1
|
Stancu AI, Oprea E, Dițu LM, Ficai A, Ilie CI, Badea IA, Buleandra M, Brîncoveanu O, Ghica MV, Avram I, Pîrvu CED, Mititelu M. Development, Optimization, and Evaluation of New Gel Formulations with Cyclodextrin Complexes and Volatile Oils with Antimicrobial Activity. Gels 2024; 10:645. [PMID: 39451298 PMCID: PMC11506868 DOI: 10.3390/gels10100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to develop and evaluate hydrogels containing a cyclodextrin complex with clove essential oil and other free volatile oils with antimicrobial properties (tea tree and rosemary essential oils), focusing on their pharmaco-technical and rheological characteristics. The formulations varied in the Carbopol 940 (a hydrophilic polymer) and volatile oils' concentrations. Rheological analysis indicated that the gels displayed pseudoplastic behavior, with the flow index (n) values below 1, ensuring appropriate consistency and handling. The results showed that increasing the Carbopol concentration significantly enhanced the yield stress, consistency index, and viscosity, with gel B, containing 1% Carbopol, 1.5% tea tree essential oil, and 1.5% rosemary essential oil, demonstrating optimal stability and rheological properties. At the same time, the concentration of volatile oils was found to modulate the gels' flow parameters, but their effect was less pronounced than that of the gel-forming polymer. Antimicrobial testing revealed that both gel B and gel E (containing 1% Carbopol, 2% tea tree essential oil, and 2% rosemary essential oil) exhibited antimicrobial activity against Gram-positive, Gram-negative bacteria, and Candida spp., with gel E showing superior efficacy against Candida tropicalis. The antimicrobial effects were likely influenced by the higher concentrations of tea tree and rosemary essential oils in gel E. Overall, the study demonstrates that the concentration of Carbopol 940 primarily determines the gel's rheological behavior, while volatile oil concentration modulates antimicrobial effectiveness.
Collapse
Affiliation(s)
- Alina Ionela Stancu
- Department Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania; (A.I.S.)
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
| | - Lia Mara Dițu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
- MICROGEN Research Centre, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania; (A.I.S.)
- Academy of Romanian Scientists, Ilfov Street 1-3, 050045 Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania; (A.I.S.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Irinel Adriana Badea
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Street, 050663 Bucharest, Romania; (I.A.B.); (M.B.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Street, 050663 Bucharest, Romania; (I.A.B.); (M.B.)
| | - Oana Brîncoveanu
- National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.V.G.); (C.E.D.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ionela Avram
- MICROGEN Research Centre, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
- Department of Genetics, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania
| | - Cristina Elena Dinu Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.V.G.); (C.E.D.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| |
Collapse
|
2
|
Ruddell SA, Mostert D, Sieber SA. Target identification of usnic acid in bacterial and human cells. RSC Chem Biol 2024; 5:617-621. [PMID: 38966671 PMCID: PMC11221533 DOI: 10.1039/d4cb00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Usnic acid is a natural product with versatile biological activities against various organisms. Here, we utilise a chemical proteomic strategy to gain insights into its target scope in bacterial and human cells. First, we excluded DNA binding as a major reason for its antibacterial activity, and second, we commenced with target profiling, which unravelled several metal cofactor-dependent enzymes in both species indicating a polypharmacological mode of action. Interestingly, our synthetic studies revealed a selectivity switch at usnic acid, which maintains antibacterial activity but lacks strong cytotoxic effects.
Collapse
Affiliation(s)
- Stuart A Ruddell
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| |
Collapse
|
3
|
de Souza JB, de Lacerda Coriolano D, dos Santos Silva RC, da Costa Júnior SD, de Almeida Campos LA, Cavalcanti IDL, Lira Nogueira MCDB, Pereira VRA, Brelaz-de-Castro MCA, Cavalcanti IMF. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals (Basel) 2024; 17:802. [PMID: 38931469 PMCID: PMC11206294 DOI: 10.3390/ph17060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Davi de Lacerda Coriolano
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Rayza Camila dos Santos Silva
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Sérgio Dias da Costa Júnior
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Luís André de Almeida Campos
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Iago Dillion Lima Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
| | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
- Laboratory of Parasitology, Academic Center of Vitoria (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| |
Collapse
|
4
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Asath NAA, Ravichandran P, Vasu R. Usnic acid alleviates inflammatory responses and induces apoptotic signaling through inhibiting NF-ĸB expressions in human oral carcinoma cells. Cell Biochem Funct 2024; 42:e4074. [PMID: 38874340 DOI: 10.1002/cbf.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Usnic acid (UA) is a unique bioactive substance in lichen with potential anticancer properties. Recently, we have reported that UA can reduce 7,12-dimethylbenz[a] anthracene-induced oral carcinogenesis by inhibiting oxidative stress, inflammation, and cell proliferation in a male golden Syrian hamster in vivo model. The present study aims to explore the relevant mechanism of cell death induced by UA on human oral carcinoma (KB) cell line in an in vitro model. We found that UA can induce apoptosis (cell death) in KB cells by decreasing cell viability, increasing the production of reactive oxygen species (ROS), depolarizing mitochondrial membrane potential (MMP) levels, causing nuclear fragmentation, altering apoptotic morphology, and causing excessive DNA damage. Additionally, UA inhibits the expression of Bcl-2, a protein that promotes cell survival, while increasing the expression of p53, Bax, Cytochrome-c, Caspase-9, and 3 proteins in KB cells. UA also inhibits the expression of nuclear factor-κB (NF-κB), a protein that mediates the activation of pro-inflammatory cytokines such as TNF-α and IL-6, in KB cells. Furthermore, UA promotes apoptosis by enhancing the mitochondrial-mediated apoptotic mechanism through oxidative stress, depletion of cellular antioxidants, and an inflammatory response. Ultimately, the findings of this study suggest that UA may have potential as an anticancer therapeutic agent for oral cancer treatments.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | | | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Rajeswari Vasu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| |
Collapse
|
5
|
Nie WZ, Shen QK, Quan ZS, Guo HY, Li YM. Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review. Mini Rev Med Chem 2024; 24:1368-1384. [PMID: 38265368 DOI: 10.2174/0113895575277085231123165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.
Collapse
Affiliation(s)
- Wen-Zhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ya-Mei Li
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Abulkalam Asath NA, Ravichandran P. Usnic acid attenuates 7,12-dimethylbenz[a] anthracene (DMBA) induced oral carcinogenesis through inhibiting oxidative stress, inflammation, and cell proliferation in male golden Syrian hamster model. J Biochem Mol Toxicol 2024; 38:e23553. [PMID: 37840363 DOI: 10.1002/jbt.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Nihal Ahamed Abulkalam Asath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
7
|
Yu XH, Dong J, Fan CP, Chen MX, Li M, Zheng BF, Hu YF, Lin HY, Yang GF. Discovery and Development of 4-Hydroxyphenylpyruvate Dioxygenase as a Novel Crop Fungicide Target. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19396-19407. [PMID: 38035573 DOI: 10.1021/acs.jafc.3c05260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Plant pathogenic fungi pose a significant threat to crop yields and quality, and the emergence of fungicide resistance has further exacerbated the problem in agriculture. Therefore, there is an urgent need for efficient and environmentally friendly fungicides. In this study, we investigated the antifungal activity of (+)-Usnic acid and its inhibitory effect on crop pathogenic fungal 4-hydroxyphenylpyruvate dioxygenases (HPPDs) and determined the structure of Zymoseptoria tritici HPPD (ZtHPPD)-(+)-Usnic acid complex. Thus, the antifungal target of (+)-Usnic acid and its inhibitory basis toward HPPD were uncovered. Additionally, we discovered a potential lead fungicide possessing a novel scaffold that displayed remarkable antifungal activities. Furthermore, our molecular docking analysis revealed the unique binding mode of this compound with ZtHPPD, explaining its high inhibitory effect. We concluded that HPPD represents a promising target for the control of phytopathogenic fungi, and the new compound serves as a novel starting point for the development of fungicides and dual-purpose pesticides.
Collapse
Affiliation(s)
- Xin-He Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Cheng-Peng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Meng-Xi Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Bai-Feng Zheng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Ya-Fang Hu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Zhang Y, Han Y, Huang Z, Huang Y, Kong J, Sun Y, Cao J, Zhou T. Restoring Colistin Sensitivity and Combating Biofilm Formation: Synergistic Effects of Colistin and Usnic Acid against Colistin-Resistant Enterobacteriaceae. ACS Infect Dis 2023; 9:2457-2470. [PMID: 37944020 DOI: 10.1021/acsinfecdis.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Colistin (COL), the last line of defense in clinical medicine, is an important therapeutic option against multidrug-resistant Gram-negative bacteria. In this context, the emergence of colistin-resistant (COL-R) bacteria mediated by broad-spectrum efflux pumps, mobile genetic elements, and biofilm formation poses a significant public health concern. In response to this challenge, a novel approach of combining COL with usnic acid (UA) has been proposed in this study. UA is a secondary metabolite derived from lichens and is well-known for its anti-inflammatory properties. This study aimed to investigate the synergistic effects of UA and COL against COL-R Enterobacteriaceae both in vitro and in vivo. The exceptional synergistic antibacterial activity exhibited by the combination of COL and UA was demonstrated by performing a comprehensive set of assays, including the checkerboard assay, time-dependent killing assay, and Live/Dead bacterial cell viability assay. Furthermore, crystal violet staining and scanning electron microscopy assays revealed the inhibitory effect of this combination on the biofilm formation. Mechanistically, the combination of UA and COL exacerbated cell membrane rupture, induced DNA damage, and generated a significant amount of reactive oxygen species, which ultimately resulted in bacterial cell death. In addition, erythrocyte hemolysis and cell viability tests confirmed the biocompatibility of the combination. The evaluation of the COL/UA combination in vivo using Galleria mellonella larvae and a mouse infection model showed a significant improvement in the survival rate of the infected larvae as well as a reduction in the bacterial load in the mouse thigh muscle. These findings, for the first time, provide strong evidence for the potential application of COL/UA as an effective alternative therapeutic option to combat infections caused by COL-R Enterobacteriaceae strains.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Yali Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 32500, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| |
Collapse
|
9
|
Zhang H, Li X, Liu X, Ji X, Ma X, Chen J, Bao Y, Zhang Y, Xu L, Yang L, Wei X. The usnic acid derivative peziculone targets cell walls of Gram-positive bacteria revealed by high-throughput CRISPRi-seq analysis. Int J Antimicrob Agents 2023; 62:106876. [PMID: 37276892 DOI: 10.1016/j.ijantimicag.2023.106876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Usnic acid, a representative dibenzofuran metabolite, is known to have antimicrobial properties. However, despite considerable interest as an antimicrobial agent, the mechanism by which usnic acid and its derivatives exert their action is not fully characterized. This article describes the synthesis of peziculone, a 5:1 equilibrium mixture of two inseparable usnic acid derivatives: peziculone A and peziculone B. The antibacterial activity of peziculone against several Gram-positive bacterial pathogens was found to be significantly better compared with usnic acid. Clustered regularly interspaced short palindromic repeats interference sequencing analysis and membrane fluorescent staining were used to demonstrate that peziculone destabilizes the cell walls of Gram-positive bacteria. Additionally, peziculone 2.5 and 3.5 µg/mL impaired cell surface appendages and biofilm formation by Staphylococcus aureus. Taken together, these data demonstrate that peziculone, a derivative compound of usnic acid, has significant antimicrobial activity against Gram-positive bacteria by targeting the cell walls; this provides a platform for development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Han Zhang
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China; School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Xiaojie Li
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China
| | - Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Centre, International Cancer Centre, Shenzhen University Health Science Centre, Shenzhen, People's Republic of China
| | - Xia Ji
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China
| | - Xuan Ma
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jun Chen
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou, People's Republic of China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.
| | - Xiaoyi Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement / Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Pontes MS, Santos JS, da Silva JL, Miguel TBAR, Miguel EC, Souza Filho AG, Garcia F, Lima SM, da Cunha Andrade LH, Arruda GJ, Grillo R, Caires ARL, Felipe Santiago E. Assessing the Fate of Superparamagnetic Iron Oxide Nanoparticles Carrying Usnic Acid as Chemical Cargo on the Soil Microbial Community. ACS NANO 2023; 17:7417-7430. [PMID: 36877273 DOI: 10.1021/acsnano.2c11985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.
Collapse
Affiliation(s)
- Montcharles S Pontes
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, Brazil
| | - Jaqueline Silva Santos
- Genetics Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, Brazil
| | - José Luiz da Silva
- Department of Analytical, Physico-Chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060, Brazil
| | - Thaiz B A R Miguel
- Laboratory of Biotechnology, Department of Food Engineering (DEAL), Federal University of Ceará (UFC), Fortaleza, 60440-554, Brazil
| | - Emilio Castro Miguel
- Laboratory of Biomaterials, Department of Metallurgical and Materials Engineering, Federal University of Ceará (UFC), Fortaleza, 60440-554, Brazil
| | - Antonio G Souza Filho
- Department of Physics, Federal University of Ceará (UFC), Fortaleza, 60440-554, Brazil
| | - Flavio Garcia
- Brazilian Center for Research in Physics, Urca, Rio de Janeiro 22290-180, Brazil
| | - Sandro Marcio Lima
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| | - Luís Humberto da Cunha Andrade
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| | - Gilberto J Arruda
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, Brazil
| | - Etenaldo Felipe Santiago
- Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, 79804-970, Brazil
| |
Collapse
|
11
|
Samernate T, Htoo HH, Sugie J, Chavasiri W, Pogliano J, Chaikeeratisak V, Nonejuie P. High-Resolution Bacterial Cytological Profiling Reveals Intrapopulation Morphological Variations upon Antibiotic Exposure. Antimicrob Agents Chemother 2023; 67:e0130722. [PMID: 36625642 PMCID: PMC9933734 DOI: 10.1128/aac.01307-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Phenotypic heterogeneity is crucial to bacterial survival and could provide insights into the mechanism of action (MOA) of antibiotics, especially those with polypharmacological actions. Although phenotypic changes among individual cells could be detected by existing profiling methods, due to the data complexity, only population average data were commonly used, thereby overlooking the heterogeneity. In this study, we developed a high-resolution bacterial cytological profiling method that can capture morphological variations of bacteria upon antibiotic treatment. With an unprecedented single-cell resolution, this method classifies morphological changes of individual cells into known MOAs with an overall accuracy above 90%. We next showed that combinations of two antibiotics induce altered cell morphologies that are either unique or similar to that of an antibiotic in the combinations. With these combinatorial profiles, this method successfully revealed multiple cytological changes caused by a natural product-derived compound that, by itself, is inactive against Acinetobacter baumannii but synergistically exerts its multiple antibacterial activities in the presence of colistin. The findings have paved the way for future single-cell profiling in bacteria and have highlighted previously underappreciated intrapopulation variations caused by antibiotic perturbation.
Collapse
Affiliation(s)
- Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
12
|
Effects of Usnic Acid to Prevent Infections by Creating a Protective Barrier in an In Vitro Study. Int J Mol Sci 2023; 24:ijms24043695. [PMID: 36835105 PMCID: PMC9958797 DOI: 10.3390/ijms24043695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Nasal sprays are medical devices useful for preventing infection and the subsequent spread of airborne pathogens. The effectiveness of these devices depends on the activity of chosen compounds which can create a physical barrier against viral uptake as well as incorporate different substances with antiviral activity. Among antiviral compounds, UA, a dibenzofuran derived from lichens, has the mechanical ability to modify its structure by creating a branch capable of forming a protective barrier. The mechanical ability of UA to protect cells from virus infection was investigated by analyzing the branching capacity of UA, and then the protection mechanism in an in vitro model was also studied. As expected, UA at 37 °C was able to create a barrier confirming its ramification property. At the same time, UA was able to block the infection of Vero E6 and HNEpC cells by interfering with a biological interaction between cells and viruses as revealed also by the UA quantification. Therefore, UA can block virus activity through a mechanical barrier effect without altering the physiological nasal homeostasis. The findings of this research could be of great relevance in view of the growing alarm regarding the spread of airborne viral diseases.
Collapse
|
13
|
Kello M, Goga M, Kotorova K, Sebova D, Frenak R, Tkacikova L, Mojzis J. Screening Evaluation of Antiproliferative, Antimicrobial and Antioxidant Activity of Lichen Extracts and Secondary Metabolites In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:611. [PMID: 36771693 PMCID: PMC9919983 DOI: 10.3390/plants12030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Lichen metabolites represent a wide range of substances with a variety of biological effects. The present study was designed to analyze the potential antiproliferative, antimicrobial and antioxidative effects of several extracts from lichens (Pseudevernia furfuracea, Lobaria pulmonaria, Cetraria islandica, Evernia prunastri, Stereocaulon tomentosum, Xanthoria elegans and Umbilicaria hirsuta) and their secondary metabolites (atranorin, physodic acid, evernic acid and gyrophoric acid). The crude extract, as well as the isolated metabolites, showed potent antiproliferative, cytotoxic activity on a broad range of cancer cell lines in 2D (monolayer) and 3D (spheroid) models. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and in vitro antimicrobial activities were assessed. Data showed that the lichen extracts, as well as the compounds present, possessed biological potential in the studied assays. It was also observed that the extracts were more efficient and their major compounds showed strong effects as antiproliferative, antioxidant and antibacterial agents. Moreover, we demonstrated the 2D and 3D models' importance to drug discovery for further in vivo studies. Despite the fact that lichen compounds have been neglected by the scientific community for long periods, nowadays they are objects of investigation based on their promising effects.
Collapse
Affiliation(s)
- Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Michal Goga
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, 041 67 Košice, Slovakia
| | - Klaudia Kotorova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Richard Frenak
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, 041 67 Košice, Slovakia
| | - Ludmila Tkacikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
14
|
Wang H, Xuan M, Huang C, Wang C. Advances in Research on Bioactivity, Toxicity, Metabolism, and Pharmacokinetics of Usnic Acid In Vitro and In Vivo. Molecules 2022; 27:7469. [PMID: 36364296 PMCID: PMC9657990 DOI: 10.3390/molecules27217469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2023] Open
Abstract
Lichens are among the most widely distributed plants on earth and have the longest growth cycle. Usnic acid is an abundant characteristic secondary metabolite of lichens and the earliest lichen compound used commercially. It has diverse pharmacological activities, such as anti-inflammatory, antibacterial, antiviral, anticancer, antioxidant, and photoprotective effects, and promotes wound healing. It is widely used in dietary supplements, daily chemical products (fodder, dyes, food, perfumery, and cosmetics), and medicine. However, some studies have found that usnic acid can cause allergic dermatitis and drug-induced liver injury. In this paper, the bioactivity, toxicity, in vivo and in vitro metabolism, and pharmacokinetics of usnic acid were summarized. The aims were to develop and utilize usnic acid and provide reference for its future research.
Collapse
Affiliation(s)
- Hanxue Wang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Min Xuan
- Department of Pharmacy, Qingdao Eighth People’s Hospital, 84 Fengshan Road, Qingdao 266121, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
15
|
Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H.Wigg from Călimani Mountains, Romania. Pharmaceuticals (Basel) 2022; 15:ph15070829. [PMID: 35890128 PMCID: PMC9322614 DOI: 10.3390/ph15070829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Phenolic compounds represent an essential bioactive metabolites group with numerous pharmaceutical applications. Our study aims to identify and quantify phenolic constituents of various liquid and dry extracts of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from Calimani Mountains, Romania, and investigate their bioactivities. The extracts in acetone, 96% ethanol, and water with the same dried lichen/solvent ratio (w/v) were obtained through two conventional techniques: maceration (mUBA, mUBE, and mUBW) and Soxhlet extraction (dUBA, dUBE, and dUBW). High-performance liquid chromatography with diode-array detection (HPLC-DAD) was performed for usnic acid (UA) and different polyphenols quantification. Then, the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity (AA) were determined through spectrophotometric methods. Using the disc diffusion method (DDM), the antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria known for their pathogenicity: Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Pseudomonas aeruginosa (ATCC 27853), and Klebsiella pneumoniae (ATCC 13883). All extracts contain phenolic compounds expressed as TPC values. Five lichen extracts display various UA contents; this significant metabolite was not detected in dUBW. Six polyphenols from the standards mixture were quantified only in ethanol and water extracts; mUBE has all individual polyphenols, while dUBE shows only two. Three polyphenols were detected in mUBW, but none was found in dUBW. All U. barbata extracts had antiradical activity; however, only ethanol and acetone extracts proved inhibitory activity against P. aeruginosa, S. pneumoniae, and S. aureus. In contrast, K. pneumoniae was strongly resistant (IZD = 0). Data analysis evidenced a high positive correlation between the phenolic constituents and bioactivities of each U. barbata extract. Associating these extracts’ properties with both conventional techniques used for their preparation revealed the extraction conditions’ significant influence on lichen extracts metabolites profiling, with a powerful impact on their pharmacological potential.
Collapse
|
16
|
Kocovic A, Jeremic J, Bradic J, Sovrlic M, Tomovic J, Vasiljevic P, Andjic M, Draginic N, Grujovic M, Mladenovic K, Baskic D, Popovic S, Matic S, Zivkovic V, Jeremic N, Jakovljevic V, Manojlovic N. Phytochemical Analysis, Antioxidant, Antimicrobial, and Cytotoxic Activity of Different Extracts of Xanthoparmelia stenophylla Lichen from Stara Planina, Serbia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1624. [PMID: 35807576 PMCID: PMC9269301 DOI: 10.3390/plants11131624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to identify some of the secondary metabolites present in acetonic, methanolic, and hexanic extracts of lichen Xanthoparmelia stenophylla and to examine their antioxidant, antimicrobial, and cytotoxic activity. Compounds of the depsid structure of lecanoric acid, obtusic acid, and atranorin as well as usnic acid with a dibenzofuran structure were identified in the extracts by HPLC. The acetone extract was shown to have the highest total phenolic (167.03 ± 1.12 mg GAE/g) and total flavonoid content (178.84 ± 0.93 mg QE/g) as well as the best antioxidant activity (DPPH IC50 = 81.22 ± 0.54). However, the antimicrobial and antibiofilm tests showed the best activity of hexanic extract, especially against strains of B. cereus, B. subtilis, and S. aureus (MIC < 0.08, and 0.3125 mg/mL, respectively). Additionally, by using the MTT method, the acetonic extract was reported to exhibit a strong cytotoxic effect on the HeLa and HCT-116 cell lines, especially after 72 h (IC50 = 21.17 ± 1.85 and IC50 = 21.48 ± 3.55, respectively). The promising antioxidant, antimicrobial, and cytotoxic effects of Xanthoparmelia stenophylla extracts shown in the current study should be further investigated in vivo and under clinical conditions.
Collapse
Affiliation(s)
- Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Miroslav Sovrlic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Jovica Tomovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Perica Vasiljevic
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
- Department of Human Pathology, IM Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Mirjana Grujovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.G.); (K.M.)
| | - Katarina Mladenovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.G.); (K.M.)
| | - Dejan Baskic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.B.); (S.P.)
- Institute of Public Health Kragujevac, 34000 Kragujevac, Serbia
| | - Suzana Popovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.B.); (S.P.)
| | - Sanja Matic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
- Faculty of Pharmacy, IM Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Human Pathology, IM Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nedeljko Manojlovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (A.K.); (J.B.); (M.S.); (J.T.); (M.A.); (N.D.); (S.M.); (N.J.); (N.M.)
| |
Collapse
|
17
|
Paguirigan JA, Liu R, Im SM, Hur JS, Kim W. Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens. THE PLANT PATHOLOGY JOURNAL 2022; 38:25-32. [PMID: 35144359 PMCID: PMC8831355 DOI: 10.5423/ppj.oa.12.2021.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.
Collapse
Affiliation(s)
- Jaycee A. Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008,
Philippines
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| | - Seong Mi Im
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922,
Korea
| |
Collapse
|
18
|
Roney M, Huq AKMM, Rullah K, Hamid HA, Imran S, Islam MA, Mohd Aluwi MFF. Virtual Screening-Based Identification of Potent DENV-3 RdRp Protease Inhibitors via In-House Usnic Acid Derivative Database. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic disease and dengue shock syndrome (DSS), transmitted predominantly in tropical and subtropical regions by Aedes aegypti. It infects millions of people and causes thousands of deaths each year, but there is no antiviral drug against DENV. Usnic acid lately piqued the interest of researchers for extraordinary biological characteristics, including antiviral activity. Based on high larvicidal activities against Aedes aegypti, this study aims to search usnic acid derivatives as novel anti-DENV agents through a combination of ligand-based and pharmacophore-based virtual screening. One hundred and sixteen (116) usnic acid derivatives were obtained from a database of 428 in-house usnic acid derivatives through pharmacophore filtering steps. Subsequent docking simulation on DENV-3 NS-5 RdRp afforded 41 compounds with a strong binding affinity towards the enzyme. The pharmacokinetics and drug likeness prediction resulted in seven hit compounds, which eventually undergo cytochrome P450 enzyme screening to obtain the lead compound, labelled as 362. In addition, molecular dynamic (MD) simulation of lead compound 362 was performed to verify the stability of the docked complex and the binding posture acquired in docking experiments. Overall, the lead compounds have shown a high fit value of pharmacophore, strong binding affinity towards RdRp enzyme, good pharmacokinetics, and drug likeness properties. The discovery of a new usnic acid derivative as a novel anti-DENV agent targeting RdRp could lead to further drug development and optimization to treat dengue.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - AKM Moyeenul Huq
- Department of Pharmacy, School of Medicine, University of Asia Pacific, 74/A, Green Road, Dhaka 1205, Bangladesh
| | - Kamal Rullah
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Malaysia
| | - Md. Alimul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University Mymensingh 2202, Bangladesh
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
19
|
Evaluation of the Antimicrobial Efficacy of N-Acetyl-l-Cysteine, Rhamnolipids, and Usnic Acid-Novel Approaches to Fight Food-Borne Pathogens. Int J Mol Sci 2021; 22:ijms222111307. [PMID: 34768739 PMCID: PMC8583417 DOI: 10.3390/ijms222111307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-l-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.
Collapse
|
20
|
Overexpression of the adeB Efflux Pump Gene in Tigecycline-Resistant Acinetobacter baumannii Clinical Isolates and Its Inhibition by (+)Usnic Acid as an Adjuvant. Antibiotics (Basel) 2021; 10:antibiotics10091037. [PMID: 34572620 PMCID: PMC8472003 DOI: 10.3390/antibiotics10091037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter species are among the most life-threatening Gram-negative bacilli, causing hospital-acquired infections, and they are associated with high morbidity and mortality. They show multidrug resistance that acts via various mechanisms. In Acinetobacter baumannii, efflux pump-mediated resistance to many antimicrobial compounds, including tigecycline, has been widely reported. Natural compounds have been used for their various pharmacological properties, including anti-efflux pump activity. The present study aimed to evaluate the efflux pump-mediated resistance mechanism of Acinetobacter baumannii and the effect of (+)Usnic acid as an efflux pump inhibitor with tigecycline. For detecting the efflux pump activity of tigecycline-resistant Acinetobacter baumannii isolates, microbroth dilution method and real-time quantitative reverse transcription–polymerase chain reaction was used. (+)Usnic acid was added to tigecycline and tested by the checkerboard method to evaluate its efficacy as an efflux pump inhibitor. qRT-PCR analysis was carried out to show the downregulation of the efflux pump in the isolates. Out of 42 tigecycline-resistant Acinetobacter baumannii isolates, 19 showed efflux pump activity. All 19 strains expressed the adeB gene. (+)Usnic acid as an adjuvant showed better efficacy in lowering the minimum inhibitory concentration compared with the conventional efflux pump inhibitor, carbonyl cyanide phenylhydrazone.
Collapse
|
21
|
Bamunuarachchi NI, Khan F, Kim YM. Combination Therapy for Bacterial Pathogens: Naturally Derived Antimicrobial Drugs Augmented with Ulva lactuca Extract. Infect Disord Drug Targets 2021; 22:e230821195790. [PMID: 34425745 DOI: 10.2174/1871526521666210823164842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND With the growing incidence of microbial pathogenesis, several alternative strategies have been developed. The number of treatments using naturally (e.g., plants, algae, fungi, bacteria, and animals) derived compounds has increased. Importantly, marine-derived products have become a promising and effective approach to combat the antibiotic resistance properties developed by bacterial pathogens. Furthermore, augmenting the sub-inhibitory concentration of the naturally-derived antimicrobial compounds (e.g., hydroxycinnamic acids, terpenes, marine-derived polysaccharides, phenolic compounds) into the naturally derived extracts as a combination therapy to treat the bacterial infection has not been well studied. OBJECTIVE The present study was aimed to prepare green algae Ulva lactuca extract and evaluate its antibacterial activity towards Gram-positive and Gram-negative human pathogenic bacteria. Also, revitalize the antibacterial efficiency of the naturally-derived antimicrobial drugs and conventional antibiotics by augmenting their sub-MIC to the U. lactuca extracts. METHODS Extraction was done using a different organic solvent, and its antibacterial activity was tested towards Gram-positive and Gram-negative pathogens. The minimum inhibitory concentration (MIC) of U. lactuca extracts has been determined towards pathogenic bacteria using the micro broth dilution method. The viable cell counting method was used to determine the minimum bactericidal concentration (MBC). The fractional inhibitory concentration (FIC) assay was utilized to examine the combinatorial impact of sub-MIC of two antibacterial drugs using the micro broth dilution method. The chemical components of the extract were analyzed by GC-MS analysis. RESULTS Among all the extracts, n-hexane extract was found to show effective antibacterial activity towards tested pathogens with the lowest MIC and MBC value. Furthermore, the n-hexane extracts have also been used to enhance the efficacy of the naturally-derived (derived from plants and marine organisms) compounds and conventional antibiotics at their sub-inhibitory concentrations. Most of the tested antibiotics and natural drugs at their sub-MIC were found to exhibit synergistic and additive antibacterial activity towards the tested bacterial pathogens. CONCLUSIONS The augmenting of U. lactuca n-hexane extracts resulted in synergistic and additive bactericidal effects on Gram-positive and Gram-negative human pathogenic bacteria. The present study shows a new alternative strategy to revitalize the antimicrobial activity of naturally derived compounds for treating human bacterial pathogens.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Research Center Marine Integrated Bionics technology, Pukyong National University, Busan 48513. South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513. South Korea
| |
Collapse
|
22
|
Shcherbakova A, Strömstedt AA, Göransson U, Gnezdilov O, Turanov A, Boldbaatar D, Kochkin D, Ulrich-Merzenich G, Koptina A. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World J Microbiol Biotechnol 2021; 37:129. [PMID: 34232401 PMCID: PMC8263414 DOI: 10.1007/s11274-021-03099-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Lichens are symbiotic organisms formed by a fungus and one or more photosynthetic partners which are usually alga or cyanobacterium. Their diverse and scarcely studied metabolites facilitate adaptability to extreme living conditions. We investigated Evernia prunastri (L.) Ach., a widely distributed lichen, for its antimicrobial and antioxidant potential. E. prunastri was sequentially extracted by hexane (Hex), dichloromethane (DCM) and acetonitrile (ACN) that were screened for their antioxidant and antimicrobial (against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans) activities. The Hex extract possessed the highest antioxidant capacity (87 mg ascorbic acid/g extract) corresponding to the highest content of phenols (73 mg gallic acid/g extract). The DCM and Hex extracts were both active against S. aureus (MICs of 4 and 21 µg/ml, respectively) but were less active against Gram-negative bacteria and yeast. The ACN extract exhibited activity on both S. aureus (MIC 14 µg/ml) and C. albicans (MIC 38 µg/ml) and was therefore further fractionated by silica gel column chromatography. The active compound of the most potent fraction was subsequently characterized by 1H and 13C-NMR spectroscopy and identified as evernic acid. Structural similarity analyses were performed between compounds from E. prunastri and known antibiotics from different classes. The structural similarity was not present. Antioxidant and antimicrobial activities of E. prunastri extracts originate from multiple chemical compounds; besides usnic acid, most notably evernic acid and derivatives thereof. Evernic acid and its derivatives represent possible candidates for a new class of antibiotics.
Collapse
Affiliation(s)
- A Shcherbakova
- Volga State University of Technology, Lenin Sq., 3, Yoshkar-Ola, Russia, 424000
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
- Medical Clinic III, AG Synergy Research and Experimental Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A A Strömstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
| | - U Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
| | - O Gnezdilov
- FRC Kazan Scientific Center, Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract, 10/7, Kazan, Russia, 420029
| | - A Turanov
- FRC Kazan Scientific Center, Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract, 10/7, Kazan, Russia, 420029
| | - D Boldbaatar
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
- The Liver Center, Dalai Tower, Unesco Street 31, Sukhbaatar District, Ulaanbaatar, 14230, Mongolia
| | - D Kochkin
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, 1-12 Leninskiye Gory, Moscow, Russia, 119234
| | - G Ulrich-Merzenich
- Medical Clinic III, AG Synergy Research and Experimental Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A Koptina
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| |
Collapse
|
23
|
Wu W, Gou H, Dong J, Yang X, Zhao Y, Peng H, Chen D, Geng R, Chen L, Liu J. Usnic Acid Inhibits Proliferation and Migration through ATM Mediated DNA Damage Response in RKO Colorectal Cancer Cell. Curr Pharm Biotechnol 2021; 22:1129-1138. [PMID: 33006536 DOI: 10.2174/1389201021666201002155955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Usnic Acid (UA), also known as lichenol, has been reported to have inhibitory effects on a variety of cancer cells, but its specific mechanism remained to be elucidated. Tumor chemotherapy drugs, especially DNA damage chemotherapeutic drugs, target Chromosomal DNA, but their spontaneous and acquired drug resistance are also an urgent problem to be solved. Therefore, drug combination research has become the focus of researchers. METHODS Here, we evaluated the tumor-suppressing molecular mechanism of UA in colorectal cancer cells RKO from the perspective of the ATM-mediated DNA damage signaling pathway through H2O2 simulating DNA damage chemotherapeutic drugs. CCK8 cell proliferation assay was used to determine the inhibition of RKO cells by hydrogen peroxide and UA alone or in combination, and wound healing assay was applied to determine the effect of the drug on cell migration. RESULTS Transfected cells with miRNA18a-5p mimics and inhibitors, MDC and DCFH-DA staining for the measurement of autophagy and ROS, cell cycle and apoptosis were detected by flow cytometry, expressions of microRNA and mRNA were determined by fluorescence quantitative PCR, and protein by Western blot. DISCUSSION We found that UA can upregulate ATM via miR-18a to activate the DNA damage signaling pathway and inhibit the proliferation and migration of RKO cells in a concentration-dependent manner. CONCLUSION At the same time, DNA damage responses, including cell cycle, autophagy, apoptosis and ROS levels, are also regulated by UA. Therefore, UA combined with DNA damage chemotherapeutic drugs may be an effective treatment for cancer.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jingying Dong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaolong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yanan Zhao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Heng Peng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Pandit S, Rahimi S, Derouiche A, Boulaoued A, Mijakovic I. Sustained release of usnic acid from graphene coatings ensures long term antibiofilm protection. Sci Rep 2021; 11:9956. [PMID: 33976310 PMCID: PMC8113508 DOI: 10.1038/s41598-021-89452-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Protecting surfaces from bacterial colonization and biofilm development is an important challenge for the medical sector, particularly when it comes to biomedical devices and implants that spend longer periods in contact with the human body. A particularly difficult challenge is ensuring long-term protection, which is usually attempted by ensuring sustained release of antibacterial compounds loaded onto various coatings. Graphene have a considerable potential to reversibly interact water insoluble molecules, which makes them promising cargo systems for sustained release of such compounds. In this study, we developed graphene coatings that act as carriers capable of sustained release of usnic acid (UA), and hence enable long-term protection of surfaces against colonization by bacterial pathogens Staphylococcus aureus and Staphylococcus epidermidis. Our coatings exhibited several features that made them particularly effective for antibiofilm protection: (i) UA was successfully integrated with the graphene material, (ii) a steady release of UA was documented, (iii) steady UA release ensured strong inhibition of bacterial biofilm formation. Interestingly, even after the initial burst release of UA, the second phase of steady release was sufficient to block bacterial colonization. Based on these results, we propose that graphene coatings loaded with UA can serve as effective antibiofilm protection of biomedical surfaces.
Collapse
Affiliation(s)
- Santosh Pandit
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Shadi Rahimi
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Abderahmane Derouiche
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Athmane Boulaoued
- grid.5371.00000 0001 0775 6028Department of Physics, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Ivan Mijakovic
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Novo Nordisk Foundation, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
25
|
Sieniawska E, Sawicki R, Truszkiewicz W, Marchev AS, Georgiev MI. Usnic Acid Treatment Changes the Composition of Mycobacterium tuberculosis Cell Envelope and Alters Bacterial Redox Status. mSystems 2021; 6:e00097-21. [PMID: 33947802 PMCID: PMC8269206 DOI: 10.1128/msystems.00097-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis developed efficient adaptation mechanisms in response to different environmental conditions. This resulted in the ability to survive in human macrophages and in resistance to numerous antibiotics. To get insight into bacterial responses to potent antimycobacterial natural compounds, we tested how usnic acid, a lichen-derived secondary metabolite, would influence mycobacteria at transcriptomic and metabolomic levels. The analysis of expression of sigma factors revealed a profound impact of usnic acid on one of the primary genetic regulatory systems of M. tuberculosis Combined liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses allowed us to observe the perturbations in metabolic pathways, as well as in lipid composition, which took place within 24 h of exposure. Early bacterial response was related to redox homeostasis, lipid synthesis, and nucleic acid repair. Usnic acid treatment provoked disturbances of redox state in mycobacterial cells and increased production of structural elements of the cell wall and cell membrane. In addition, to increase the number of molecules related to restoration of redox balance, the rearrangements of the cell envelope were the first defense mechanisms observed under usnic acid treatment.IMPORTANCE The evaluation of mechanisms of mycobacterial response to natural products has been barely studied. However, it might be helpful to reveal bacterial adaptation strategies, which are eventually crucial for the discovery of new drug targets and, hence, understanding the resistance mechanisms. This study showed that the first-line mycobacterial defense against usnic acid, a potent antimicrobial agent, is the remodeling of the cell envelope and restoring redox homeostasis. Transcriptomic data correlated with metabolomics analysis. The observed metabolic changes appeared similar to those exerted by antibiotics.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Medical University of Lublin, Chair and Department of Pharmacognosy, Lublin, Poland
| | - Rafal Sawicki
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Wieslaw Truszkiewicz
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Andrey S Marchev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
26
|
Sepahvand A, Studzińska-Sroka E, Ramak P, Karimian V. Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113656. [PMID: 33276059 DOI: 10.1016/j.jep.2020.113656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Usnea sp. is a fruticose thalli lichen with interesting medicinal properties. Since ancient times, Usnea sp. has been used in traditional medicine worldwide to treat various diseases. The broad scientific studies on this lichen have proved its multidirectional biological effect, such as antimicrobial activity, which is attributed to its usnic acid content. PURPOSE The main aim of this review is to provide an up-to-date overview of the antimicrobial activities of Usnea sp., including the traditional and medicinal uses, and a critical evaluation of the presented data. Also, the mechanism of this type of action will be explained. METHODS To prepare this manuscript, the information was extracted from scientific databases (Pubmed, ScienceDirect, Wiley, Springer, and Google Scholar), books, and theses. The available scientific information was critically analysed. RESULTS Analysis of the scientific literature regarding traditional uses and bioactivity research showed that Usnea sp. extracts exhibit high antibacterial activity. The Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Mycobacterium tuberculosis) and aquatic oomycetous fungi were the most sensitive Usnea sp. extracts. Moderate activity against Malassezia furfur and dermatophytes was observed, as well. Gram-negative bacteria, yeast, and fungi were more frequently resistant to Usnea sp. extracts (included Escherichia coli, Candida sp., Saccharomyces cerevisiae, and Aspergillus sp.). The antiviral activity of Usnea sp. was limited. CONCLUSION The results show that the use of Usnea sp. in traditional medicine can be scientifically documented. Studies show that usnic acid is the active compound present in Usnea sp. extracts. This compound, which has a high antibacterial and cytotoxic activity, exists in large quantities in low-polarity extracts, and low concentration in these of high-polarity. Usnea sp. extracts contain compounds other than usnic acid as well with biological effects. Usnea barbata is a species that has been employed in modern-day cosmetic and pharmaceutical preparations. The information presented in the review can be considered as a source of knowledge about the Usnea sp. It presents research on biological properties reported for different species of Usnea genus and thus can facilitate their use in medicine.
Collapse
Affiliation(s)
- Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | | - Parvin Ramak
- Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran.
| | - Vahid Karimian
- Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| |
Collapse
|
27
|
Aoussar N, Achmit M, Es-Sadeqy Y, Vasiljević P, Rhallabi N, Ait Mhand R, Zerouali K, Manojlović N, Mellouki F. Phytochemical constituents, antioxidant and antistaphylococcal activities of Evernia prunastri (L.) Ach., Pseudevernia furfuracea (L.) Zopf. and Ramalina farinacea (L.) Ach. from Morocco. Arch Microbiol 2021; 203:2887-2894. [PMID: 33754163 DOI: 10.1007/s00203-021-02288-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
The purpose of this work was to assess chemical composition, antibacterial activity against Staphylococcus aureus isolates from catheter-associated infections and antioxidant activity of methanol extracts of three lichens collected from Morocco. The phytochemical analysis of the methanol extracts of these lichens was performed by HPLC-UV method, the predominant phenolic compounds were evernic acid, physodalic acid and usnic acid for Evernia prunastri, Pseudevernia furfuracea and Ramalina farinacea, respectively. Total phenolic compounds and total flavonoid content of all extracts were also determined. As a result, Pseudevernia furfuracea extract had the strongest effect and the highest phenolic compounds content. All extracts showed antibacterial activity against all tested strains (MIC values ranging from 0.078 to 0.625 mg/mL), the strongest inhibition was obtained with the extract of Evernia prunastri.
Collapse
Affiliation(s)
- Noura Aoussar
- RU Microbiology, Hygiene and Bioactive Molecules, LVMQB/EB, University Hassan II Casablanca, FSTM, P.O. Box 146, 20650, Mohammedia, Morocco.
| | - Mohamed Achmit
- RU Microbiology, Hygiene and Bioactive Molecules, LVMQB/EB, University Hassan II Casablanca, FSTM, P.O. Box 146, 20650, Mohammedia, Morocco
| | - Youness Es-Sadeqy
- RU Microbiology, Hygiene and Bioactive Molecules, LVMQB/EB, University Hassan II Casablanca, FSTM, P.O. Box 146, 20650, Mohammedia, Morocco
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Nis, 18000, Nis, Serbia
| | - Naima Rhallabi
- RU Microbiology, Hygiene and Bioactive Molecules, LVMQB/EB, University Hassan II Casablanca, FSTM, P.O. Box 146, 20650, Mohammedia, Morocco
| | - Rajaa Ait Mhand
- RU Microbiology, Hygiene and Bioactive Molecules, LVMQB/EB, University Hassan II Casablanca, FSTM, P.O. Box 146, 20650, Mohammedia, Morocco
| | - Khalid Zerouali
- Laboratory of Bacteriology, Virology and Hygiene, IbnRochd University Hospital, Casablanca, Morocco
| | - Nedeljko Manojlović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Fouad Mellouki
- RU Microbiology, Hygiene and Bioactive Molecules, LVMQB/EB, University Hassan II Casablanca, FSTM, P.O. Box 146, 20650, Mohammedia, Morocco
| |
Collapse
|
28
|
Biodiscovery of Potential Antibacterial Diagnostic Metabolites from the Endolichenic Fungus Xylaria venustula Using LC-MS-Based Metabolomics. BIOLOGY 2021; 10:biology10030191. [PMID: 33806264 PMCID: PMC8000601 DOI: 10.3390/biology10030191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary In this study, we determined the bioactivities and chemical natures of three species of lichen Usnea and their associated endolichenic fungi (ELF) through metabolomics. We found significant differences in the antibacterial activities and the metabolites produced by the host lichen and its ELF, with the latter targeting a wider scope of organisms. We also discovered potential key metabolites produced by ELF that are yet to be reported. This study shows the application of metabolomics in rapidly identifying bioactive metabolites that are of significance in the discovery of new drugs. Abstract Three species of the lichen Usnea (U. baileyi (Stirt.) Zahlbr., U. bismolliuscula Zahlbr. and U. pectinata Stirt.) and nine associated endolichenic fungi (ELF) were evaluated using a metabolomics approach. All investigated lichen crude extracts afforded antibacterial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC): 0.0625 mg/mL), but none was observed against Escherichia coli, while the ELF extract Xylaria venustula was found to be the most active against S. aureus (MIC: 2.5 mg/mL) and E. coli (MIC: 5 mg/mL). X. venustula was fractionated and tested for to determine its antibacterial activity. Fractions XvFr1 to 5 displayed bioactivities against both test bacteria. Selected crude extracts and fractions were subjected to metabolomics analyses using high-resolution LC–MS. Multivariate analyses showed the presence of five secondary metabolites unique to bioactive fractions XvFr1 to 3, which were identified as responsible for the antibacterial activity of X. venustula. The p-values of these metabolites were at the margin of significance level, with methyl xylariate C (P_60) being the most significant. However, their high variable importance of projection (VIP) scores (>5) suggest these metabolites are potential diagnostic metabolites for X. venustula for “dual” bioactivity against S. aureus and E. coli. The statistical models also showed the distinctiveness of metabolites produced by lichens and ELF, thus supporting our hypotheses of ELF functionality similar to plant endophytes.
Collapse
|
29
|
Noël A, Garnier A, Clément M, Rouaud I, Sauvager A, Bousarghin L, Vásquez-Ocmín P, Maciuk A, Tomasi S. Lichen-associated bacteria transform antibacterial usnic acid to products of lower antibiotic activity. PHYTOCHEMISTRY 2021; 181:112535. [PMID: 33099225 DOI: 10.1016/j.phytochem.2020.112535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Lichens are specific symbiotic organisms harboring various microorganisms in addition to the two classic partners (algae or cyanobacterium and fungus). Although lichens produce many antibiotic compounds such as (+)-usnic acid, their associated microorganisms possess the ability to colonize an environment where antibiosis exists. Here, we have studied the behavior of several lichen-associated bacterial strains in the presence of (+)-usnic acid, a known antibiotic lichen compound. The effect of this compound was firstly evaluated on the growth and metabolism of three bacteria, thus showing its ability to inhibit Gram-positive bacteria. This inhibition was not thwarted with the usnic acid producer strain Streptomyces cyaneofuscatus. The biotransformation of this lichen metabolite was also studied. An ethanolamine derivative of (+)-usnic acid with low antibiotic activity was highlighted with chemical profiling, using HPLC-UV combined with low resolution mass spectrometry. These findings highlight the way in which some strains develop resistance mechanisms. A methylated derivative of (+)-usnic acid was annotated using the molecular networking method, thus showing the interest of this computer-based approach in biotransformation studies.
Collapse
Affiliation(s)
- Alba Noël
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France
| | | | | | | | | | - Latifa Bousarghin
- INSERM, Univ. Rennes, INRA, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, Rennes, France
| | | | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Sophie Tomasi
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France.
| |
Collapse
|
30
|
Kwong SP, Wang C. Review: Usnic acid-induced hepatotoxicity and cell death. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103493. [PMID: 32961280 DOI: 10.1016/j.etap.2020.103493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Increasing prevalence of herbal and dietary supplement-induced hepatotoxicity has been reported worldwide. Usnic acid (UA) is a well-known hepatotoxin derived from lichens. Since 2000, more than 20 incident reports have been received by the US Food and Drug Administration after intake of UA containing dietary supplement resulting in severe complications. Scientists and clinicians have been studying the cause, prevention and treatment of UA-induced hepatotoxicity. It is now known that UA decouples oxidative phosphorylation, induces adenosine triphosphate (ATP) depletion, decreases glutathione (GSH), and induces oxidative stress markedly leading to lipid peroxidation and organelle stress. In addition, experimental rat liver tissues have shown massive vacuolization associated with cellular swellings. Additionally, various signaling pathways, such as c-JNK N-terminal kinase (JNK), store-operated calcium entry, nuclear erythroid 2-related factor 2 (Nrf2), and protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathways are stimulated by UA causing beneficial or harmful effects. Nevertheless, there are controversial issues, such as UA-induced inflammatory or anti-inflammatory responses, cytochrome P450 detoxifying UA into non-toxic or transforming UA into reactive metabolites, and unknown mechanism of the formation of vacuolization and membrane pore. This article focused on the previous and latest comprehensive putative mechanistic findings of UA-induced hepatotoxicity and cell death. New insights on controversial issues and future perspectives are also discussed and summarized.
Collapse
Affiliation(s)
- Sukfan P Kwong
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
31
|
Erfani S, Valadbeigi T, Aboutaleb N, Karimi N, Moghimi A, Khaksari M. Usnic acid improves memory impairment after cerebral ischemia/reperfusion injuries by anti-neuroinflammatory, anti-oxidant, and anti-apoptotic properties. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1225-1231. [PMID: 32963745 PMCID: PMC7491502 DOI: 10.22038/ijbms.2020.43280.10165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective(s): Cerebral ischemia/reperfusion causes complex pathological mechanisms that lead to brain tissue damage. Usnic acid is a lichen secondary metabolite that has many different biological properties including anti-inflammatory and anti-oxidant activities. Therefore, the objective of the current study was to investigate the neuroprotective effects of usnic acid on apoptotic cell death, neuroinflammation, anti-oxidant enzyme activities, and oxidative stress levels after transient cerebral ischemia/reperfusion. Materials and Methods: Forty-two male Wistar rats were randomly assigned to three groups (sham, ischemia/reperfusion, and ischemia/reperfusion+usnic acid). Ischemia was induced by 20 min occlusion of common carotid arteries. Injection of usnic acid (25 mg/kg, intraperitoneally) and saline was done at the beginning of reperfusion time. Morris water maze was applied to assess spatial memory. The protein expression amount was measured using immunohistochemical and immunofluorescence staining. Spectrophotometric assay was performed to determine the levels of anti-oxidant enzymes. Results: Usnic acid significantly reduced caspase-3, glial fibrillary acidic protein- positive and ionized calcium-binding adaptor molecule 1-positive cells (P<0.001) and enhanced spatial memory disorders (P<0.05) due to brain ischemia. In addition, treatment with usnic acid improves effects in the antioxidant system following cerebral ischemia (P<0.05). Conclusion: Our findings indicate that usnic acid has neuroprotective properties, which possibly is applicable as a promising candidate for cerebral injuries caused by ischemia.
Collapse
Affiliation(s)
- Sohaila Erfani
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | | | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University of Kermanshah, Kermanshah, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience and Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
32
|
Synergistic Effect between Usnic Acid and Polymyxin B against Resistant Clinical Isolates of Pseudomonas aeruginosa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9852145. [PMID: 32849907 PMCID: PMC7441413 DOI: 10.1155/2020/9852145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
The present study aimed to characterize the susceptibility profile of Pseudomonas aeruginosa and Acinetobacter spp. clinical isolates to polymyxin B in a public hospital in Recife-PE, Brazil, between the years of 2018 and 2019, as well as to search for the presence of the mcr-1 gene and evaluate the interaction between polymyxin B and usnic acid against these isolates. The strains were identified using the BD Phoenix™ automated system and the agar-spot test was used to determine the susceptibility profile to polymyxin B. The minimum inhibitory concentrations (MICs) of usnic acid and polymyxin B were determined through the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI). Subsequently, Polymerase Chain Reaction (PCR) was performed to detect the mcr-1 gene in the isolates. The interaction between usnic acid and polymyxin B was evaluated by the Checkerboard assay. Among 34 isolates of P. aeruginosa, 26.5% (9/34) were positive for the polymyxin B agar-spot test, and 11.8% (4/34) presented an intermediate susceptibility (MIC = 4 μg/mL), while 14.7% (5/34) presented antimicrobial resistance with MIC values ranging from 8 to 32 μg/mL. Among 38 isolates of Acinetobacter spp., 13.2% (5/38) were positive for the polymyxin B agar-spot test and all of them were resistant to polymyxin B with a MIC value > 32 μg/mL. The mcr-1 gene was not detected in the clinical isolates. Regarding usnic acid, it presented a moderate antibacterial activity against two P. aeruginosa isolates (MIC = 250 μg/mL) and no activity was detected against the others. A synergistic effect between usnic acid and polymyxin B was observed against three clinical isolates of P. aeruginosa which were resistant to polymyxin B (FICI ≤ 0.5). Therefore, it was possible to observe that usnic acid is a promising candidate to be used in combination with polymyxin B against infections caused by resistant P. aeruginosa.
Collapse
|
33
|
Khan F, Yu H, Kim YM. Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria. Mar Drugs 2020; 18:E270. [PMID: 32443816 PMCID: PMC7281555 DOI: 10.3390/md18050270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to prepare usnic acid (UA)-loaded chitosan (CS) nanoparticles (UA-CS NPs) and evaluate its antibacterial activity against biofilm-forming pathogenic bacteria. UA-CS NPs were prepared through simple ionic gelification of UA with CS, and further characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and field-emission transmission electron microscopy. The UA-CS NPs presented a loading capacity (LC) of 5.2%, encapsulation efficiency (EE) of 24%, and a spherical shape and rough surface. The maximum release of UA was higher in pH 1.2 buffer solution as compared to that in pH 6.8 and 7.4 buffer solution. The average size and zeta potential of the UA-CS NPs was 311.5 ± 49.9 nm in diameter and +27.3 ± 0.8 mV, respectively. The newly prepared UA-CS NPs exhibited antibacterial activity against persister cells obtained from the stationary phase in batch culture, mature biofilms, and antibiotic-induced gram-positive and gram-negative pathogenic bacteria. Exposure of sub-inhibitory concentrations of UA-CS NPs to the bacterial cells resulted in a change in morphology. The present study suggests an alternative method for the application of UA into nanoparticles. Furthermore, the anti-persister activity of UA-CS NPs may be another possible strategy for the treatment of infections caused by biofilm-forming pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
| | - Hongsik Yu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
34
|
Bangalore PK, Vagolu SK, Bollikanda RK, Veeragoni DK, Choudante PC, Misra S, Sriram D, Sridhar B, Kantevari S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as Antibacterial and Antitubercular Agents. JOURNAL OF NATURAL PRODUCTS 2020; 83:26-35. [PMID: 31858800 DOI: 10.1021/acs.jnatprod.9b00475] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
(+)-Usnic acid, a product of secondary metabolism in lichens, has displayed a broad range of biological properties such as antitumor, antimicrobial, antiviral, anti-inflammatory, and insecticidal activities. Interested by these pharmacological activities and to tap into its potential, we herein present the synthesis and biological evaluation of new usnic acid enaminone-conjugated 1,2,3-triazoles 10-44 as antimycobacterial agents. (+)-Usnic acid was condensed with propargyl amine to give usnic acid enaminone 8 with a terminal ethynyl moiety. It was further reacted with various azides A1-A35 under copper catalysis to give triazoles 10-44 in good yields. Among the synthesized compounds, saccharin derivative 36 proved to be the most active analogue, inhibiting Mycobacterium tuberculosis (Mtb) at an MIC value of 2.5 μM. Analogues 16 and 27, with 3,4-difluorophenacyl and 2-acylnaphthalene units, respectively, inhibited Mtb at MIC values of 5.4 and 5.3 μM, respectively. Among the tested Gram-positive and Gram-negative bacteria, the new derivatives were active on Bacillus subtilis, with compounds 18 [3-(trifluoromethyl)phenacyl] and 29 (N-acylmorpholinyl) showing inhibitory concentrations of 41 and 90.7 μM, respectively, while they were inactive on the other tested bacterial strains. Overall, the study presented here is useful for converting natural (+)-usnic acid into antitubercular and antibacterial agents via incorporation of enaminone and 1,2,3-triazole functionalities.
Collapse
Affiliation(s)
| | - Siva K Vagolu
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group , Birla Institute of Technology & Science-Pilani , Hyderabad Campus, Jawahar Nagar , Hyderabad - 500078 , Telangana , India
| | | | | | | | | | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group , Birla Institute of Technology & Science-Pilani , Hyderabad Campus, Jawahar Nagar , Hyderabad - 500078 , Telangana , India
| | | | | |
Collapse
|
35
|
Hawrył A, Hajnos-Stolarz A, Hawrył M, Bogucka-Kocka A. TLC fingerprint with chemometrics and antioxidant activity of selected lichens. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1585629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anna Hawrył
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | - Mirosław Hawrył
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
36
|
Ceylan H, Demir Y, Beydemir Ş. Inhibitory Effects of Usnic and Carnosic Acid on Some Metabolic Enzymes: An In vitro Study. Protein Pept Lett 2019; 26:364-370. [DOI: 10.2174/0929866526666190301115122] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 11/22/2022]
Abstract
Background:
Natural products are produced via primary and secondary metabolism in
different organisms. The compounds obtained via secondary metabolism are not essential for the
survival of the organism, but they can have a different value for humans.
Objective:
The objective of this study was to examine inhibitory effects of Usnic Acid (UA), a
well-known lichen secondary metabolite, and Carnosic Acid (CA), the primary antioxidant
compound of Rosmarinus officinalis L., on purified Human Paraoxonase, (PON1), Glutathione
Reductase (GR) and Glutathione S-Transferase (GST). These enzymes have antioxidant properties
and a protective effect on the oxidation of free radicals. Hence, deficiencies of such enzymes inside
cells can result in a buildup of toxic substances and cause some metabolic disorders.
Methods:
UA and CA were tested in various concentrations against human GST, PON1, and GR
activity in vitro and they reduced human GST, PON1, and GR activity.
Results:
UA Ki constants were calculated as 0.012±0.0019, 0.107±0.06 and 0.21±0.1 mM for GST,
PON1, and GR enzymes. CA Ki constants were determined as 0.028±0.009, 0.094±0.03 and
0.79±0.33 mM, for GST, PON1, and GR enzymes. UA and CA showed competitive inhibition for
GR and GST enzymes, while they exhibited non-competitive inhibition for PON1.
Conclusion:
These findings indicate that UA and CA could be useful in drug development studies.
Collapse
Affiliation(s)
- Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
37
|
Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:310-316. [DOI: 10.1016/j.bbabio.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 01/25/2019] [Indexed: 11/21/2022]
|
38
|
Alavi M, Karimi N. Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. Int J Biol Macromol 2019; 128:893-901. [PMID: 30708006 DOI: 10.1016/j.ijbiomac.2019.01.177] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 01/12/2023]
Abstract
Thymol and usnic acid as the important secondary metabolites of respectively Artemisia haussknechtii and Protoparmeliopsis muralis were used for reduction and stabilizing of AgNO3 and CuSO4 in metal nanoparticles (MNPs) biosynthesis process. Antibacterial effects of prepared Ag-thymol (ATNPs), Ag-usnic acid (AUNPs), Cu-thymol (CTNPs), and Cu-usnic acid (CUNPs) on multi drug resistant (MDR) bacteria including methicillin-resistant Staphylococcus aureus (MRSA) (gram positive), Acinetobacter baumannii (A52), and Klebsiella pneumonia (K38) (gram negative) were compared with thymol, usnic acid, AgNO3, CuSO4, and tetracycline. Results of this study showed higher antibacterial activities of usnic acid, CUNPs, and CTNPs with MIC/MBC values (20, 40, and 40 μg/mL, respectively) than ATNPs and AUNPs against MRSA bacteria. Leakage of macromolecules involving nucleic acids and proteins from bacteria under stress of MNPs, thymol, and usnic acid proved significant antibacterial activities of usnic acid, and Cu NPs. In addition, SEM images illustrated different patterns of aggregation in biofilms resulted from interactions of these antibacterial agents with bacterial macromolecules. Totally, this investigation illustrated new green method of Ag and Cu NPs biosynthesis with suitable antibacterial properties.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran; Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
39
|
Varol M. Lichens as a Promising Source of Unique and Functional Small Molecules for Human Health and Well-Being. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00012-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
40
|
Sarkar R, Mittal N, Sorensen J, Sen T. A Comparison of the Bioactivity of Usnic Acid versus Methylphloroacetophenone. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The identification of natural products that disrupt biofilm formation has become an area of recently expanded interest in combating antibiotic resistance. The formation of biofilms has been correlated with increased pathogenesis in many strains of Gram-negative bacteria. Molecules that disrupt the formation of biofilms therefore represent a potentially novel way to combat pathogenesis. Lichen natural products are an underexplored source of biofilm disrupting natural products. We have investigated the biofilm disrupting activity of the lichen natural product usnic acid (UA) in comparison to the biosynthetic precursor methylphloroacetophenone (MPA). We have observed in our assays that UA is more bioactive than MPA, suggesting a rationale for the biosynthesis of UA in a wide variety of lichen species. These results suggest that lichen natural products may prove to be a rich source of biofilm inhibitors.
Collapse
Affiliation(s)
- Ratul Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| | - Navriti Mittal
- Department of Chemistry, University of Manitoba, Winnipeg, R3T2N2, Canada
| | - John Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, R3T2N2, Canada
| | - Tuhinadri Sen
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
41
|
Oh JM, Kim YJ, Gang HS, Han J, Ha HH, Kim H. Antimicrobial Activity of Divaricatic Acid Isolated from the Lichen Evernia mesomorpha against Methicillin-Resistant Staphylococcus aureus. Molecules 2018; 23:molecules23123068. [PMID: 30477128 PMCID: PMC6320781 DOI: 10.3390/molecules23123068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
One hundred and seventy seven acetone extracts of lichen and 258 ethyl acetate extracts of cultured lichen-forming fungi (LFF) were screened for antimicrobial activity against Staphylococcus aureus and Enterococcus faecium using a disk diffusion method. Divaricatic acid was isolated from Evernia mesomorpha and identified by LC-MS, 1H-, 13C- and DEPT-NMR. Purified divaricatic acid was effective against Gram + bacteria, such as Bacillus subtilis, Staphylococcus epidermidis, Streptococcus mutans, and Enterococcus faecium, with the minimum inhibitory concentration (MIC) values ranging from 7.0 to 64.0 μg/mL, whereas vancomycin was effective in the MICs ranging from 0.78 to 25.0 μg/mL. Interestingly, the antibacterial activity of divaricatic acid was higher than vancomycin against S. epidermidis and E. faecium, and divaricatic acid was active against Candida albicans. In addition, divaricatic acid was active as vancomycin against S. aureus (3A048; an MRSA). These results suggested that divaricatic acid is a potential antimicrobial agent for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea.
| | - Yi Jeong Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Korea.
| | - Hyo-Seung Gang
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Korea.
| | - Jin Han
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea.
| | - Hyung-Ho Ha
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea.
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea.
| |
Collapse
|
42
|
Victor K, Boris L, Athina G, Anthi P, Marija S, Marina K, Oliver R, Marina S. Design, synthesis and antimicrobial activity of usnic acid derivatives. MEDCHEMCOMM 2018; 9:870-882. [PMID: 30108976 PMCID: PMC6072497 DOI: 10.1039/c8md00076j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 01/10/2023]
Abstract
Usnic acid, a dibenzofuran, was originally isolated from lichens producing secondary metabolites, and is well known as an antibiotic, but is also endowed with several other interesting properties. Thus, the goal of this paper is the design of new usnic acid derivatives and evaluation of their antimicrobial activity. All newly synthesized compounds possess good antibacterial activity with MIC ranging from 1.02-50.93 × 10-2 mmol mL-1 and MBC from 2.05-70.57 × 10-2 mmol mL-1. The most sensitive bacterial species was Staphylococcus aureus, while Pseudomonas aeruginosa and Escherichia coli were the most resistant among the ATCC strains, and MRSA was the most resistant among all tested bacteria (ATCC and clinical isolates). Their antifungal activity was very strong (MIC = 0.35-7.53 × 10-2 mmol mL-1 and MFC = 0.70-15.05 × 10-2 mmol mL-1) - better than those of reference compounds and usnic acid itself. The most sensitive fungal species was Trichoderma viride, while Penicillium versicolor var. cyclopium appeared to be the most resistant. It should be mentioned that in general most of the compounds showed weaker antibacterial activity, but better antifungal properties than usnic acid itself. The results allow us to conclude that the title compounds are good lead compounds for novel more active antibacterial drugs. On the other hand, these compounds are very promising as antifungals.
Collapse
Affiliation(s)
| | - Lichitsky Boris
- Zelinsky Institute of Organic Chemistry , Leninsky Prospect , 119991 , Moscow , Russia .
| | - Geronikaki Athina
- School of Health , Department of Pharmacy , Aristotle University of Thessaloniki , 54124 , Greece
| | - Petrou Anthi
- School of Health , Department of Pharmacy , Aristotle University of Thessaloniki , 54124 , Greece
| | - Smiljkovic Marija
- Mycological Laboratory , Department of Plant Physiology , Institute for Biological Research , Siniša Stanković , University of Belgrade , Bulevar Despota Stefana 142 , 11000 , Belgrade , Serbia
| | - Kostic Marina
- Mycological Laboratory , Department of Plant Physiology , Institute for Biological Research , Siniša Stanković , University of Belgrade , Bulevar Despota Stefana 142 , 11000 , Belgrade , Serbia
| | - Radanovic Oliver
- Scientific Institute of Veterinary Medicine of Serbia , ul. Vojvode Toze 14 , 11000 Belgrade , Serbia
| | - Soković Marina
- Mycological Laboratory , Department of Plant Physiology , Institute for Biological Research , Siniša Stanković , University of Belgrade , Bulevar Despota Stefana 142 , 11000 , Belgrade , Serbia
| |
Collapse
|
43
|
Potentiation effects by usnic acid in combination with antibiotics on clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Med Chem Res 2018. [DOI: 10.1007/s00044-018-2161-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Goga M, Ručová D, Kolarčik V, Sabovljević M, Bačkor M, Lang I. Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecol Evol 2018; 8:2781-2787. [PMID: 29531694 PMCID: PMC5838065 DOI: 10.1002/ece3.3908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/04/2017] [Accepted: 01/14/2018] [Indexed: 11/09/2022] Open
Abstract
Lichens and mosses often share the same environmental conditions where they compete for substrate and other essential factors. Lichens use secondary metabolites as allelochemicals to repel surrounding plants and potential rivals. In mosses, endoreduplication leads to the occurrence of various ploidy levels in the same individual and has been suggested as an adaptation to abiotic stresses. Here, we show that also biotic factors such as usnic acid, an allelochemical produced by lichens, directly influenced the level of ploidy in mosses. Application of usnic acid changed the nuclei proportion and significantly enhanced the endoreduplication index in two moss species, Physcomitrella patens and Pohlia drummondii. These investigations add a new aspect on secondary metabolites of lichens which count as biotic factors and affect ploidy levels in mosses.
Collapse
Affiliation(s)
- Michal Goga
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Dajana Ručová
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Vladislav Kolarčik
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Marko Sabovljević
- Faculty of BiologyInstitute of Botany and Botanical GardenUniversity of BelgradeBelgradeSerbia
| | - Martin Bačkor
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Ingeborg Lang
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
45
|
Kwon Y, Cha J, Chiang J, Tran G, Giaever G, Nislow C, Hur JS, Kwak YS. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J Appl Microbiol 2016; 121:1580-1591. [DOI: 10.1111/jam.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Kwon
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - J. Cha
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| | - J. Chiang
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Tran
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Giaever
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - C. Nislow
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - J.-S. Hur
- Korean Lichen Research Institute; Suncheon National University; Suncheon Korea
| | - Y.-S. Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
46
|
Pompilio A, Riviello A, Crocetta V, Di Giuseppe F, Pomponio S, Sulpizio M, Di Ilio C, Angelucci S, Barone L, Di Giulio A, Di Bonaventura G. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus. Future Microbiol 2016; 11:1315-1338. [PMID: 27633726 DOI: 10.2217/fmb-2016-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial and antibiofilm mechanisms of usnic acid (USN) against methicillin-resistant Staphylococcus aureus from cystic fibrosis patients. MATERIALS & METHODS The effects exerted by USN at subinhibitory concentrations on S. aureus Sa3 strain was evaluated by proteomic, real-time PCR and electron microscopy analyses. RESULTS & CONCLUSION Proteomic analysis showed that USN caused damage in peptidoglycan synthesis, as confirmed by microscopy. Real-time PCR analysis showed that antibiofilm activity of USN is mainly due to impaired adhesion to the host matrix binding proteins, and decreasing lipase and thermonuclease expression. Our data show that USN exerts anti-staphylococcal effects through multitarget inhibitory effects, thus confirming the rationale for considering it 'lead compound' for the treatment of cystic fibrosis infections.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Antonella Riviello
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefano Pomponio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Marilisa Sulpizio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Luana Barone
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| |
Collapse
|
47
|
Gao P, Wang Y, Villanueva I, Ho PL, Davies J, Kao RYT. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression. Front Microbiol 2016; 7:1344. [PMID: 27625639 PMCID: PMC5004274 DOI: 10.3389/fmicb.2016.01344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/15/2016] [Indexed: 12/05/2022] Open
Abstract
As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong
| | - Yanli Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong
| | - Iván Villanueva
- Department of Microbiology and Immunology, The University of British Columbia Vancouver, BC, Canada
| | - Pak Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong; State Key Laboratory for Emerging Infectious Disease, The University of Hong KongHong Kong, Hong Kong
| | - Julian Davies
- Department of Microbiology and Immunology, The University of British Columbia Vancouver, BC, Canada
| | - Richard Yi Tsun Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong; State Key Laboratory for Emerging Infectious Disease, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
48
|
Kwon Y, Cha J, Chiang J, Tran G, Nislow C, Hur JS, Kwak YS. Lichen-forming fungus Caloplaca flavoruscens inhibits transcription factors and chromatin remodeling system in fungi. FEMS Microbiol Lett 2016; 363:fnw113. [PMID: 27190156 DOI: 10.1093/femsle/fnw113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 11/14/2022] Open
Abstract
Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC25.5, IC25 and IC50, respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Youngho Kwon
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaeyul Cha
- Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jennifer Chiang
- Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Grant Tran
- Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Suncheon National University, Suncheon 57922, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
49
|
Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:441-459. [PMID: 27064003 DOI: 10.1016/j.phymed.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lichens, as a symbiotic association of photobionts and mycobionts, display an unmatched environmental adaptability and a great chemical diversity. As an important morphological group, cetrarioid lichens are one of the most studied lichen taxa for their phylogeny, secondary chemistry, bioactivities and uses in folk medicines, especially the lichen Cetraria islandica. However, insufficient structure elucidation and discrepancy in bioactivity results could be found in a few studies. PURPOSE This review aimed to present a more detailed and updated overview of the knowledge of secondary metabolites from cetrarioid lichens in a critical manner, highlighting their potentials for pharmaceuticals as well as other applications. Here we also highlight the uses of molecular phylogenetics, metabolomics and ChemGPS-NP model for future bioprospecting, taxonomy and drug screening to accelerate applications of those lichen substances. CHAPTERS The paper starts with a short introduction in to the studies of lichen secondary metabolites, the biological classification of cetrarioid lichens and the aim. In light of ethnic uses of cetrarioid lichens for therapeutic purposes, molecular phylogeny is proposed as a tool for future bioprospecting of cetrarioid lichens, followed by a brief discussion of the taxonomic value of lichen substances. Then a delicate description of the bioactivities, patents, updated chemical structures and lichen sources is presented, where lichen substances are grouped by their chemical structures and discussed about their bioactivity in comparison with reference compounds. To accelerate the discovery of bioactivities and potential drug targets of lichen substances, the application of the ChemGPS NP model is highlighted. Finally the safety concerns of lichen substances (i.e. toxicity and immunogenicity) and future-prospects in the field are exhibited. CONCLUSION While the ethnic uses of cetrarioid lichens and the pharmaceutical potential of their secondary metabolites have been recognized, the knowledge of a large number of lichen substances with interesting structures is still limited to various in vitro assays with insufficient biological annotations, and this area still deserves more research in bioactivity, drug targets and screening. Attention should be paid on the accurate interpretation of their bioactivity for further applications avoiding over-interpretations from various in vitro bioassays.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri, Iceland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Rosa Buonfiglio
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Thierry Kogej
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
50
|
Luzina OA, Salakhutdinov NF. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016020084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|