmental changes. This investigation further validates FDS's effectiveness in detecting and characterizing cyanobacterial blooms and their associated toxins, expanding its potential applications.
Collapse
Affiliation(s)
- Germana Esposito
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (E.G.); (W.H.G.)
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (E.G.); (W.H.G.)
| | - Gabriele Medio
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy;
| | - Roberta Teta
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| | - Massimiliano Lega
- Department of Engineering, University of Naples Parthenope, 80133 Napoli, Italy;
| | - Valeria Costantino
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (G.E.); (V.C.)
| |
Collapse
|
2
|
Tassi F, Fazi S, Rossetti S, Pratesi P, Ceccotti M, Cabassi J, Capecchiacci F, Venturi S, Vaselli O. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS One 2018; 13:e0193914. [PMID: 29509779 PMCID: PMC5839588 DOI: 10.1371/journal.pone.0193914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/07/2018] [Indexed: 11/18/2022] Open
Abstract
Volcanic lakes are characterized by physicochemical favorable conditions for the development of reservoirs of C-bearing greenhouse gases that can be dispersed to air during occasional rollover events. By combining a microbiological and geochemical approach, we showed that the chemistry of the CO2- and CH4-rich gas reservoir hosted within the meromictic Lake Averno (Campi Flegrei, southern Italy) are related to the microbial niche differentiation along the vertical water column. The simultaneous occurrence of diverse functional groups of microbes operating under different conditions suggests that these habitats harbor complex microbial consortia that impact on the production and consumption of greenhouse gases. In the epilimnion, the activity of aerobic methanotrophic bacteria and photosynthetic biota, together with CO2 dissolution at relatively high pH, enhanced CO2- and CH4 consumption, which also occurred in the hypolimnion. Moreover, results from computations carried out to evaluate the dependence of the lake stability on the CO2/CH4 ratios, suggested that the water density vertical gradient was mainly controlled by salinity and temperature, whereas the effect of dissolved gases was minor, excepting if extremely high increases of CH4 are admitted. Therefore, biological processes, controlling the composition of CO2 and CH4, contributed to stabilize the lake stratification of the lake. Overall, Lake Averno, and supposedly the numerous worldwide distributed volcanic lakes having similar features (namely bio-activity lakes), acts as a sink for the CO2 supplied from the hydrothermal/magmatic system, displaying a significant influence on the local carbon budget.
Collapse
Affiliation(s)
- Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
- * E-mail:
| | - Stefano Fazi
- IRSA-CNR Water Research Institute, National Research Council of Italy, Via Salaria, Monterotondo, Rome, Italy
| | - Simona Rossetti
- IRSA-CNR Water Research Institute, National Research Council of Italy, Via Salaria, Monterotondo, Rome, Italy
| | - Paolo Pratesi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
| | - Marco Ceccotti
- IRSA-CNR Water Research Institute, National Research Council of Italy, Via Salaria, Monterotondo, Rome, Italy
| | - Jacopo Cabassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
| | | | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
| | - Orlando Vaselli
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, Italy
- IGG-CNR Institute of Geosciences and Earth Resources, National Research Council of Italy, Via La Pira 4, Florence, Italy
| |
Collapse
|
3
|
Mentes A, Szabó A, Somogyi B, Vajna B, Tugyi N, Csitári B, Vörös L, Felföldi T. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 2018; 94:4675209. [PMID: 29206918 DOI: 10.1093/femsec/fix164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton.
Collapse
Affiliation(s)
- Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Nóra Tugyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Lajos Vörös
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Diao M, Sinnige R, Kalbitz K, Huisman J, Muyzer G. Succession of Bacterial Communities in a Seasonally Stratified Lake with an Anoxic and Sulfidic Hypolimnion. Front Microbiol 2017; 8:2511. [PMID: 29312212 PMCID: PMC5735980 DOI: 10.3389/fmicb.2017.02511] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Although bacteria play key roles in aquatic food webs and biogeochemical cycles, information on the seasonal succession of bacterial communities in lakes is still far from complete. Here, we report results of an integrative study on the successional trajectories of bacterial communities in a seasonally stratified lake with an anoxic hypolimnion. The bacterial community composition of epilimnion, metalimnion, and hypolimnion diverged during summer stratification and converged when the lake was mixed. In contrast, bacterial communities in the sediment remained relatively stable over the year. Phototrophic Cyanobacteria and heterotrophic Actinobacteria, Alphaproteobacteria and Planktomycetes were abundant in the aerobic epilimnion, Gammaproteobacteria (mainly Chromatiaceae) dominated in the metalimnion, and Chlorobi, Betaproteobacteria, Deltaproteobacteria, and Firmicutes were abundant in the anoxic sulfidic hypolimnion. Anoxic but nonsulfidic conditions expanded to the surface layer during fall turnover, when the epilimnion, metalimnion and upper hypolimnion mixed. During this period, phototrophic sulfur bacteria (Chromatiaceae and Chlorobi) disappeared, Polynucleobacter (Betaproteobacteria) and Methylobacter (Gammaproteobacteria) spread out from the former meta- and hypolimnion to the surface layer, and Epsilonproteobacteria dominated in the bottom water layer. Cyanobacteria and Planktomycetes regained dominance in early spring, after the oxygen concentration was restored by winter mixing. In total, these results show large spatio-temporal changes in bacterial community composition, especially during transitions from oxic to anoxic and from sulfidic to nonsulfidic conditions.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ruben Sinnige
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Karsten Kalbitz
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Ávila MP, Staehr PA, Barbosa FAR, Chartone-Souza E, Nascimento AMA. Seasonality of freshwater bacterioplankton diversity in two tropical shallow lakes from the Brazilian Atlantic Forest. FEMS Microbiol Ecol 2016; 93:fiw218. [DOI: 10.1093/femsec/fiw218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|
6
|
Liu K, Liu Y, Jiao N, Zhu L, Wang J, Hu A, Liu X. Vertical variation of bacterial community in Nam Co, a large stratified lake in central Tibetan Plateau. Antonie van Leeuwenhoek 2016; 109:1323-35. [DOI: 10.1007/s10482-016-0731-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/02/2016] [Indexed: 11/28/2022]
|
7
|
Schmidt ML, White JD, Denef VJ. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ Microbiol 2016; 18:1212-26. [DOI: 10.1111/1462-2920.13143] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Marian L. Schmidt
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI 48109 USA
| | - Jeffrey D. White
- Department of Biology; Framingham State University; Framingham MA 01701 USA
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
8
|
Ma J, Nossa CW, Alvarez PJJ. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. WATER RESEARCH 2015; 80:119-129. [PMID: 25996759 DOI: 10.1016/j.watres.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China; Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA.
| | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Zhang HH, Chen SN, Huang TL, Ma WX, Xu JL, Sun X. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:6933-45. [PMID: 26090607 PMCID: PMC4483740 DOI: 10.3390/ijerph120606933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.
Collapse
Affiliation(s)
- Hai-Han Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, YanTa Road, Xi'an 710055, China.
| | - Sheng-Nan Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, YanTa Road, Xi'an 710055, China.
| | - Ting-Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, YanTa Road, Xi'an 710055, China.
| | - Wei-Xing Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, YanTa Road, Xi'an 710055, China.
| | - Jin-Lan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, YanTa Road, Xi'an 710055, China.
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, YanTa Road, Xi'an 710055, China.
| |
Collapse
|
10
|
Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 2014; 5:5350. [DOI: 10.1038/ncomms6350] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/22/2014] [Indexed: 11/08/2022] Open
|
11
|
Romano S, Paganin P, Varrone C, Tabacchioni S, Chiarini L. Dynamics of hydrogen-producing bacteria in a repeated batch fermentation process using lake sediment as inoculum. Arch Microbiol 2013; 196:97-107. [DOI: 10.1007/s00203-013-0947-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/28/2022]
|