1
|
Weckener M, Woodward LS, Clarke BR, Liu H, Ward PN, Le Bas A, Bhella D, Whitfield C, Naismith JH. The lipid linked oligosaccharide polymerase Wzy and its regulating co-polymerase, Wzz, from enterobacterial common antigen biosynthesis form a complex. Open Biol 2023; 13:220373. [PMID: 36944376 PMCID: PMC10030265 DOI: 10.1098/rsob.220373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
The enterobacterial common antigen (ECA) is a carbohydrate polymer that is associated with the cell envelope in the Enterobacteriaceae. ECA contains a repeating trisaccharide which is polymerized by WzyE, a member of the Wzy membrane protein polymerase superfamily. WzyE activity is regulated by a membrane protein polysaccharide co-polymerase, WzzE. Förster resonance energy transfer experiments demonstrate that WzyE and WzzE from Pectobacterium atrosepticum form a complex in vivo, and immunoblotting and cryo-electron microscopy (cryo-EM) analysis confirm a defined stoichiometry of approximately eight WzzE to one WzyE. Low-resolution cryo-EM reconstructions of the complex, aided by an antibody recognizing the C-terminus of WzyE, reveals WzyE sits in the central membrane lumen formed by the octameric arrangement of the transmembrane helices of WzzE. The pairing of Wzy and Wzz is found in polymerization systems for other bacterial polymers, including lipopolysaccharide O-antigens and capsular polysaccharides. The data provide new structural insight into a conserved mechanism for regulating polysaccharide chain length in bacteria.
Collapse
Affiliation(s)
- Miriam Weckener
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Laura S. Woodward
- Centre Biomedical Sciences, North Haugh, University of St Andrews, St Andrews KY16 9ST, UK
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Huanting Liu
- Centre Biomedical Sciences, North Haugh, University of St Andrews, St Andrews KY16 9ST, UK
| | - Philip N. Ward
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Audrey Le Bas
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David Bhella
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1Q, UK
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
2
|
The production of hyperimmune pseudotuberculosis sera. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Ohno M, Hasegawa M, Hayashi A, Caballero-Flores G, Alteri CJ, Lawley TD, Kamada N, Núñez G, Inohara N. Lipopolysaccharide O structure of adherent and invasive Escherichia coli regulates intestinal inflammation via complement C3. PLoS Pathog 2020; 16:e1008928. [PMID: 33027280 PMCID: PMC7571687 DOI: 10.1371/journal.ppat.1008928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/19/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Gut dysbiosis associated with intestinal inflammation is characterized by the blooming of particular bacteria such as adherent-invasive E. coli (AIEC). However, the precise mechanisms by which AIEC impact on colitis remain largely unknown. Here we show that antibiotic-induced dysbiosis worsened chemically-induced colitis in IL-22-deficient mice, but not in wild-type mice. The increase in intestinal inflammation was associated with the expansion of E. coli strains with genetic and functional features of AIEC. These E. coli isolates exhibited high ability to out compete related bacteria via colicins and resistance to the host complement system in vitro. Mutation of wzy, the lipopolysaccharide O polymerase gene, rendered AIEC more sensitive to the complement system and more susceptible to engulfment and killing by phagocytes while retaining its ability to outcompete related bacteria in vitro. The wzy AIEC mutant showed impaired fitness to colonize the intestine under colitic conditions, but protected mice from chemically-induced colitis. Importantly, the ability of the wzy mutant to protect from colitis was blocked by depletion of complement C3 which was associated with impaired intestinal eradication of AIEC in colitic mice. These studies link surface lipopolysaccharide O-antigen structure to the regulation of colitic activity in commensal AIEC via interactions with the complement system.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Atsushi Hayashi
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Miyarisan Pharmaceutical Co., Ltd., Central Research Institute, Saitama, Japan
| | - Gustavo Caballero-Flores
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, United States of America
| | - Trevor D. Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nobuhiko Kamada
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Yu X, Torzewska A, Zhang X, Yin Z, Drzewiecka D, Cao H, Liu B, Knirel YA, Rozalski A, Wang L. Genetic diversity of the O antigens of Proteus species and the development of a suspension array for molecular serotyping. PLoS One 2017; 12:e0183267. [PMID: 28817637 PMCID: PMC5560731 DOI: 10.1371/journal.pone.0183267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Proteus species are well-known opportunistic pathogens frequently associated with skin wound and urinary tract infections in humans and animals. O antigen diversity is important for bacteria to adapt to different hosts and environments, and has been used to identify serotypes of Proteus isolates. At present, 80 Proteus O-serotypes have been reported. Although the O antigen structures of most Proteus serotypes have been identified, the genetic features of these O antigens have not been well characterized. The O antigen gene clusters of Proteus species are located between the cpxA and secB genes. In this study, we identified 55 O antigen gene clusters of different Proteus serotypes. All clusters contain both the wzx and wzy genes and exhibit a high degree of heterogeneity. Potential functions of O antigen-related genes were proposed based on their similarity to genes in available databases. The O antigen gene clusters and structures were compared, and a number of glycosyltransferases were assigned to glycosidic linkages. In addition, an O serotype-specific suspension array was developed for detecting 31 Proteus serotypes frequently isolated from clinical specimens. To our knowledge, this is the first comprehensive report to describe the genetic features of Proteus O antigens and to develop a molecular technique to identify different Proteus serotypes.
Collapse
Affiliation(s)
- Xiang Yu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Agnieszka Torzewska
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Xinjie Zhang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Dominika Drzewiecka
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Kenyon JJ, Cunneen MM, Reeves PR. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS Microbiol Rev 2017; 41:200-217. [PMID: 28364730 PMCID: PMC5399914 DOI: 10.1093/femsre/fux002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022] Open
Abstract
O-antigen polysaccharide is a major immunogenic feature of the lipopolysaccharide of Gram-negative bacteria, and most species produce a large variety of forms that differ substantially from one another. There are 18 known O-antigen forms in the Yersinia pseudotuberculosis complex, which are typical in being composed of multiple copies of a short oligosaccharide called an O unit. The O-antigen gene clusters are located between the hemH and gsk genes, and are atypical as 15 of them are closely related, each having one of five downstream gene modules for alternative main-chain synthesis, and one of seven upstream modules for alternative side-branch sugar synthesis. As a result, many of the genes are in more than one gene cluster. The gene order in each module is such that, in general, the earlier a gene product functions in O-unit synthesis, the closer the gene is to the 5΄ end for side-branch modules or the 3΄ end for main-chain modules. We propose a model whereby natural selection could generate the observed pattern in gene order, a pattern that has also been observed in other species.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology. Brisbane, QLD 4001, Australia
| | - Monica M. Cunneen
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Kenyon JJ, Shneider MM, Senchenkova SN, Shashkov AS, Siniagina MN, Malanin SY, Popova AV, Miroshnikov KA, Hall RM, Knirel YA. K19 capsular polysaccharide of Acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster. MICROBIOLOGY-SGM 2016; 162:1479-1489. [PMID: 27230482 DOI: 10.1099/mic.0.000313] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was →3)-α-d-GalpNAc-(1→4)-α-d-GalpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes.
Collapse
Affiliation(s)
- Johanna J Kenyon
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sofya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria N Siniagina
- Interdisciplinary Center for Proteomics Research, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Sergey Y Malanin
- Interdisciplinary Center for Proteomics Research, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation.,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russian Federation
| | - Konstantin A Miroshnikov
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ruth M Hall
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
7
|
Taylor VL, Hoage JFJ, Thrane SW, Huszczynski SM, Jelsbak L, Lam JS. A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα. Front Microbiol 2016; 7:393. [PMID: 27065964 PMCID: PMC4815439 DOI: 10.3389/fmicb.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a serotype converting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3′ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphatase activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272, and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion.
Collapse
Affiliation(s)
- Véronique L Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jesse F J Hoage
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Steven M Huszczynski
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
8
|
Kenyon JJ, Duda KA, De Felice A, Cunneen MM, Molinaro A, Laitinen J, Skurnik M, Holst O, Reeves PR, De Castro C. Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS. Innate Immun 2016; 22:205-17. [PMID: 26873504 DOI: 10.1177/1753425916631403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/13/2016] [Indexed: 11/15/2022] Open
Abstract
In Yersinia pseudotuberculosis complex, the O-antigen of LPS is used for the serological characterization of strains, and 21 serotypes have been identified to date. The O-antigen biosynthesis gene cluster and corresponding O-antigen structure have been described for 18, leaving O:8, O:13 and O:14 unresolved. In this study, two O:8 isolates were examined. The O-antigen gene cluster sequence of strain 151 was near identical to serotype O:4a, though a frame-shift mutation was found in ddhD, while No. 6 was different to 151 and carried the O:1b gene cluster. Structural analysis revealed that No. 6 produced a deeply truncated LPS, suggesting a mutation within the waaF gene. Both ddhD and waaF were cloned and expressed in 151 and No. 6 strains, respectively, and it appeared that expression of ddhD gene in strain 151 restored the O-antigen on LPS, while waaF in No. 6 resulted in an LPS truncated less severely but still without the O-antigen, suggesting that other mutations occurred in this strain. Thus, both O:8 isolates were found to be spontaneous O-antigen-negative mutants derived from other validated serotypes, and we propose to remove this serotype from the O-serotyping scheme, as the O:8 serological specificity is not based on the O-antigen.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Katarzyna A Duda
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Antonia De Felice
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Monica M Cunneen
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Juha Laitinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Peter R Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Cristina De Castro
- Department of Agriculture Sciences, University of Napoli, Portici, Italy
| |
Collapse
|
9
|
Diversity of O Antigens within the Genus Cronobacter: from Disorder to Order. Appl Environ Microbiol 2015; 81:5574-82. [PMID: 26070668 DOI: 10.1128/aem.00277-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/01/2015] [Indexed: 11/20/2022] Open
Abstract
Cronobacter species are Gram-negative opportunistic pathogens that can cause serious infections in neonates. The lipopolysaccharides (LPSs) that form part of the outer membrane of such bacteria are possibly related to the virulence of particular bacterial strains. However, currently there is no clear overview of O-antigen diversity within the various Cronobacter strains and links with virulence. In this study, we tested a total of 82 strains, covering each of the Cronobacter species. The nucleotide variability of the O-antigen gene cluster was determined by restriction fragment length polymorphism (RFLP) analysis. As a result, the 82 strains were distributed into 11 previously published serotypes and 6 new serotypes, each defined by its characteristic restriction profile. These new serotypes were confirmed using genomic analysis of strains available in public databases: GenBank and PubMLST Cronobacter. Laboratory strains were then tested using the current serotype-specific PCR probes. The results show that the current PCR probes did not always correspond to genomic O-antigen gene cluster variation. In addition, we analyzed the LPS phenotype of the reference strains of all distinguishable serotypes. The identified serotypes were compared with data from the literature and the MLST database (www.pubmlst.org/cronobacter/). Based on the findings, we systematically classified a total of 24 serotypes for the Cronobacter genus. Moreover, we evaluated the clinical history of these strains and show that Cronobacter sakazakii O2, O1, and O4, C. turicensis O1, and C. malonaticus O2 serotypes are particularly predominant in clinical cases.
Collapse
|
10
|
Mutational analysis of the Shigella flexneri O-antigen polymerase Wzy: identification of Wzz-dependent Wzy mutants. J Bacteriol 2014; 197:108-19. [PMID: 25313393 DOI: 10.1128/jb.01885-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The O-antigen (Oag) component of lipopolysaccharide (LPS) is a major virulence determinant of Shigella flexneri and is synthesized by the O-antigen polymerase, WzySf. Oag chain length is regulated by chromosomally encoded WzzSf and pHS-2 plasmid-encoded WzzpHS2. To identify functionally important amino acid residues in WzySf, random mutagenesis was performed on the wzySf gene in a pWaldo-TEV-GFP plasmid, followed by screening with colicin E2. Analysis of the LPS conferred by mutated WzySf proteins in the wzySf-deficient (Δwzy) strain identified 4 different mutant classes, with mutations found in periplasmic loop 1 (PL1), PL2, PL3, and PL6, transmembrane region 2 (TM2), TM4, TM5, TM7, TM8, and TM9, and cytoplasmic loop 1 (CL1) and CL5. The association of WzySf and WzzSf was investigated by transforming these mutated wzySf plasmids into a wzySf- and wzzSf-deficient (Δwzy Δwzz) strain. Comparison of the LPS profiles in the Δwzy and Δwzy Δwzz backgrounds identified WzySf mutants whose polymerization activities were WzzSf dependent. Colicin E2 and bacteriophage Sf6c sensitivities were consistent with the LPS profiles. Analysis of the expression levels of the WzySf-GFP mutants in the Δwzy and Δwzy Δwzz backgrounds identified a role for WzzSf in WzySf stability. Hence, in addition to its role in regulating Oag modal chain length, WzzSf also affects WzySf activity and stability.
Collapse
|
11
|
Kenyon JJ, Holt KE, Pickard D, Dougan G, Hall RM. Insertions in the OCL1 locus of Acinetobacter baumannii lead to shortened lipooligosaccharides. Res Microbiol 2014; 165:472-5. [PMID: 24861001 PMCID: PMC4110982 DOI: 10.1016/j.resmic.2014.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/25/2022]
Abstract
Genomes of 82 Acinetobacter baumannii global clones 1 (GC1) and 2 (GC2) isolates were sequenced and different forms of the locus predicted to direct synthesis of the outer core (OC) of the lipooligosaccharide were identified. OCL1 was in all GC2 genomes, whereas GC1 isolates carried OCL1, OCL3 or a new locus, OCL5. Three mutants in which an insertion sequence (ISAba1 or ISAba23) interrupted OCL1 were identified. Isolates with OCL1 intact produced only lipooligosaccharide, while the mutants produced lipooligosaccharide of reduced molecular weight. Thus, the assignment of the OC locus as that responsible for the synthesis of the OC is correct.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Molecular Bioscience, The University of Sydney, New South Wales, Australia.
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Derek Pickard
- Wellcome Sanger Trust Institute, Hinxton, Cambridge, United Kingdom
| | - Gordon Dougan
- Wellcome Sanger Trust Institute, Hinxton, Cambridge, United Kingdom
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, New South Wales, Australia.
| |
Collapse
|