1
|
Williams AD, Leung VW, Tang JW, Hidekazu N, Suzuki N, Clarke AC, Pearce DA, Lam TTY. Ancient environmental microbiomes and the cryosphere. Trends Microbiol 2024:S0966-842X(24)00253-1. [PMID: 39487079 DOI: 10.1016/j.tim.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.
Collapse
Affiliation(s)
- Alexander D Williams
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - Vivian W Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, UK; Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Nishimura Hidekazu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Andrew C Clarke
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK
| | - David A Pearce
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle, NE1 8ST, UK; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Tommy Tsan-Yuk Lam
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Mancin L, Paoli A, Berry S, Gonzalez JT, Collins AJ, Lizarraga MA, Mota JF, Nicola S, Rollo I. Standardization of gut microbiome analysis in sports. Cell Rep Med 2024; 5:101759. [PMID: 39368478 PMCID: PMC11514603 DOI: 10.1016/j.xcrm.2024.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome plays a significant role in physiological functions such as nutrient processing, vitamin production, inflammatory response, and immune modulation, which, in turn, are important contributors to athlete health and performance. To date, the interpretation, discussion, and visualization of microbiome results of athletes are challenging, due to a lack of standard parameters and reference data for collection and comparison. The purpose of this perspective piece is to provide researchers with an easy-to-understand framework for the collection, analysis, and data management related to the gut microbiome with a specific focus on athletic populations. In the absence of a consensus on microbiome research in the sports field, we hope that these considerations serve as foundational "best practice." Adherence to these standard operating procedures will accelerate the path toward improving the quality of data and ultimately our understanding of the influence of the gut microbiome in sport settings.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy.
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Sara Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | | | - Adam J Collins
- Department for Health, University of Bath, BA2 7AY Bath, UK
| | | | - Joao Felipe Mota
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Segata Nicola
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, UK; School of Sports Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| |
Collapse
|
3
|
Child HT, Wierzbicki L, Joslin GR, Tennant RK. Comparative evaluation of soil DNA extraction kits for long read metagenomic sequencing. Access Microbiol 2024; 6:000868.v3. [PMID: 39346682 PMCID: PMC11432601 DOI: 10.1099/acmi.0.000868.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Metagenomics has been transformative in our understanding of the diversity and function of soil microbial communities. Applying long read sequencing to whole genome shotgun metagenomics has the potential to revolutionise soil microbial ecology through improved taxonomic classification, functional characterisation and metagenome assembly. However, optimisation of robust methods for long read metagenomics of environmental samples remains undeveloped. In this study, Oxford Nanopore sequencing using samples from five commercially available soil DNA extraction kits was compared across four soil types, in order to optimise read length and reproducibility for comparative long read soil metagenomics. Average extracted DNA lengths varied considerably between kits, but longer DNA fragments did not translate consistently into read lengths. Highly variable decreases in the length of resulting reads from some kits were associated with poor classification rate and low reproducibility in microbial communities identified between technical repeats. Replicate samples from other kits showed more consistent conversion of extracted DNA fragment size into read length and resulted in more congruous microbial community representation. Furthermore, extraction kits showed significant differences in the community representation and structure they identified across all soil types. Overall, the QIAGEN DNeasy PowerSoil Pro Kit displayed the best suitability for reproducible long-read WGS metagenomic sequencing, although further optimisation of DNA purification and library preparation may enable translation of higher molecular weight DNA from other kits into longer read lengths. These findings provide a novel insight into the importance of optimising DNA extraction for achieving replicable results from long read metagenomic sequencing of environmental samples.
Collapse
Affiliation(s)
- Harry T. Child
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Lucy Wierzbicki
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Gabrielle R. Joslin
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Richard K. Tennant
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| |
Collapse
|
4
|
Demkina A, Slonova D, Mamontov V, Konovalova O, Yurikova D, Rogozhin V, Belova V, Korostin D, Sutormin D, Severinov K, Isaev A. Benchmarking DNA isolation methods for marine metagenomics. Sci Rep 2023; 13:22138. [PMID: 38092853 PMCID: PMC10719357 DOI: 10.1038/s41598-023-48804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Metagenomics is a powerful tool to study marine microbial communities. However, obtaining high-quality environmental DNA suitable for downstream sequencing applications is a challenging task. The quality and quantity of isolated DNA heavily depend on the choice of purification procedure and the type of sample. Selection of an appropriate DNA isolation method for a new type of material often entails a lengthy trial and error process. Further, each DNA purification approach introduces biases and thus affects the composition of the studied community. To account for these problems and biases, we systematically investigated efficiency of DNA purification from three types of samples (water, sea sediment, and digestive tract of a model invertebrate Magallana gigas) with eight commercially available DNA isolation kits. For each kit-sample combination we measured the quantity of purified DNA, extent of DNA fragmentation, the presence of PCR-inhibiting contaminants, admixture of eukaryotic DNA, alpha-diversity, and reproducibility of the resulting community composition based on 16S rRNA amplicons sequencing. Additionally, we determined a "kitome", e.g., a set of contaminating taxa inherent for each type of purification kit used. The resulting matrix of evaluated parameters allows one to select the best DNA purification procedure for a given type of sample.
Collapse
Affiliation(s)
- Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Darya Slonova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Viktor Mamontov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga Konovalova
- Marine Research Center of Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria Yurikova
- Marine Research Center of Lomonosov Moscow State University, Moscow, Russia
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Rogozhin
- Marine Research Center of Lomonosov Moscow State University, Moscow, Russia
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Vera Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Sutormin
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | | | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
5
|
Feng S, DeKlotz M, Taş N. Comparison of three DNA extraction methods for recovery of microbial DNA from Arctic permafrost. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000834. [PMID: 37416892 PMCID: PMC10320573 DOI: 10.17912/micropub.biology.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Permafrost soils, which contain one of Earth's largest terrestrial carbon stocks, are vulnerable to thaw and microbial decomposition, exacerbating climate change. Advancements in sequencing technologies have facilitated the identification and functional profiling of microbial communities in permafrost, but DNA extraction from these soils is challenging due to their high microbial diversity and low biomass. This study assessed the effectiveness of the DNeasy PowerSoil Pro kit in extracting DNA from permafrost samples and found that it produced significantly different results than the discontinued DNeasy PowerSoil kit. The study highlights the importance of consistent DNA extraction methods in permafrost studies.
Collapse
Affiliation(s)
- Sarah Feng
- Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Marla DeKlotz
- Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Neslihan Taş
- Lawrence Berkeley National Laboratory, Berkeley, California, United States
| |
Collapse
|
6
|
Grinding Beads Influence Microbial DNA Extraction from Organic-Rich Sub-Seafloor Sediment. Microorganisms 2022; 10:microorganisms10122505. [PMID: 36557758 PMCID: PMC9784657 DOI: 10.3390/microorganisms10122505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Sub-seafloor sediment is the largest microbial habitat on Earth. The study of microbes in sub-seafloor sediment is largely limited by the technical challenge of acquiring ambient microbial DNA because of sediment heterogeneity. Changes in the extraction method, even just by one step, can affect the extraction yields for complicated sediment samples. In this work, sub-seafloor sediment samples from the Baltic Sea with high organic carbon content were used to evaluate the influence of different grinding beads on DNA extraction. We found that the grinding beads can affect the DNA extraction from the organic-matter- and biosiliceous-clay-rich samples. A mixture of 0.5-mm and 0.1-mm grinding beads exhibited higher DNA yields and recovered more unique taxa than other bead combinations, such as Stenotrophomonas from Gammaproteobacteria and Leptotrichia from Fusobacteria; therefore, these beads are more suitable than the others for DNA extraction from the samples used in this study. This advantage might be magnified in samples with high biomass. On the contrary, the use of only small beads might lead to underestimation for certain Gram-positive strains. Overall, the discovery of abundant widespread deep biosphere clades in our samples indicated that our optimized DNA extraction method successfully recovered the in situ microbial community.
Collapse
|
7
|
Brauer A, Bengtsson MM. DNA extraction bias is more pronounced for microbial eukaryotes than for prokaryotes. Microbiologyopen 2022; 11:e1323. [PMID: 36314757 PMCID: PMC9524606 DOI: 10.1002/mbo3.1323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
DNA extraction and preservation bias is a recurring topic in DNA sequencing-based microbial ecology. The different methodologies can lead to distinct outcomes, which has been demonstrated especially in studies investigating prokaryotic community composition. Eukaryotic microbes are ubiquitous, diverse, and increasingly a subject of investigation in addition to bacteria and archaea. However, little is known about how the choice of DNA preservation and extraction methodology impacts perceived eukaryotic community composition. In this study, we compared the effect of two DNA preservation methods and six DNA extraction methods on the community profiles of both eukaryotes and prokaryotes in phototrophic biofilms on seagrass (Zostera marina) leaves from the Baltic Sea. We found that, whereas both DNA preservation and extraction method caused significant bias in perceived community composition for both eukaryotes and prokaryotes, extraction bias was more pronounced for eukaryotes than for prokaryotes. In particular, soft-bodied and hard-shelled eukaryotes like nematodes and diatoms, respectively, were differentially abundant depending on the extraction method. We conclude that careful consideration of DNA preservation and extraction methodology is crucial to achieving representative community profiles of eukaryotes in marine biofilms and likely all other habitats containing diverse eukaryotic microbial communities.
Collapse
Affiliation(s)
- Anne Brauer
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Mia M. Bengtsson
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
- Institute of Marine BiotechnologyGreifswaldGermany
| |
Collapse
|
8
|
Shi Z, Kong Q, Li X, Xu W, Mao C, Wang Y, Song W, Huang J. The Effects of DNA Extraction Kits and Primers on Prokaryotic and Eukaryotic Microbial Community in Freshwater Sediments. Microorganisms 2022; 10:1213. [PMID: 35744736 PMCID: PMC9230960 DOI: 10.3390/microorganisms10061213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
DNA based sequencing technology has revolutionized the field of microbial ecology and environmental studies. However, biases can be introduced at all experimental steps and, thus, affect the interpretation of microbial community. So far, previous studies on the biases introduced from the key steps of DNA extraction and primer sets mainly focused on the bacterial communities in soil or sediment samples, while little is known about the effect on the eukaryotic microbial communities. Here, we studied the effects of three different DNA extraction kits on both prokaryotic and micro-eukaryotic communities by 16S and 18S rRNA gene amplicon sequencing, and further disentangled the influence of primer choice on the micro-eukaryotic communities. Our results showed that the FastDNA SPIN Kit for Soil and DNeasy PowerSoil Kit produced much higher DNA yield with good reproducibility, and observed more eukaryotic OTUs compared to the MinkaGene DNA extraction kit, but all three kits exhibited comparable ability in recovering bacterial alpha diversity. Of the two primer sets, both targeting the V4 region of the 18S rRNA gene, the TAR primer set detected higher number of unique OTUs than the EK primer set, while the EK primer set resulted in longer amplicons and better reproducibility between replicates. Based on our findings, we recommend using the DNeasy PowerSoil Kit with the EK primer set to capture the abundant micro-eukaryotic taxa from freshwater sediment samples. If a more complete picture of the eukaryotic microbial community is desired, the TAR primer set in combination with the FastDNA SPIN Kit is more efficient in this study.
Collapse
Affiliation(s)
- Zihan Shi
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Z.S.); (Y.W.); (W.S.)
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Qiaoyi Kong
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Xinghao Li
- Key Laboratory of Regional Development and Environmental Response, Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan 430062, China;
| | - Wenxin Xu
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Chengzhi Mao
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Yunfeng Wang
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Z.S.); (Y.W.); (W.S.)
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Z.S.); (Y.W.); (W.S.)
| | - Jie Huang
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| |
Collapse
|
9
|
An optimized approach for processing of frozen lung and lavage samples for microbiome studies. PLoS One 2022; 17:e0265891. [PMID: 35381030 PMCID: PMC8982836 DOI: 10.1371/journal.pone.0265891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
The respiratory tract has a resident microbiome with low biomass and limited diversity. This results in difficulties with sample preparation for sequencing due to uneven bacteria-to-host DNA ratio, especially for small tissue samples such as mouse lungs. We compared effectiveness of current procedures used for DNA extraction in microbiome studies. Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected to test different forms of sample pre-treatment and extraction methods to increase bacterial DNA yield and optimize library preparation. DNA extraction using a pre-treatment method of mechanical lysis (lung tissue) and one-step centrifugation (BALF) increased DNA yield and bacterial content of samples. In contrast, a significant increase of environmental contamination was detected after phenol chloroform isoamyl alcohol (PCI) extraction and nested PCR. While PCI has been a standard procedure used in microbiome studies, our data suggests that it is not efficient for DNA extraction of frozen low biomass samples. Finally, a DNA Enrichment kit was tested and found to improve the 16S copy number of lung tissue with a minor shift in microbial composition. Overall, we present a standardized method to provide high yielding DNA and improve sequencing coverage of low microbial biomass frozen samples with minimal contamination.
Collapse
|
10
|
Gobbi A, Acedo A, Imam N, Santini RG, Ortiz-Álvarez R, Ellegaard-Jensen L, Belda I, Hansen LH. A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Commun Biol 2022; 5:241. [PMID: 35304890 PMCID: PMC8933554 DOI: 10.1038/s42003-022-03202-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The microbial biodiversity found in different vitivinicultural regions is an important determinant of wine terroir. It should be studied and preserved, although it may, in the future, be subjected to manipulation by precision agriculture and oenology. Here, we conducted a global survey of vineyards' soil microbial communities. We analysed soil samples from 200 vineyards on four continents to establish the basis for the development of a vineyard soil microbiome's map, representing microbial biogeographical patterns on a global scale. This study describes vineyard microbial communities worldwide and establishes links between vineyard locations and microbial biodiversity on different scales: between continents, countries, and between different regions within the same country. Climate data correlates with fungal alpha diversity but not with prokaryotes alpha diversity, while spatial distance, on a global and national scale, is the main variable explaining beta-diversity in fungal and prokaryotes communities. Proteobacteria, Actinobacteria and Acidobacteria phyla, and Archaea genus Nitrososphaera dominate prokaryotic communities in soil samples while the overall fungal community is dominated by the genera Solicoccozyma, Mortierella and Alternaria. Finally, we used microbiome data to develop a predictive model based on random forest analyses to discriminate between microbial patterns and to predict the geographical source of the samples with reasonable precision.
Collapse
Affiliation(s)
- Alex Gobbi
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Nabeel Imam
- Biome Makers Inc., 95605, West Sacramento, CA, USA
| | - Rui G Santini
- Natural History Museum, Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ignacio Belda
- Biome Makers Inc., 95605, West Sacramento, CA, USA.
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Lars H Hansen
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Wu X, Chauhan A, Layton AC, Lau Vetter MCY, Stackhouse BT, Williams DE, Whyte L, Pfiffner SM, Onstott TC, Vishnivetskaya TA. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12683-12693. [PMID: 34472853 DOI: 10.1021/acs.est.1c00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Archana Chauhan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alice C Layton
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maggie C Y Lau Vetter
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon T Stackhouse
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
O’Dea C, Huerlimann R, Masters N, Kuballa A, Veal C, Fisher P, Stratton H, Katouli M. Microbial Diversity Profiling of Gut Microbiota of Macropus giganteus Using Three Hypervariable Regions of the Bacterial 16S rRNA. Microorganisms 2021; 9:microorganisms9081721. [PMID: 34442800 PMCID: PMC8400485 DOI: 10.3390/microorganisms9081721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
Animal faecal contamination of surface waters poses a human health risk, as they may contain pathogenic bacteria or viruses. Of the numerous animal species residing along surface waterways in Australia, macropod species are a top contributor to wild animals’ faecal pollution load. We characterised the gut microbiota of 30 native Australian Eastern Grey Kangaroos from six geographical regions (five kangaroos from each region) within South East Queensland in order to establish their bacterial diversity and identify potential novel species-specific bacteria for the rapid detection of faecal contamination of surface waters by these animals. Using three hypervariable regions (HVRs) of the 16S rRNA gene (i.e., V1–V3, V3–V4, and V5–V6), for their effectiveness in delineating the gut microbial diversity, faecal samples from each region were pooled and microbial genomic DNA was extracted, sequenced, and analysed. Results indicated that V1-V3 yielded a higher taxa richness due to its larger target region (~480 bp); however, higher levels of unassigned taxa were observed using the V1-V3 region. In contrast, the V3–V4 HVR (~569 bp) attained a higher likelihood of a taxonomic hit identity to the bacterial species level, with a 5-fold decrease in unassigned taxa. There were distinct dissimilarities in beta diversity between the regions, with the V1-V3 region displaying the highest number of unique taxa (n = 42), followed by V3–V4 (n = 11) and V5–V6 (n = 8). Variations in the gut microbial diversity profiles of kangaroos from different regions were also observed, which indicates that environmental factors may impact the microbial development and, thus, the composition of the gut microbiome of these animals.
Collapse
Affiliation(s)
- Christian O’Dea
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan;
| | - Nicole Masters
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
| | - Anna Kuballa
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
| | - Cameron Veal
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia; (C.V.); (P.F.)
| | - Paul Fisher
- Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia; (C.V.); (P.F.)
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia;
| | - Mohammad Katouli
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.O.); (N.M.); (A.K.)
- Correspondence: ; Tel.: +61-7-54302845
| |
Collapse
|
13
|
Choice of Commercial DNA Extraction Method Does Not Affect 16S Sequencing Outcomes in Cloacal Swabs. Animals (Basel) 2021; 11:ani11051372. [PMID: 34065976 PMCID: PMC8151189 DOI: 10.3390/ani11051372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The cloacal anatomy is unique because the fecal, urinary, and reproductive tracts converge into one orifice. Therefore, sampling for microbiome research can be difficult in birds, especially in agricultural production settings where it may not be feasible to sample the intestines, and cloacal swabs are often used. There is a need to evaluate laboratory methods for 16S rRNA sequencing in cloacal swab samples to ensure reproducible and trustworthy downstream results. We compared four DNA extraction methods from two commercially available magnetic-based DNA extraction kits. Mock communities and negative controls were included for each method and subjected to 16S rRNA sequencing. While extraction quality and yield differed between each extraction method, overall sequencing results were not affected, including alpha and beta diversity. Positive and negative controls are an important aspect of microbiome science and our findings lend guidance to future microbiome research in poultry. Abstract As the applications of microbiome science in agriculture expand, laboratory methods should be constantly evaluated to ensure optimization and reliability of downstream results. Most animal microbiome research uses fecal samples or rectal swabs for profiling the gut bacterial community; however, in birds, this is difficult given the unique anatomy of the cloaca where the fecal, urinary, and reproductive tracts converge into one orifice. Therefore, avian gut microbiomes are usually sampled from cloacal swabs, creating a need to evaluate sample preparation methods to optimize 16S sequencing. We compared four different DNA extraction methods from two commercially available kits on cloacal swabs from 10 adult commercial laying hens and included mock communities and negative controls, which were then subjected to 16S rRNA amplicon sequencing. Extracted DNA yield and quality, diversity analyses, and contaminants were assessed. Differences in DNA quality and quantity were observed, and all methods needed further purification for optimal sequencing, suggesting contaminants due to cloacal contents, method reagents, and/or environmental factors. However, no differences were observed in alpha or beta diversity between methods. Importantly, multiple bacterial contaminants were detected in each mock community and negative control, indicating the prevalence of laboratory and handling contamination as well as method-specific reagent contamination. We found that although the extraction methods resulted in different extraction quality and yield, overall sequencing results were not affected, and we did not identify any method that would be an inappropriate choice in extracting DNA from cloacal swabs for 16S rRNA sequencing. Overall, our results highlight the need for careful consideration of positive and negative controls in addition to DNA isolation method and lend guidance to future microbiome research in poultry.
Collapse
|
14
|
Busi SB, Pramateftaki P, Brandani J, Fodelianakis S, Peter H, Halder R, Wilmes P, Battin TJ. Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 2020; 8:e9973. [PMID: 33194372 PMCID: PMC7597623 DOI: 10.7717/peerj.9973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Glacier-fed streams (GFS) are harsh ecosystems dominated by microbial life organized in benthic biofilms, yet the biodiversity and ecosystem functions provided by these communities remain under-appreciated. To better understand the microbial processes and communities contributing to GFS ecosystems, it is necessary to leverage high throughput sequencing. Low biomass and high inorganic particle load in GFS sediment samples may affect nucleic acid extraction efficiency using extraction methods tailored to other extreme environments such as deep-sea sediments. Here, we benchmarked the utility and efficacy of four extraction protocols, including an up-scaled phenol-chloroform protocol. We found that established protocols for comparable sample types consistently failed to yield sufficient high-quality DNA, delineating the extreme character of GFS. The methods differed in the success of downstream applications such as library preparation and sequencing. An adapted phenol-chloroform-based extraction method resulted in higher yields and better recovered the expected taxonomic profile and abundance of reconstructed genomes when compared to commercially-available methods. Affordable and straight-forward, this method consistently recapitulated the abundance and genomes of a mock community, including eukaryotes. Moreover, by increasing the amount of input sediment, the protocol is readily adjustable to the microbial load of the processed samples without compromising protocol efficiency. Our study provides a first systematic and extensive analysis of the different options for extraction of nucleic acids from glacier-fed streams for high-throughput sequencing applications, which may be applied to other extreme environments.
Collapse
Affiliation(s)
- Susheel Bhanu Busi
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paraskevi Pramateftaki
- Stream Biofilm and Ecosystems Research group, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Jade Brandani
- Stream Biofilm and Ecosystems Research group, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Stilianos Fodelianakis
- Stream Biofilm and Ecosystems Research group, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystems Research group, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rashi Halder
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tom J Battin
- Stream Biofilm and Ecosystems Research group, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Optimization of subsampling, decontamination, and DNA extraction of difficult peat and silt permafrost samples. Sci Rep 2020; 10:14295. [PMID: 32868827 PMCID: PMC7459103 DOI: 10.1038/s41598-020-71234-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
This study aims to act as a methodological guide for contamination monitoring, decontamination, and DNA extraction for peaty and silty permafrost samples with low biomass or difficult to extract DNA. We applied a biological tracer, either only in the field or both in the field and in the lab, via either spraying or painting. Spraying in the field followed by painting in the lab resulted in a uniform layer of the tracer on the core sections. A combination of bleaching, washing, and scraping resulted in complete removal of the tracer leaving sufficient material for DNA extraction, while other widely used decontamination methods did not remove all detectable tracer. In addition, of four widely used commercially available DNA extraction kits, only a modified ZymoBIOMICS DNA Microprep kit was able to acquire PCR amplifiable DNA. Permafrost chemical parameters, age, and soil texture did not have an effect on decontamination efficacy; however, the permafrost type did influence DNA extraction. Based on these findings, we developed recommendations for permafrost researchers to acquire contaminant-free DNA from permafrost with low biomass.
Collapse
|
16
|
Biotic Factors Influence Microbiota of Nymph Ticks from Vegetation in Sydney, Australia. Pathogens 2020; 9:pathogens9070566. [PMID: 32668699 PMCID: PMC7400589 DOI: 10.3390/pathogens9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023] Open
Abstract
Ticks are haematophagous ectoparasites of medical and veterinary significance due to their excellent vector capacity. Modern sequencing techniques enabled the rapid sequencing of bacterial pathogens and symbionts. This study’s aims were two-fold; to determine the nymph diversity in Sydney, and to determine whether external biotic factors affect the microbiota. Tick DNA was isolated, and the molecular identity was determined for nymphs at the cox1 level. The tick DNA was subjected to high throughput DNA sequencing to determine the bacterial profile and the impact of biotic factors on the microbiota. Four nymph tick species were recovered from Sydney, NSW: Haemaphysalis bancrofti, Ixodes holocyclus, Ixodes trichosuri and Ixodes tasmani. Biotic factors, notably tick species and geography, were found to have a significance influence on the microbiota. The microbial analyses revealed that Sydney ticks display a core microbiota. The dominating endosymbionts among all tick species were Candidatus Midichloria sp. Ixholo1 and Candidatus Midichloria sp. Ixholo2. A novel Candidatus Midichloria sp. OTU_2090 was only found in I. holocyclus ticks (nymph: 96.3%, adult: 75.6%). Candidatus Neoehrlichia australis and Candidatus Neoehrlichia arcana was recovered from I. holocyclus and one I. trichosuri nymph ticks. Borrelia spp. was absent from all ticks. This study has shown that nymph and adult ticks carry different bacteria, and a tick bite in Sydney, Australia will result in different bacterial transfer depending on tick life stage, tick species and geography.
Collapse
|
17
|
Afouda P, Dubourg G, Raoult D. Archeomicrobiology applied to environmental samples. Microb Pathog 2020; 143:104140. [DOI: 10.1016/j.micpath.2020.104140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
18
|
Tolotti M, Cerasino L, Donati C, Pindo M, Rogora M, Seppi R, Albanese D. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137101. [PMID: 32065887 DOI: 10.1016/j.scitotenv.2020.137101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Mountain glacier shrinkage represents a major effect of the current global warming and 80-100% of the Alpine glaciers are predicted to vanish within the next few decades. As the thawing rate of mountain permafrost ice is much lower than for glacier ice, a shift from glacial to periglacial dynamics is predicted for Alpine landscapes during the 21st century. Despite the growing literature on the impacts of deglaciation on Alpine hydrology and ecosystems, chemical and biological features of waters emerging from Alpine rock glaciers (i.e. permafrost landforms composed by a mixture of ice and debris) have been poorly investigated so far, and knowledge on microbial biodiversity of headwaters is still sparse. A set of glacier-, rock glacier- and groundwater/precipitation-fed streams was investigated in the Italian Central Alps in late summer 2016, aiming at exploring bacterial community composition and diversity in epilithic and surface sediment biofilm and at verifying the hypothesis that rock glacier-fed headwaters represent peculiar ecosystems from both a chemical and biological point of view. Rock glacier-fed waters showed high values of electrical conductivity and trace elements related to their bedrock lithology, and their highly diverse bacterial assemblages significantly differed from those detected in glacier-fed streams. Bacterial taxonomic composition appeared to be mainly related to water and substrate type, as well as to water chemistry, the latter including concentrations of nutrients and trace metals. The results of this study confirm the chemical and biological peculiarity of rock glacier-fed waters compared to glacial waters, and suggest a potential driving role of thawing permafrost in modulating future ecological traits of Alpine headwaters within the context of progressing deglaciation.
Collapse
Affiliation(s)
- Monica Tolotti
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy.
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| | - Michela Rogora
- CNR Water Research Institute (IRSA-CNR), Largo Tonolli 50, Verbania-Pallanza, Italy
| | - Roberto Seppi
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia, Italy
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| |
Collapse
|
19
|
Gupta V, Singh I, Rasool S, Verma V. Next generation sequencing and microbiome's taxonomical characterization of frozen soil of north western Himalayas of Jammu and Kashmir, India. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Guerra V, Beule L, Lehtsaar E, Liao HL, Karlovsky P. Improved Protocol for DNA Extraction from Subsoils Using Phosphate Lysis Buffer. Microorganisms 2020; 8:microorganisms8040532. [PMID: 32272709 PMCID: PMC7232467 DOI: 10.3390/microorganisms8040532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/23/2022] Open
Abstract
As our understanding of soil biology deepens, there is a growing demand for investigations addressing microbial processes in the earth beneath the topsoil layer, called subsoil. High clay content in subsoils often hinders the recovery of sufficient quantities of DNA as clay particles bind nucleic acids. Here, an efficient and reproducible DNA extraction method for 200 mg dried soil based on sodium dodecyl sulfate (SDS) lysis in the presence of phosphate buffer has been developed. The extraction protocol was optimized by quantifying bacterial 16S and fungal 18S rRNA genes amplified from extracts obtained by different combinations of lysis methods and phosphate buffer washes. The combination of one minute of bead beating, followed by ten min incubation at 65°C in the presence of 1 M phosphate buffer with 0.5% SDS, was found to produce the best results. The optimized protocol was compared with a commonly used cetyltrimethylammonium bromide (CTAB) method, using Phaeozem soil collected from 60 cm depth at a conventional agricultural field and validated on five subsoils. The reproducibility and robustness of the protocol was corroborated by an interlaboratory comparison. The DNA extraction protocol offers a reproducible and cost-effective tool for DNA-based studies of subsoil biology.
Collapse
Affiliation(s)
- Victor Guerra
- North Florida Research and Education Center, Soil and Water Sciences Department, University of Florida, Quincy, FL 32351, USA; (V.G.); (H.-L.L.)
| | - Lukas Beule
- Molecular Phytopathology and Mycotoxin Research, Faculty of Agricultural Sciences, University of Goettingen, 37075 Goettingen, Germany; (E.L.); (P.K.)
- Correspondence:
| | - Ena Lehtsaar
- Molecular Phytopathology and Mycotoxin Research, Faculty of Agricultural Sciences, University of Goettingen, 37075 Goettingen, Germany; (E.L.); (P.K.)
| | - Hui-Ling Liao
- North Florida Research and Education Center, Soil and Water Sciences Department, University of Florida, Quincy, FL 32351, USA; (V.G.); (H.-L.L.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Faculty of Agricultural Sciences, University of Goettingen, 37075 Goettingen, Germany; (E.L.); (P.K.)
| |
Collapse
|
21
|
Zemb O, Achard CS, Hamelin J, De Almeida ML, Gabinaud B, Cauquil L, Verschuren LMG, Godon JJ. Absolute quantitation of microbes using 16S rRNA gene metabarcoding: A rapid normalization of relative abundances by quantitative PCR targeting a 16S rRNA gene spike-in standard. Microbiologyopen 2020; 9:e977. [PMID: 31927795 PMCID: PMC7066463 DOI: 10.1002/mbo3.977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Metabarcoding of the 16S rRNA gene is commonly used to characterize microbial communities, by estimating the relative abundance of microbes. Here, we present a method to retrieve the concentrations of the 16S rRNA gene per gram of any environmental sample using a synthetic standard in minuscule amounts (100 ppm to 1% of the 16S rRNA sequences) that is added to the sample before DNA extraction and quantified by two quantitative polymerase chain reaction (qPCR) reactions. This allows normalizing by the initial microbial density, taking into account the DNA recovery yield. We quantified the internal standard and the total load of 16S rRNA genes by qPCR. The qPCR for the latter uses the exact same primers as those used for Illumina sequencing of the V3‐V4 hypervariable regions of the 16S rRNA gene to increase accuracy. We are able to calculate the absolute concentration of the species per gram of sample, taking into account the DNA recovery yield. This is crucial for an accurate estimate as the yield varied between 40% and 84%. This method avoids sacrificing a high proportion of the sequencing effort to quantify the internal standard. If sacrificing a part of the sequencing effort to the internal standard is acceptable, we however recommend that the internal standard accounts for 30% of the environmental 16S rRNA genes to avoid the PCR bias associated with rare phylotypes. The method proposed here was tested on a feces sample but can be applied more broadly on any environmental sample. This method offers a real improvement of metabarcoding of microbial communities since it makes the method quantitative with limited efforts.
Collapse
Affiliation(s)
- Olivier Zemb
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | | | | | | - Béatrice Gabinaud
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Lisanne M G Verschuren
- Topigs Norsvin Research Center B.V., Beuningen, The Netherlands.,Wageningen UR, Livestock Research, Wageningen, The Netherlands.,Agrocampus Ouest, Saint-Gilles, France
| | | |
Collapse
|
22
|
Gołębiewski M, Tretyn A. Generating amplicon reads for microbial community assessment with next‐generation sequencing. J Appl Microbiol 2019; 128:330-354. [DOI: 10.1111/jam.14380] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- M. Gołębiewski
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| | - A. Tretyn
- Plant Physiology and Biotechnology Nicolaus Copernicus University Toruń Poland
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University Toruń Poland
| |
Collapse
|
23
|
Nash MV, Anesio AM, Barker G, Tranter M, Varliero G, Eloe-Fadrosh EA, Nielsen T, Turpin-Jelfs T, Benning LG, Sánchez-Baracaldo P. Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiol Ecol 2019; 94:5036517. [PMID: 29901729 PMCID: PMC6054269 DOI: 10.1093/femsec/fiy114] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/11/2018] [Indexed: 11/30/2022] Open
Abstract
Microbial nitrogen fixation is crucial for building labile nitrogen stocks and facilitating higher plant colonisation in oligotrophic glacier forefield soils. Here, the diazotrophic bacterial community structure across four Arctic glacier forefields was investigated using metagenomic analysis. In total, 70 soil metagenomes were used for taxonomic interpretation based on 185 nitrogenase (nif) sequences, extracted from assembled contigs. The low number of recovered genes highlights the need for deeper sequencing in some diverse samples, to uncover the complete microbial populations. A key group of forefield diazotrophs, found throughout the forefields, was identified using a nifH phylogeny, associated with nifH Cluster I and III. Sequences related most closely to groups including Alphaproteobacteria, Betaproteobacteria, Cyanobacteria and Firmicutes. Using multiple nif genes in a Last Common Ancestor analysis revealed a diverse range of diazotrophs across the forefields. Key organisms identified across the forefields included Nostoc, Geobacter, Polaromonas and Frankia. Nitrogen fixers that are symbiotic with plants were also identified, through the presence of root associated diazotrophs, which fix nitrogen in return for reduced carbon. Additional nitrogen fixers identified in forefield soils were metabolically diverse, including fermentative and sulphur cycling bacteria, halophiles and anaerobes.
Collapse
Affiliation(s)
- Maisie V Nash
- School of Geographical Sciences, University of Bristol, UK
| | | | - Gary Barker
- School of Life Sciences, University of Bristol, UK
| | - Martyn Tranter
- School of Geographical Sciences, University of Bristol, UK
| | | | | | - Torben Nielsen
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, US
| | | | - Liane G Benning
- GFZ German Research Centre for Geosciences, Telegrafenenberg, 14473 Potsdam, Germany.,School of Earth and Environment, University of Leeds, LS2 9JT, Leeds, UK.,Department of Earth Sciences, Free University of Berlin, Malteserstr, 74-100, Building A, 12249, Berlin, Germany
| | | |
Collapse
|
24
|
Jacobsen Á, Mikalsen SO, Joensen H, Eysturskarð J. Composition and dynamics of the bacterial communities present in the post-slaughter environment of farmed Atlantic salmon ( Salmo salar L .) and correlations to gelatin degrading activity. PeerJ 2019; 7:e7040. [PMID: 31198643 PMCID: PMC6555393 DOI: 10.7717/peerj.7040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/29/2019] [Indexed: 12/02/2022] Open
Abstract
Background Microbial analyses performed in connection with the post-slaughter environment of farmed Atlantic salmon (Salmo salar L.) have mostly focused on specific bacteria that may have negative effects on the health of consumers. However, bacteria may also affect other quality variables. The objective of this study was to provide general knowledge about composition and dynamics of the bacterial communities present at slaughter and cold storage of farmed Atlantic salmon, as well as reveal any possible correlations to gelatinase activity, which may affect fillet quality. Thus, these data may provide a basis for optimization opportunities in the aquaculture industry. Methods Samples were taken from the digestive system harvested from 15 salmon immediately after slaughter. Another 17 salmon were taken from the processing line just before the final cleaning stage; of these eight were distributed in three iced storage boxes while the other nine were rinsed an extra time with industrial water before being distributed into another three storage boxes. In the following 6 days, samples were taken of skin mucus, liquids in the abdominal cavity and the storage ice. The compositions of the bacterial communities were analyzed by next-generation sequencing and gelatinase activity was measured in all samples except the storage ice. Results The bacterial communities in the digestive tract samples were dominated by the family Mycoplasmataceae. The genus Aliivibrio was also relatively abundant. Bacterial communities in the abdominal cavity were generally more diverse than the intestinal samples. However, all of the abdominal samples from storage box no. 3 had a high relative abundance of Mycoplasmataceae, and could not be distinguished from the intestinal samples (Q = 1.27, p = 0.633) while being significantly different from the other abdominal samples (Q = 9.02, p = 0.01). In addition, the abdominal samples from storage box no. 3 had a significantly higher gelatin degrading activity (Q = 9.43, p = 0.001) than those from the other storage boxes and similar to the high gelatinase activity in the intestinal samples. This indicated that in storage box no. 3 there was a transfer of intestinal fluids to the abdominal cavities, which was not removed by the cleaning procedure. There was a significant difference of the major phyla detected in the skin mucus of salmon rinsed an additional time, as these salmon had a higher relative amount of Firmicutes (F = 4.76, p = 0.04) and lower amount of Proteobacteria (F = 4.41, p = 0.047). Conclusions The study showed a correlation between intestinal fluids and bacteria left in the abdominal cavity and gelatinase activity. This suggested that intestinal fluids and/or bacteria could enhance the degradation of connective tissue in the abdominal cavity and hence negatively affect the fillet quality. In addition, the study provided general knowledge of the composition and dynamics of bacterial communities present.
Collapse
Affiliation(s)
- Ása Jacobsen
- Fiskaaling, Aquaculture Research Station of the Faroes, Við Áir, Hvalvík, The Faroe Islands
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Tórshavn, The Faroe Islands
| | - Hóraldur Joensen
- Department of Science and Technology, University of the Faroe Islands, Tórshavn, The Faroe Islands
| | - Jonhard Eysturskarð
- Fiskaaling, Aquaculture Research Station of the Faroes, Við Áir, Hvalvík, The Faroe Islands
| |
Collapse
|
25
|
Gobbi A, Santini RG, Filippi E, Ellegaard-Jensen L, Jacobsen CS, Hansen LH. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 2019; 14:e0200979. [PMID: 30973938 PMCID: PMC6459482 DOI: 10.1371/journal.pone.0200979] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/03/2019] [Indexed: 01/18/2023] Open
Abstract
Soil DNA extraction encounters numerous challenges that can affect both yield and purity of the recovered DNA. Clay particles lead to reduced DNA extraction efficiency, and PCR inhibitors from the soil matrix can negatively affect downstream analyses when applying DNA sequencing. Further, these effects impede molecular analysis of bacterial community compositions in lower biomass samples, as often observed in deeper soil layers. Many studies avoid these complications by using indirect DNA extraction with prior separation of the cells from the matrix, but such methods introduce other biases that influence the resulting microbial community composition. To address these issues, a direct DNA extraction method was applied in combination with the use of a commercial product, the G2 DNA/RNA Enhancer, marketed as being capable of improving the amount of DNA recovered after the lysis step. The results showed that application of G2 increased DNA yields from the studied clayey soils from layers from 1.00 to 2.20 m. Importantly, the use of G2 did not introduce bias, as it did not result in any significant differences in the biodiversity of the bacterial community measured in terms of alpha and beta diversity and taxonomical composition. Finally, this study considered a set of customised lysing tubes for evaluating possible influences on the DNA yield. Tubes customization included different bead sizes and amounts, along with lysing tubes coming from two suppliers. Results showed that the lysing tubes with mixed beads allowed greater DNA recovery compared to the use of either 0.1 or 1.4 mm beads, irrespective of the tube supplier. These outcomes may help to improve commercial products in DNA/RNA extraction kits, besides raising awareness about the optimal choice of additives, offering opportunities for acquiring a better understanding of topics such as vertical microbial characterisation and environmental DNA recovery in low biomass samples.
Collapse
Affiliation(s)
- Alex Gobbi
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Rui G. Santini
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Elisa Filippi
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | | | - Lars H. Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- * E-mail:
| |
Collapse
|
26
|
Sáenz J, Roldan F, Junca H, Arbeli Z. Effect of the extraction and purification of soilDNAand pooling ofPCRamplification products on the description of bacterial and archaeal communities. J Appl Microbiol 2019; 126:1454-1467. [DOI: 10.1111/jam.14231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/22/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- J.S. Sáenz
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias Potificia Universidad Javeriana Bogotá Colombia
| | - F. Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias Potificia Universidad Javeriana Bogotá Colombia
| | - H. Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts Microbiomas Foundation Chía Colombia
| | - Z. Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias Potificia Universidad Javeriana Bogotá Colombia
| |
Collapse
|
27
|
Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the Salty Divide: Phylogenetic Specificity of Transitions between Marine and Freshwater Systems. mSystems 2018; 3:e00232-18. [PMID: 30443603 PMCID: PMC6234284 DOI: 10.1128/msystems.00232-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Marine and freshwater microbial communities are phylogenetically distinct, and transitions between habitat types are thought to be infrequent. We compared the phylogenetic diversity of marine and freshwater microorganisms and identified specific lineages exhibiting notably high or low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing data sets. As expected, marine and freshwater microbial communities differed in the relative abundance of major phyla and contained habitat-specific lineages. At the same time, and contrary to expectations, many shared taxa were observed in both habitats. Based on several metrics, we found that Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria contained the highest number of closely related marine and freshwater sequences, suggesting comparatively recent habitat transitions in these groups. Using the abundant alphaproteobacterial group SAR11 as an example, we found evidence that new lineages, beyond the recognized LD12 clade, are detected in freshwater at low but reproducible abundances; this evidence extends beyond the 16S rRNA locus to core genes throughout the genome. Our results suggest that shared taxa are numerous, but tend to occur sporadically and at low relative abundance in one habitat type, leading to an underestimation of transition frequency between marine and freshwater habitats. Rare taxa with abundances near or below detection, including lineages that appear to have crossed the salty divide relatively recently, may possess adaptations enabling them to exploit opportunities for niche expansion when environments are disturbed or conditions change. IMPORTANCE The distribution of microbial diversity across environments yields insight into processes that create and maintain this diversity as well as potential to infer how communities will respond to future environmental changes. We integrated data sets from dozens of freshwater lake and marine samples to compare diversity across open water habitats differing in salinity. Our novel combination of sequence-based approaches revealed lineages that likely experienced a recent transition across habitat types. These taxa are promising targets for studying physiological constraints on salinity tolerance. Our findings contribute to understanding the ecological and evolutionary controls on microbial distributions, and open up new questions regarding the plasticity and adaptability of particular lineages.
Collapse
Affiliation(s)
- Sara F. Paver
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Daniel Muratore
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Maureen L. Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Unterwurzacher V, Pogner C, Berger H, Strauss J, Strauss-Goller S, Gorfer M. Validation of a quantitative PCR based detection system for indoor mold exposure assessment in bioaerosols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1454-1468. [PMID: 30225499 DOI: 10.1039/c8em00253c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Determination and assessment of airborne fungal particles is complex and results of different sampling and analytical strategies are hard to compare due to limitations of each of the techniques. Here, an indoor mold detection system based on quantitative polymerase chain reaction (qPCR) is described and validated for its reliability and stability to identify airborne fungal particles collected. Data obtained from testing the system with fungal DNA, spore suspensions and bioaerosols indicated a need for spiking and normalization of measurements due to material loss and assay specific bias. Considering the loss of material during sample processing, detection limits defined for suspensions of Tritirachium oryzae spores were roughly 18 spores per sample. Detection of fungal spore mixtures nebulized under controlled conditions in a bioaerosol chamber showed generally 2-3 times higher normalized values measured with the molecular system compared to cultivation. Data obtained from a mold infested indoor sampling site and its corresponding outdoor reference measurement showed good correlations between qPCR and high-throughput sequencing (rho = 0.83, p < 0.01), if Cladosporium species were excluded. Taking necessary data normalization into account, the described qPCR detection system shows great potential to complement commonly used culture based approaches with the aim to improve the precision of indoor mold assessments. In contrast to already available qPCR assays that detect certain molds on a species level, this system covers a broad range of relevant fungal communities, serving as a promising alternative to high-throughput sequencing to identify indoor molds.
Collapse
Affiliation(s)
- Verena Unterwurzacher
- Center for Health and Bioresources, Austrian Institute of Technology - AIT, Tulln, Austria.
| | | | | | | | | | | |
Collapse
|
29
|
Dopheide A, Xie D, Buckley TR, Drummond AJ, Newcomb RD. Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13086] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew Dopheide
- School of Biological SciencesThe University of Auckland Auckland New Zealand
- The New Zealand Institute for Plant & Food Research Auckland New Zealand
- Manaaki Whenua ‐ Landcare Research Auckland New Zealand
| | - Dong Xie
- Centre for Computational EvolutionThe University of Auckland Auckland New Zealand
| | - Thomas R. Buckley
- School of Biological SciencesThe University of Auckland Auckland New Zealand
- Manaaki Whenua ‐ Landcare Research Auckland New Zealand
| | - Alexei J. Drummond
- Centre for Computational EvolutionThe University of Auckland Auckland New Zealand
| | - Richard D. Newcomb
- School of Biological SciencesThe University of Auckland Auckland New Zealand
- The New Zealand Institute for Plant & Food Research Auckland New Zealand
| |
Collapse
|
30
|
Simmons T, Caddell DF, Deng S, Coleman-Derr D. Exploring the Root Microbiome: Extracting Bacterial Community Data from the Soil, Rhizosphere, and Root Endosphere. J Vis Exp 2018. [PMID: 29782021 DOI: 10.3791/57561] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The intimate interaction between plant host and associated microorganisms is crucial in determining plant fitness, and can foster improved tolerance to abiotic stresses and diseases. As the plant microbiome can be highly complex, low-cost, high-throughput methods such as amplicon-based sequencing of the 16S rRNA gene are often preferred for characterizing its microbial composition and diversity. However, the selection of appropriate methodology when conducting such experiments is critical for reducing biases that can make analysis and comparisons between samples and studies difficult. This protocol describes in detail a standardized methodology for the collection and extraction of DNA from soil, rhizosphere, and root samples. Additionally, we highlight a well-established 16S rRNA amplicon sequencing pipeline that allows for the exploration of the composition of bacterial communities in these samples, and can easily be adapted for other marker genes. This pipeline has been validated for a variety of plant species, including sorghum, maize, wheat, strawberry, and agave, and can help overcome issues associated with the contamination from plant organelles.
Collapse
Affiliation(s)
- Tuesday Simmons
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Daniel F Caddell
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Siwen Deng
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley; Plant Gene Expression Center, USDA ARS;
| |
Collapse
|
31
|
McAllister T, Dunière L, Drouin P, Xu S, Wang Y, Munns K, Zaheer R. Silage review: Using molecular approaches to define the microbial ecology of silage. J Dairy Sci 2018; 101:4060-4074. [DOI: 10.3168/jds.2017-13704] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
|
32
|
Witte AK, Leeb C, Pinior B, Mester P, Fister S, Bobal M, Schoder D, Rossmanith P. Influence of sampling and DNA extraction on 16S rRNA gene amplicon sequencing - Comparison of the bacterial community between two food processing plants. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Panetta JL, Šíma R, Calvani NED, Hajdušek O, Chandra S, Panuccio J, Šlapeta J. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasit Vectors 2017; 10:616. [PMID: 29262840 PMCID: PMC5738880 DOI: 10.1186/s13071-017-2579-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge on the capacity of Australian ticks to carry Borrelia species is currently limited or missing. To evaluate the potential of ticks to carry bacterial pathogens and their DNA, it is imperative to have a robust workflow that maximises recovery of bacterial DNA within ticks in order to enable accurate identification. By exploiting the bilateral anatomical symmetry of ticks, we were able to directly compare two DNA extraction methods for 16S rRNA gene diversity profiling and pathogen detection. We aimed to assess which combination of DNA extraction and 16S rRNA hypervariable region enables identification of the greatest bacterial diversity, whilst minimising bias, and providing the greatest capacity for the identification of Borrelia spp. RESULTS We collected Australian endemic ticks (Bothriocroton undatum), isolated DNA from equal tick halves using two commercial DNA extraction methods and sequenced samples using V1-V3 and V3-V4 16S rRNA gene diversity profiling assays. Two distinct Borrelia spp. operational taxonomic units (OTUs) were detected using the V1-V3 16S rRNA hypervariable region and matching Borrelia spp. sequences were obtained using a conventional nested-PCR. The tick 16S rRNA gene diversity profile was dominated by Rickettsia spp. (98-99%), while the remaining OTUs belonged to Proteobacteria (51-81%), Actinobacteria (6-30%) and Firmicutes (2-7%). Multiple comparisons tests demonstrated biases in each of the DNA extraction kits towards different bacterial taxa. CONCLUSIONS Two distinct Borrelia species belonging to the reptile-associated Borrelia group were identified. Our results show that the method of DNA extraction can promote bias in the final microbiota identified. We determined an optimal DNA extraction method and 16S rRNA gene diversity profile assay that maximises detection of Borrelia species.
Collapse
Affiliation(s)
- Jessica L. Panetta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Nichola E. D. Calvani
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Shona Chandra
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Jessica Panuccio
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
34
|
Soliman T, Yang SY, Yamazaki T, Jenke-Kodama H. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ 2017; 5:e4178. [PMID: 29302394 PMCID: PMC5740954 DOI: 10.7717/peerj.4178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/29/2017] [Indexed: 01/03/2023] Open
Abstract
Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P < 0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.
Collapse
Affiliation(s)
- Taha Soliman
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Sung-Yin Yang
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tomoko Yamazaki
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Holger Jenke-Kodama
- Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
35
|
Chen YL, Deng Y, Ding JZ, Hu HW, Xu TL, Li F, Yang GB, Yang YH. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol Ecol 2017; 26:6608-6620. [DOI: 10.1111/mec.14396] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Yong-Liang Chen
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Jin-Zhi Ding
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Melbourne Vic. Australia
| | - Tian-Le Xu
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Melbourne Vic. Australia
| | - Gui-Biao Yang
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
- Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Parkville Melbourne Vic. Australia
| | - Yuan-He Yang
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
36
|
Santos SS, Nunes I, Nielsen TK, Jacquiod S, Hansen LH, Winding A. Soil DNA Extraction Procedure Influences Protist 18S rRNA Gene Community Profiling Outcome. Protist 2017; 168:283-293. [DOI: 10.1016/j.protis.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/27/2017] [Accepted: 03/05/2017] [Indexed: 12/20/2022]
|
37
|
Zhao N, Cai J, Zhang C, Guo Z, Lu W, Yang B, Tian FW, Liu XM, Zhang H, Chen W. Suitability of various DNA extraction methods for a traditional Chinese paocai system. Bioengineered 2017; 8:642-650. [PMID: 28409998 DOI: 10.1080/21655979.2017.1300736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traditional paocai brine (PB), which is continuously propagated by back-slopping and contains various species of lactic acid bacteria (LAB), is critical for the flavor of paocai. Culture-independent approaches are commonly used to investigate the microbial communities of fermented food. To evaluate the influence of different DNA (DNA) extraction methods on estimates of bacterial community profiles from 4 PBs, the lysis efficiency, DNA yield, purity and denaturing gradient gel electrophoresis (DGGE) profiles of V3 region of a 16S ribosomal ribonucleic acid gene were acquired. The cell lysis pattern of SDS + beads and Lysing matrix E+ beads (methods 3 and 4) showed higher cell lysis efficiency than SDS and SDS + Lysozyme (methods 1 and 2) in all PBs. SDS + beads obtained the largest DNA yield of the 4 methods. Moreover, methods 3 and 4 resulted in higher H' values and generated more global bacteria profiles than other methods. Overall, our results demonstrate that the properties of PB significantly affect the efficiency of DNA extraction methods. Methods 3 and 4 were both suitable for DNA extraction from PB. Method 3 is more economic, simple and rapid than method 4 for large-scale studies of the bacterial profiles of PB.
Collapse
Affiliation(s)
- Nan Zhao
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China
| | - Jialiang Cai
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China
| | - Chuchu Zhang
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China
| | - Zhuang Guo
- d Northwest Hubei Research Institute of Traditional Fermented Food, College of Chemical Engineering and Food Science, Hu Bei University of Arts and Science , Xiangyang , China
| | - Wenwei Lu
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Bo Yang
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Feng-Wei Tian
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Xiao-Ming Liu
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Hao Zhang
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Wei Chen
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,b Beijing Innovation Centre of Food Nutrition and Human Health , Beijing Technology & Business University , Beijing , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| |
Collapse
|
38
|
Krakat N, Anjum R, Demirel B, Schröder P. Methodological flaws introduce strong bias into molecular analysis of microbial populations. J Appl Microbiol 2017; 122:364-377. [PMID: 27914209 DOI: 10.1111/jam.13365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/24/2016] [Indexed: 11/29/2022]
Abstract
AIMS In this study, we report how different cell disruption methods, PCR primers and in silico analyses can seriously bias results from microbial population studies, with consequences for the credibility and reproducibility of the findings. Our results emphasize the pitfalls of commonly used experimental methods that can seriously weaken the interpretation of results. METHODS AND RESULTS Four different cell lysis methods, three commonly used primer pairs and various computer-based analyses were applied to investigate the microbial diversity of a fermentation sample composed of chicken dung. The fault-prone, but still frequently used, amplified rRNA gene restriction analysis was chosen to identify common weaknesses. In contrast to other studies, we focused on the complete analytical process, from cell disruption to in silico analysis, and identified potential error rates. This identified a wide disagreement of results between applied experimental approaches leading to very different community structures depending on the chosen approach. CONCLUSIONS The interpretation of microbial diversity data remains a challenge. In order to accurately investigate the taxonomic diversity and structure of prokaryotic communities, we suggest a multi-level approach combining DNA-based and DNA-independent techniques. SIGNIFICANCE AND IMPACT OF THE STUDY The identified weaknesses of commonly used methods to study microbial diversity can be overcome by a multi-level approach, which produces more reliable data about the fate and behaviour of microbial communities of engineered habitats such as biogas plants, so that the best performance can be ensured.
Collapse
Affiliation(s)
- N Krakat
- Department of Bioprocess-Engineering, Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Potsdam, Germany
| | - R Anjum
- Department of Bioprocess-Engineering, Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Potsdam, Germany
| | - B Demirel
- Institute of Environmental Science, Boğaziçi University, Istanbul, Turkey
| | - P Schröder
- Department of Geomikrobiologie, Helmholtz-Zentrum Potsdam, Deutsches Geoforschungszentrum, Telegrafenberg, Potsdam, Germany
| |
Collapse
|
39
|
Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci Rep 2017; 7:43338. [PMID: 28230151 PMCID: PMC5322388 DOI: 10.1038/srep43338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/25/2017] [Indexed: 11/08/2022] Open
Abstract
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.
Collapse
|
40
|
Dimitrov MR, Veraart AJ, de Hollander M, Smidt H, van Veen JA, Kuramae EE. Successive DNA extractions improve characterization of soil microbial communities. PeerJ 2017; 5:e2915. [PMID: 28168105 PMCID: PMC5291099 DOI: 10.7717/peerj.2915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/15/2016] [Indexed: 01/21/2023] Open
Abstract
Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1-374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition.
Collapse
Affiliation(s)
- Mauricio R Dimitrov
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands; Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Annelies J Veraart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , Netherlands
| | - Mattias de Hollander
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University , Wageningen , Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , Netherlands
| |
Collapse
|
41
|
Stackhouse B, Lau MCY, Vishnivetskaya T, Burton N, Wang R, Southworth A, Whyte L, Onstott TC. Atmospheric CH 4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. GEOBIOLOGY 2017; 15:94-111. [PMID: 27474434 DOI: 10.1111/gbi.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
The response of methanotrophic bacteria capable of oxidizing atmospheric CH4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH4 gdw-1 d-1 ). Extrapolation of the CH4 oxidation rates to the field yields net CH4 uptake fluxes ranging from 11 to 73 μmol CH4 m-2 d-1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH4 oxidation rates vs. water saturation and the depth to the water table during summer thaw.
Collapse
Affiliation(s)
- B Stackhouse
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - M C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - T Vishnivetskaya
- The Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - N Burton
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - R Wang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - A Southworth
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - L Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - T C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
42
|
Hsieh YH, Peterson CM, Raggio A, Keenan MJ, Martin RJ, Ravussin E, Marco ML. Impact of Different Fecal Processing Methods on Assessments of Bacterial Diversity in the Human Intestine. Front Microbiol 2016; 7:1643. [PMID: 27812352 PMCID: PMC5071325 DOI: 10.3389/fmicb.2016.01643] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota are integral to understanding the relationships between nutrition and health. Therefore, fecal sampling and processing protocols for metagenomic surveys should be sufficiently robust, accurate, and reliable to identify the microorganisms present. We investigated the use of different fecal preparation methods on the bacterial community structures identified in human stools. Complete stools were collected from six healthy individuals and processed according to the following methods: (i) randomly sampled fresh stool, (ii) fresh stool homogenized in a blender for 2 min, (iii) randomly sampled frozen stool, and (iv) frozen stool homogenized in a blender for 2 min, or (v) homogenized in a pneumatic mixer for either 10, 20, or 30 min. High-throughput DNA sequencing of the 16S rRNA V4 regions of bacterial community DNA extracted from the stools showed that the fecal microbiota remained distinct between individuals, independent of processing method. Moreover, the different stool preparation approaches did not alter intra-individual bacterial diversity. Distinctions were found at the level of individual taxa, however. Stools that were frozen and then homogenized tended to have higher proportions of Faecalibacterium, Streptococcus, and Bifidobacterium and decreased quantities of Oscillospira, Bacteroides, and Parabacteroides compared to stools that were collected in small quantities and not mixed prior to DNA extraction. These findings indicate that certain taxa are at particular risk for under or over sampling due to protocol differences. Importantly, homogenization by any method significantly reduced the intra-individual variation in bacteria detected per stool. Our results confirm the robustness of fecal homogenization for microbial analyses and underscore the value of collecting and mixing large stool sample quantities in human nutrition intervention studies.
Collapse
Affiliation(s)
- Yu-Hsin Hsieh
- Department of Food Science and Technology, University of California, Davis, DavisCA, USA; Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| | | | - Anne Raggio
- Louisiana State University Agricultural Center, Baton Rouge LA, USA
| | - Michael J Keenan
- Louisiana State University Agricultural Center, Baton Rouge LA, USA
| | - Roy J Martin
- Western Human Nutrition Research Center, Davis CA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge LA, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis CA, USA
| |
Collapse
|
43
|
Lim NYN, Roco CA, Frostegård Å. Transparent DNA/RNA Co-extraction Workflow Protocol Suitable for Inhibitor-Rich Environmental Samples That Focuses on Complete DNA Removal for Transcriptomic Analyses. Front Microbiol 2016; 7:1588. [PMID: 27803690 PMCID: PMC5067521 DOI: 10.3389/fmicb.2016.01588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 12/04/2022] Open
Abstract
Adequate comparisons of DNA and cDNA libraries from complex environments require methods for co-extraction of DNA and RNA due to the inherent heterogeneity of such samples, or risk bias caused by variations in lysis and extraction efficiencies. Still, there are few methods and kits allowing simultaneous extraction of DNA and RNA from the same sample, and the existing ones generally require optimization. The proprietary nature of kit components, however, makes modifications of individual steps in the manufacturer’s recommended procedure difficult. Surprisingly, enzymatic treatments are often performed before purification procedures are complete, which we have identified here as a major problem when seeking efficient genomic DNA removal from RNA extracts. Here, we tested several DNA/RNA co-extraction commercial kits on inhibitor-rich soils, and compared them to a commonly used phenol-chloroform co-extraction method. Since none of the kits/methods co-extracted high-quality nucleic acid material, we optimized the extraction workflow by introducing small but important improvements. In particular, we illustrate the need for extensive purification prior to all enzymatic procedures, with special focus on the DNase digestion step in RNA extraction. These adjustments led to the removal of enzymatic inhibition in RNA extracts and made it possible to reduce genomic DNA to below detectable levels as determined by quantitative PCR. Notably, we confirmed that DNase digestion may not be uniform in replicate extraction reactions, thus the analysis of “representative samples” is insufficient. The modular nature of our workflow protocol allows optimization of individual steps. It also increases focus on additional purification procedures prior to enzymatic processes, in particular DNases, yielding genomic DNA-free RNA extracts suitable for metatranscriptomic analysis.
Collapse
Affiliation(s)
- Natalie Y N Lim
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas Norway
| | - Constance A Roco
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, AasNorway; Department of Microbiology, Cornell University, Ithaca, NYUSA
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas Norway
| |
Collapse
|
44
|
Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment. Appl Environ Microbiol 2016; 82:6068-78. [PMID: 27422835 PMCID: PMC5038027 DOI: 10.1128/aem.01271-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Two genes, hgcA and hgcB, are essential for microbial mercury (Hg) methylation. Detection and estimation of their abundance, in conjunction with Hg concentration, bioavailability, and biogeochemistry, are critical in determining potential hot spots of methylmercury (MeHg) generation in at-risk environments. We developed broad-range degenerate PCR primers spanning known hgcAB genes to determine the presence of both genes in diverse environments. These primers were tested against an extensive set of pure cultures with published genomes, including 13 Deltaproteobacteria, nine Firmicutes, and nine methanogenic Archaea genomes. A distinct PCR product at the expected size was confirmed for all hgcAB+ strains tested via Sanger sequencing. Additionally, we developed clade-specific degenerate quantitative PCR (qPCR) primers that targeted hgcA for each of the three dominant Hg-methylating clades. The clade-specific qPCR primers amplified hgcA from 64%, 88%, and 86% of tested pure cultures of Deltaproteobacteria, Firmicutes, and Archaea, respectively, and were highly specific for each clade. Amplification efficiencies and detection limits were quantified for each organism. Primer sensitivity varied among species based on sequence conservation. Finally, to begin to evaluate the utility of our primer sets in nature, we tested hgcA and hgcAB recovery from pure cultures spiked into sand and soil. These novel quantitative molecular tools designed in this study will allow for more accurate identification and quantification of the individual Hg-methylating groups of microorganisms in the environment. The resulting data will be essential in developing accurate and robust predictive models of Hg methylation potential, ideally integrating the geochemistry of Hg methylation to the microbiology and genetics of hgcAB. IMPORTANCE The neurotoxin methylmercury (MeHg) poses a serious risk to human health. MeHg production in nature is associated with anaerobic microorganisms. The recent discovery of the Hg-methylating gene pair, hgcA and hgcB, has allowed us to design and optimize molecular probes against these genes within the genomic DNA for microorganisms known to methylate Hg. The protocols designed in this study allow for both qualitative and quantitative assessments of pure-culture or environmental samples. With these protocols in hand, we can begin to study the distribution of Hg-methylating organisms in nature via a cultivation-independent strategy.
Collapse
|
45
|
Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities. Braz J Microbiol 2016; 47:817-827. [PMID: 27528083 PMCID: PMC5052337 DOI: 10.1016/j.bjm.2016.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/11/2016] [Indexed: 11/21/2022] Open
Abstract
Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation) and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0) removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB) had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.
Collapse
|
46
|
Barbato RA, Garcia-Reyero N, Foley K, Jones R, Courville Z, Douglas T, Perkins E, Reynolds CM. Removal of Exogenous Materials from the Outer Portion of Frozen Cores to Investigate the Ancient Biological Communities Harbored Inside. J Vis Exp 2016. [PMID: 27403572 DOI: 10.3791/54091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The cryosphere offers access to preserved organisms that persisted under past environmental conditions. In fact, these frozen materials could reflect conditions over vast time periods and investigation of biological materials harbored inside could provide insight of ancient environments. To appropriately analyze these ecosystems and extract meaningful biological information from frozen soils and ice, proper collection and processing of the frozen samples is necessary. This is especially critical for microbial and DNA analyses since the communities present may be so uniquely different from modern ones. Here, a protocol is presented to successfully collect and decontaminate frozen cores. Both the absence of the colonies used to dope the outer surface and exogenous DNA suggest that we successfully decontaminated the frozen cores and that the microorganisms detected were from the material, rather than contamination from drilling or processing the cores.
Collapse
Affiliation(s)
- Robyn A Barbato
- Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Hanover, NH;
| | - Natàlia Garcia-Reyero
- Environmental Processes Branch, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS
| | - Karen Foley
- Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Hanover, NH
| | - Robert Jones
- Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Hanover, NH
| | - Zoe Courville
- Terrestrial and Cryospheric Scienes Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Hanover, NH
| | - Thomas Douglas
- Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Fairbanks, AK
| | - Edward Perkins
- Environmental Processes Branch, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS
| | - Charles M Reynolds
- Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Fairbanks, AK
| |
Collapse
|
47
|
Natarajan VP, Zhang X, Morono Y, Inagaki F, Wang F. A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments. Front Microbiol 2016; 7:986. [PMID: 27446026 PMCID: PMC4917542 DOI: 10.3389/fmicb.2016.00986] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/08/2016] [Indexed: 02/01/2023] Open
Abstract
Recovering high quality genomic DNA from environmental samples is a crucial primary step to understand the genetic, metabolic, and evolutionary characteristics of microbial communities through molecular ecological approaches. However, it is often challenging because of the difficulty of effective cell lysis without fragmenting the genomic DNA. This work aims to improve the previous SDS-based DNA extraction methods for high-biomass seafloor samples, such as pelagic sediments and metal sulfide chimney, to obtain high quality and high molecular weight of the genomic DNA applicable for the subsequent molecular ecological analyses. In this regard, we standardized a modified SDS-based DNA extraction method (M-SDS), and its performance was then compared to those extracted by a recently developed hot-alkaline DNA extraction method (HA) and a commercial DNA extraction kit. Consequently, the M-SDS method resulted in higher DNA yield and cell lysis efficiency, lower DNA shearing, and higher diversity scores than other two methods, providing a comprehensive DNA assemblage of the microbial community on the seafloor depositional environment.
Collapse
Affiliation(s)
- Vengadesh Perumal Natarajan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Xinxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Marine Biology Institute, Shantou University Shantou, China
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology Kochi, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology Kochi, Japan
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
48
|
Tao W, Zhang XX, Zhao F, Huang K, Ma H, Wang Z, Ye L, Ren H. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors. PLoS One 2016; 11:e0156854. [PMID: 27294780 PMCID: PMC4905627 DOI: 10.1371/journal.pone.0156854] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/21/2016] [Indexed: 01/24/2023] Open
Abstract
To understand the diversity and abundance of antibiotic resistance genes (ARGs) in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs) were investigated and compared with sludge samples from three sewage treatment plants (STPs) using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes) was higher than that in STP aerobic sludge (118 subtypes). In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO) could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs) were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.
Collapse
Affiliation(s)
- Wenda Tao
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
- * E-mail: (XXZ); (LY)
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
- * E-mail: (XXZ); (LY)
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
49
|
Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, Hartmann M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol 2016; 92:fiw018. [DOI: 10.1093/femsec/fiw018] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 01/08/2023] Open
|
50
|
Pearce DA, Magiopoulos I, Mowlem M, Tranter M, Holt G, Woodward J, Siegert MJ. Microbiology: lessons from a first attempt at Lake Ellsworth. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2014.0291. [PMID: 26667906 DOI: 10.1098/rsta.2014.0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
During the attempt to directly access, measure and sample Subglacial Lake Ellsworth in 2012-2013, we conducted microbiological analyses of the drilling equipment, scientific instrumentation, field camp and natural surroundings. From these studies, a number of lessons can be learned about the cleanliness of deep Antarctic subglacial lake access leading to, in particular, knowledge of the limitations of some of the most basic relevant microbiological principles. Here, we focus on five of the core challenges faced and describe how cleanliness and sterilization were implemented in the field. In the light of our field experiences, we consider how effective these actions were, and what can be learnt for future subglacial exploration missions. The five areas covered are: (i) field camp environment and activities, (ii) the engineering processes surrounding the hot water drilling, (iii) sample handling, including recovery, stability and preservation, (iv) clean access methodologies and removal of sample material, and (v) the biodiversity and distribution of bacteria around the Antarctic. Comparisons are made between the microbiology of the Lake Ellsworth field site and other Antarctic systems, including the lakes on Signy Island, and on the Antarctic Peninsula at Lake Hodgson. Ongoing research to better define and characterize the behaviour of natural and introduced microbial populations in response to deep-ice drilling is also discussed. We recommend that future access programmes: (i) assess each specific local environment in enhanced detail due to the potential for local contamination, (ii) consider the sterility of the access in more detail, specifically focusing on single cell colonization and the introduction of new species through contamination of pre-existing microbial communities, (iii) consider experimental bias in methodological approaches, (iv) undertake in situ biodiversity detection to mitigate risk of non-sample return and post-sample contamination, and (v) address the critical question of how important these microbes are in the functioning of Antarctic ecosystems.
Collapse
Affiliation(s)
- D A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK Department of Arctic Biology, University Centre in Svalbard, Longyearbyen 9171, Norway
| | - I Magiopoulos
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - M Mowlem
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - M Tranter
- Centre for Glaciology, University of Bristol, 12 Berkeley Square, University Road, Clifton, Bristol BS8 1SS, UK
| | - G Holt
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - J Woodward
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - M J Siegert
- Grantham Institute and Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|