1
|
Becker JW, Pollak S, Berta-Thompson JW, Becker KW, Braakman R, Dooley KD, Hackl T, Coe A, Arellano A, LeGault KN, Berube PM, Biller SJ, Cubillos-Ruiz A, Van Mooy BAS, Chisholm SW. Novel isolates expand the physiological diversity of Prochlorococcus and illuminate its macroevolution. mBio 2024; 15:e0349723. [PMID: 39422514 PMCID: PMC11559063 DOI: 10.1128/mbio.03497-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Prochlorococcus is a diverse picocyanobacterial genus and the most abundant phototroph on Earth. Its photosynthetic diversity divides it into high-light (HL)- or low-light (LL)-adapted groups representing broad phylogenetic grades-each composed of several monophyletic clades. Here, we physiologically characterize four new Prochlorococcus strains isolated from below the deep chlorophyll maximum in the North Pacific Ocean. We combine these physiological properties with genomic analyses to explore the evolution of photosynthetic antennae and discuss potential macroevolutionary implications. The isolates belong to deeply branching low-light-adapted clades that have no other cultivated representatives and display some unusual characteristics. For example, despite its otherwise low-light-adapted physiological characteristics, strain MIT1223 has low chl b2 content similar to high-light-adapted strains. Isolate genomes revealed that each strain contains a unique arsenal of pigment biosynthesis and binding alleles that have been horizontally acquired, contributing to the observed physiological diversity. Comparative genomic analysis of all picocyanobacteria reveals that Pcb, the major pigment carrying protein in Prochlorococcus, greatly increased in copy number and diversity per genome along a branch that coincides with the loss of facultative particle attachment. Collectively, these observations support a recently developed macroevolutionary model, in which niche-constructing radiations allowed ancestral lineages of picocyanobacteria to transition from a particle-attached to planktonic lifestyle and broadly colonize the euphotic zone.IMPORTANCEThe marine cyanobacterium, Prochlorococcus, is among the Earth's most abundant organisms, and much of its genetic and physiological diversity remains uncharacterized. Although field studies help reveal the scope of diversity, cultured isolates allow us to link genomic potential to physiological processes, illuminate eco-evolutionary feedbacks, and test theories arising from comparative genomics of wild cells. Here, we report the isolation and characterization of novel low-light (LL)-adapted Prochlorococcus strains that fill in multiple evolutionary gaps. These new strains are the first cultivated representatives of the LLVII and LLVIII paraphyletic grades of Prochlorococcus, which are broadly distributed in the lower regions of the ocean euphotic zone. Each of these grades is a unique, highly diverse section of the Prochlorococcus tree that separates distinct ecological groups: the LLVII grade branches between monophyletic clades that have facultatively particle-associated and constitutively planktonic lifestyles, whereas the LLVIII grade lies along the branch that leads to all high-light (HL)-adapted clades. Characterizing strains and genomes from these grades yields insights into the large-scale evolution of Prochlorococcus. The new LLVII and LLVIII strains are adapted to growth at very low irradiance levels and possess unique light-harvesting gene signatures and pigmentation. The LLVII strains represent the most basal Prochlorococcus group with a major expansion in photosynthetic antenna genes. Furthermore, a strain from the LLVIII grade challenges the paradigm that all LL-adapted Prochlorococcus exhibit high ratios of chl b:a2. These findings provide insights into the photophysiological evolution of Prochlorococcus and redefine what it means to be a low- vs high-light-adapted Prochlorococcus cell.
Collapse
Affiliation(s)
- Jamie W. Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shaul Pollak
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jessie W. Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin W. Becker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Rogier Braakman
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Keven D. Dooley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Aldo Arellano
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristen N. LeGault
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul M. Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven J. Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrés Cubillos-Ruiz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Coello-Camba A, Díaz-Rúa R, Agusti S. Design and use of a new primer pair for the characterization of the cyanobacteria Synechococcus and Prochlorococcus communities targeting petB gene through metabarcoding approaches. MethodsX 2023; 11:102444. [PMID: 37920873 PMCID: PMC10618751 DOI: 10.1016/j.mex.2023.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
During the last years, the application of next-generation sequencing (NGS) technologies to search for specific genetic markers has become a crucial method for the characterization of microbial communities. Illumina MiSeq, likely the most widespread NGS platform for metabarcoding experiments and taxonomic classification, allows processing shorter reads than the classical SANGER sequencing method and therefore requires specific primer pairs that produce shorter amplicons. Specifically, for the analysis of the commonly studied Prochlorococcus and Synechococcus communities, the petB marker gene has recently stood out as able to provide deep coverage to determine the microdiversity of the community. However, current petB primer set produce a 597 bp amplicon that is not suitable for MiSeq chemistry. Here, we designed and tested a petB primer pair that targets both Prochlorococcus and Synechococcus communities producing an appropriate amplicon to be used with state-of-the-art Illumina MiSeq. This new primer set allows the classification of both groups to a low taxonomic level and is therefore suitable for high throughput experiments using MiSeq technologies, therefore constituting a useful, novel tool to facilitate further studies on Prochlorococcus and Synechococcus communities. •This work describes the de novo design of a Prochlorococcus and Synechococcus-specific petB primer pair, allowing the characterization of both populations to a low taxonomic level.•This primer pair is suitable for widespread Illumina MiSeq sequencing technologies.•petB was confirmed as an adequate target for the characterization of both picocyanobacteria.
Collapse
Affiliation(s)
- Alexandra Coello-Camba
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Labban A, Shibl AA, Calleja ML, Hong PY, Morán XAG. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environ Microbiol 2022; 25:1007-1021. [PMID: 36567447 DOI: 10.1111/1462-2920.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 μm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.
Collapse
Affiliation(s)
- Abbrar Labban
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmed A Shibl
- Genetic Heritage Group, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria Ll Calleja
- Climate Geochemistry Department, Max Plank Institute for Chemistry, Mainz, Germany
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO-CSIC), Gijón/Xixón, Spain
| |
Collapse
|
4
|
Brewin RJW, Dall’Olmo G, Gittings J, Sun X, Lange PK, Raitsos DE, Bouman HA, Hoteit I, Aiken J, Sathyendranath S. A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass Into Contributions From Two Communities. JOURNAL OF GEOPHYSICAL RESEARCH. OCEANS 2022; 127:e2021JC018195. [PMID: 35859661 PMCID: PMC9285788 DOI: 10.1029/2021jc018195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
We describe an approach to partition a vertical profile of chlorophyll-a concentration into contributions from two communities of phytoplankton: one (community 1) that resides principally in the turbulent mixed-layer of the upper ocean and is observable through satellite visible radiometry; the other (community 2) residing below the mixed-layer, in a stably stratified environment, hidden from the eyes of the satellite. The approach is tuned to a time-series of profiles from a Biogeochemical-Argo float in the northern Red Sea, selected as its location transitions from a deep mixed layer in winter (characteristic of vertically well-mixed systems) to a shallow mixed layer in the summer with a deep chlorophyll-a maximum (characteristic of vertically stratified systems). The approach is extended to reproduce profiles of particle backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities and a background coefficient assumed to be dominated by non-algal particles in the region. Analysis of the float data reveals contrasting phenology of the two communities, with community 1 blooming in winter and 2 in summer, community 1 negatively correlated with epipelagic stratification, and 2 positively correlated. We observe a dynamic chlorophyll-specific backscattering coefficient for community 1 (stable for community 2), positively correlated with light in the mixed-layer, suggesting seasonal changes in photoacclimation and/or taxonomic composition within community 1. The approach has the potential for monitoring vertical changes in epipelagic biogeography and for combining satellite and ocean robotic data to yield a three-dimensional view of phytoplankton distribution.
Collapse
Affiliation(s)
- Robert J. W. Brewin
- Centre for Geography and Environmental ScienceCollege of Life and Environmental SciencesUniversity of ExeterCornwallUK
| | - Giorgio Dall’Olmo
- Plymouth Marine LaboratoryPlymouthUK
- National Centre for Earth ObservationPlymouth Marine LaboratoryPlymouthUK
| | - John Gittings
- Program of Earth Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
- Department of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Xuerong Sun
- Centre for Geography and Environmental ScienceCollege of Life and Environmental SciencesUniversity of ExeterCornwallUK
- State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina
| | - Priscila K. Lange
- Departamento de MeteorologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Blue Marble Space Institute of Science (BMSIS)SeattleWAUSA
| | | | | | - Ibrahim Hoteit
- Program of Earth Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Jim Aiken
- Plymouth Marine LaboratoryPlymouthUK
| | - Shubha Sathyendranath
- Plymouth Marine LaboratoryPlymouthUK
- National Centre for Earth ObservationPlymouth Marine LaboratoryPlymouthUK
| |
Collapse
|
5
|
Coe A, Biller SJ, Thomas E, Boulias K, Bliem C, Arellano A, Dooley K, Rasmussen AN, LeGault K, O'Keefe TJ, Stover S, Greer EL, Chisholm SW. Coping with darkness: The adaptive response of marine picocyanobacteria to repeated light energy deprivation. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:3300-3312. [PMID: 34690365 PMCID: PMC8518828 DOI: 10.1002/lno.11880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/22/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
The picocyanobacteria Prochlorococcus and Synechococcus are found throughout the ocean's euphotic zone, where the daily light:dark cycle drives their physiology. Periodic deep mixing events can, however, move cells below this region, depriving them of light for extended periods of time. Here, we demonstrate that members of these genera can adapt to tolerate repeated periods of light energy deprivation. Strains kept in the dark for 3 d and then returned to the light initially required 18-26 d to resume growth, but after multiple rounds of dark exposure they began to regrow after only 1-2 d. This dark-tolerant phenotype was stable and heritable; some cultures retained the trait for over 132 generations even when grown in a standard 13:11 light:dark cycle. We found no genetic differences between the dark-tolerant and parental strains of Prochlorococcus NATL2A, indicating that an epigenetic change is likely responsible for the adaptation. To begin to explore this possibility, we asked whether DNA methylation-one potential mechanism mediating epigenetic inheritance in bacteria-occurs in Prochlorococcus. LC-MS/MS analysis showed that while DNA methylations, including 6 mA and 5 mC, are found in some other Prochlorococcus strains, there were no methylations detected in either the parental or dark-tolerant NATL2A strains. These findings suggest that Prochlorococcus utilizes a yet-to-be-determined epigenetic mechanism to adapt to the stress of extended light energy deprivation, and highlights phenotypic heterogeneity as an additional dimension of Prochlorococcus diversity.
Collapse
Affiliation(s)
- Allison Coe
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Steven J. Biller
- Department of Biological SciencesWellesley CollegeWellesleyMassachusettsUSA
| | - Elaina Thomas
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Konstantinos Boulias
- Division of Newborn MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Christina Bliem
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aldo Arellano
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Keven Dooley
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anna N. Rasmussen
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Kristen LeGault
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Tyler J. O'Keefe
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sarah Stover
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Eric L. Greer
- Division of Newborn MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Sallie W. Chisholm
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
6
|
Wang Y, Liao S, Gai Y, Liu G, Jin T, Liu H, Gram L, Strube ML, Fan G, Sahu SK, Liu S, Gan S, Xie Z, Kong L, Zhang P, Liu X, Wang DZ. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front Microbiol 2021; 12:518865. [PMID: 33679623 PMCID: PMC7935530 DOI: 10.3389/fmicb.2021.518865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Despite being the world’s third largest ocean, the Indian Ocean is one of the least studied and understood with respect to microbial diversity as well as biogeochemical and ecological functions. In this study, we investigated the microbial community and its metabolic potential for nitrogen (N) acquisition in the oligotrophic surface waters of the Indian Ocean using a metagenomic approach. Proteobacteria and Cyanobacteria dominated the microbial community with an average 37.85 and 23.56% of relative abundance, respectively, followed by Bacteroidetes (3.73%), Actinobacteria (1.69%), Firmicutes (0.76%), Verrucomicrobia (0.36%), and Planctomycetes (0.31%). Overall, only 24.3% of functional genes were common among all sampling stations indicating a high level of gene diversity. However, the presence of 82.6% common KEGG Orthology (KOs) in all samples showed high functional redundancy across the Indian Ocean. Temperature, phosphate, silicate and pH were important environmental factors regulating the microbial distribution in the Indian Ocean. The cyanobacterial genus Prochlorococcus was abundant with an average 17.4% of relative abundance in the surface waters, and while 54 Prochlorococcus genomes were detected, 53 were grouped mainly within HLII clade. In total, 179 of 234 Prochlorococcus sequences extracted from the global ocean dataset were clustered into HL clades and exhibited less divergence, but 55 sequences of LL clades presented more divergence exhibiting different branch length. The genes encoding enzymes related to ammonia metabolism, such as urease, glutamate dehydrogenase, ammonia transporter, and nitrilase presented higher abundances than the genes involved in inorganic N assimilation in both microbial community and metagenomic Prochlorococcus population. Furthermore, genes associated with dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification and anammox were absent in metagenome Prochlorococcus population, i.e., nitrogenase and nitrate reductase. Notably, the de novo biosynthesis pathways of six different amino acids were incomplete in the metagenomic Prochlorococcus population and Prochlorococcus genomes, suggesting compensatory uptake of these amino acids from the environment. These results reveal the features of the taxonomic and functional structure of the Indian Ocean microbiome and their adaptive strategies to ambient N deficiency in the oligotrophic ocean.
Collapse
Affiliation(s)
- Yayu Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuilin Liao
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yingbao Gai
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Lott SC, Voigt K, Lambrecht SJ, Hess WR, Steglich C. A framework for the computational prediction and analysis of non-coding RNAs in microbial environmental populations and their experimental validation. THE ISME JOURNAL 2020; 14:1955-1965. [PMID: 32346084 PMCID: PMC7368042 DOI: 10.1038/s41396-020-0658-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 11/09/2022]
Abstract
Small regulatory RNAs and antisense RNAs play important roles in the regulation of gene expression in bacteria but are underexplored, especially in natural populations. While environmentally relevant microbes often are not amenable to genetic manipulation or cannot be cultivated in the laboratory, extensive metagenomic and metatranscriptomic datasets for these organisms might be available. Hence, dedicated workflows for specific analyses are needed to fully benefit from this information. Here, we identified abundant sRNAs from oceanic environmental populations of the ecologically important primary producer Prochlorococcus starting from a metatranscriptomic differential RNA-Seq (mdRNA-Seq) dataset. We tracked their homologs in laboratory isolates, and we provide a framework for their further detailed characterization. Several of the experimentally validated sRNAs responded to ecologically relevant changes in cultivation conditions. The expression of the here newly discovered sRNA Yfr28 was highly stimulated in low-nitrogen conditions. Its predicted top targets include mRNAs encoding cell division proteins, a sigma factor, and several enzymes and transporters, suggesting a pivotal role of Yfr28 in the coordination of primary metabolism and cell division. A cis-encoded antisense RNA was identified as a possible positive regulator of atpF encoding subunit b' of the ATP synthase complex. The presented workflow will also be useful for other environmentally relevant microorganisms for which experimental validation abilities are frequently limiting although there is wealth of sequence information available.
Collapse
Affiliation(s)
- Steffen C Lott
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Karsten Voigt
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - S Joke Lambrecht
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany.
| |
Collapse
|
8
|
Red Sea SAR11 and Prochlorococcus Single-Cell Genomes Reflect Globally Distributed Pangenomes. Appl Environ Microbiol 2019; 85:AEM.00369-19. [PMID: 31028022 DOI: 10.1128/aem.00369-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/19/2019] [Indexed: 11/20/2022] Open
Abstract
Evidence suggests many marine bacteria are cosmopolitan, with widespread but sparse strains poised to seed abundant populations under conducive growth conditions. However, studies supporting this "microbial seed bank" hypothesis have analyzed taxonomic marker genes rather than whole genomes/metagenomes, leaving open the possibility that disparate ocean regions harbor endemic gene content. The Red Sea is isolated geographically from the rest of the ocean and has a combination of high irradiance, high temperature, and high salinity that is unique among the oceans; we therefore asked whether it harbors endemic gene content. We sequenced and assembled single-cell genomes of 21 SAR11 (subclades Ia, Ib, Id, and II) and 5 Prochlorococcus (ecotype HLII) samples from the Red Sea and combined them with globally sourced reference genomes to cluster genes into ortholog groups (OGs). Ordination of OG composition could distinguish clades, including phylogenetically cryptic Prochlorococcus ecotypes LLII and LLIII. Compared with reference genomes, 1% of Prochlorococcus and 17% of SAR11 OGs were unique to the Red Sea genomes (RS-OGs). Most (83%) RS-OGs had no annotated function, but 65% of RS-OGs were expressed in diel Red Sea metatranscriptomes, suggesting they are functional. Searching Tara Oceans metagenomes, RS-OGs were as likely to be found as non-RS-OGs; nevertheless, Red Sea and other warm samples could be distinguished from cooler samples using the relative abundances of OGs. The results suggest that the prevalence of OGs in these surface ocean bacteria is largely cosmopolitan, with differences in population metagenomes manifested by differences in relative abundance rather than complete presence/absence of OGs.IMPORTANCE Studies have shown that as we sequence seawater from a selected environment deeper and deeper, we approach finding every bacterial taxon known for the ocean as a whole. However, such studies have focused on taxonomic marker genes rather than on whole genomes, raising the possibility that the lack of endemism results from the method of investigation. We took a geographically isolated water body, the Red Sea, and sequenced single cells from it. We compared those single-cell genomes to available genomes from around the ocean and to ocean-spanning metagenomes. We showed that gene ortholog groups found in Red Sea genomes but not in other genomes are nevertheless common across global ocean metagenomes. These results suggest that Baas Becking's hypothesis "everything is everywhere, but the environment selects" also applies to gene ortholog groups. This widely dispersed functional diversity may give oceanic microbial communities the functional capacity to respond rapidly to changing conditions.
Collapse
|
9
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
10
|
Shibl AA, Ngugi DK, Talarmin A, Thompson LR, Blom J, Stingl U. The genome of a novel isolate of Prochlorococcus from the Red Sea contains transcribed genes for compatible solute biosynthesis. FEMS Microbiol Ecol 2018; 94:5090968. [PMID: 30188995 DOI: 10.1093/femsec/fiy182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/04/2018] [Indexed: 11/14/2022] Open
Abstract
Marine microbes possess genomic and physiological adaptations to cope with varying environmental conditions. So far, the effects of high salinity on the most abundant marine photoautotrophic organism, Prochlorococcus, in marine oligotrophic environments, are mostly unknown. Here, we report the isolation of a new Prochlorococcus strain (RSP50) belonging to high-light (HL) clade II from the Red Sea, one of the warmest and most saline bodies of water in the global oceans. A comparative genomic analysis identified a set of 59 genes that were exclusive to RSP50 relative to currently available Prochlorococcus genomes, the majority of which (70%) encode for hypothetical proteins of unknown function. However, three of the unique genes encode for a complete pathway for the biosynthesis of the compatible solute glucosylglycerol, and are homologous to enzymes found in the sister lineage Synechococcus. Metatranscriptomic analyses of this metabolic pathway in the water column of the Red Sea revealed that the corresponding genes were constitutively transcribed, independent of depth and light, suggesting that osmoregulation using glucosylglycerol is a general feature of HL II Prochlorococcus in the Red Sea.
Collapse
Affiliation(s)
- Ahmed A Shibl
- Marine Microbial Ecology Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Biology Department, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - David K Ngugi
- Marine Microbial Ecology Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Microorganisms, Leibniz Insitute DSMZ, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Agathe Talarmin
- Marine Microbial Ecology Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Petroleum Geosciences Department, Petroleum Institute, P.O. Box 2533 Abu Dhabi, UAE
| | - Luke R Thompson
- Marine Microbial Ecology Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Biological Sciences and Northern Gulf Institute, University of Southern Mississippi, Hattiesburg, Mississippi, USA.,Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, stationed at Southwest Fisheries Science Center, La Jolla, California, USA
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, D-35392 Giessen, Germany
| | - Ulrich Stingl
- Marine Microbial Ecology Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,University of Florida, UF/IFAS, Department for Microbiology & Cell Science, Fort Lauderdale Research and Education Center, Davie, FL 33314, USA
| |
Collapse
|
11
|
Heterotroph Interactions Alter Prochlorococcus Transcriptome Dynamics during Extended Periods of Darkness. mSystems 2018; 3:mSystems00040-18. [PMID: 29854954 PMCID: PMC5974335 DOI: 10.1128/msystems.00040-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes evolve within complex ecological communities where biotic interactions impact both individual cells and the environment as a whole. Here we examine how cellular regulation in the marine cyanobacterium Prochlorococcus is influenced by a heterotrophic bacterium, Alteromonas macleodii, under different light conditions. We monitored the transcriptome of Prochlorococcus, grown either alone or in coculture, across a diel light:dark cycle and under the stress of extended darkness-a condition that cells would experience when mixed below the ocean's euphotic zone. More Prochlorococcus transcripts exhibited 24-h periodic oscillations in coculture than in pure culture, both over the normal diel cycle and after the shift to extended darkness. This demonstrates that biotic interactions, and not just light, can affect timing mechanisms in Prochlorococcus, which lacks a self-sustaining circadian oscillator. The transcriptomes of replicate pure cultures of Prochlorococcus lost their synchrony within 5 h of extended darkness and reflected changes in stress responses and metabolic functions consistent with growth cessation. In contrast, when grown with Alteromonas, replicate Prochlorococcus transcriptomes tracked each other for at least 13 h in the dark and showed signs of continued biosynthetic and metabolic activity. The transcriptome patterns suggest that the heterotroph may be providing energy or essential biosynthetic substrates to Prochlorococcus in the form of organic compounds, sustaining this autotroph when it is deprived of solar energy. Our findings reveal conditions where mixotrophic metabolism may benefit marine cyanobacteria and highlight new impacts of community interactions on basic Prochlorococcus cellular processes. IMPORTANCEProchlorococcus is the most abundant photosynthetic organism on the planet. These cells play a central role in the physiology of surrounding heterotrophs by supplying them with fixed organic carbon. It is becoming increasingly clear, however, that interactions with heterotrophs can affect autotrophs as well. Here we show that such interactions have a marked impact on the response of Prochlorococcus to the stress of extended periods of darkness, as reflected in transcriptional dynamics. These data suggest that diel transcriptional rhythms within Prochlorococcus, which are generally considered to be strictly under the control of light quantity, quality, and timing, can also be influenced by biotic interactions. Together, these findings provide new insights into the importance of microbial interactions on Prochlorococcus physiology and reveal conditions where heterotroph-derived compounds may support autotrophs-contrary to the canonical autotroph-to-heterotroph trophic paradigm.
Collapse
|
12
|
Microbial planktonic communities in the Red Sea: high levels of spatial and temporal variability shaped by nutrient availability and turbulence. Sci Rep 2017; 7:6611. [PMID: 28747798 PMCID: PMC5529573 DOI: 10.1038/s41598-017-06928-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
The semi-enclosed nature of the Red Sea (20.2°N-38.5°N) makes it a natural laboratory to study the influence of environmental gradients on microbial communities. This study investigates the composition and structure of microbial prokaryotes and eukaryotes using molecular methods, targeting ribosomal RNA genes across different regions and seasons. The interaction between spatial and temporal scales results in different scenarios of turbulence and nutrient conditions allowing for testing of ecological theory that categorizes the response of the plankton community to these variations. The prokaryotic reads are mainly comprised of Cyanobacteria and Proteobacteria (Alpha and Gamma), with eukaryotic reads dominated by Dinophyceae and Syndiniophyceae. Periodic increases in the proportion of Mamiellophyceae and Bacillariophyceae reads were associated with alterations in the physical oceanography leading to nutrient increases either through the influx of Gulf of Aden Intermediate Water (south in the fall) or through water column mixing processes (north in the spring). We observed that in general dissimilarity amongst microbial communities increased when nutrient concentrations were higher, whereas richness (observed OTUs) was higher in scenarios of higher turbulence. Maximum abundance models showed the differential responses of dominant taxa to temperature giving an indication how taxa will respond as waters become warmer and more oligotrophic.
Collapse
|
13
|
Babić I, Petrić I, Bosak S, Mihanović H, Dupčić Radić I, Ljubešić Z. Distribution and diversity of marine picocyanobacteria community: Targeting of Prochlorococcus ecotypes in winter conditions (southern Adriatic Sea). Mar Genomics 2017; 36:3-11. [PMID: 28595872 DOI: 10.1016/j.margen.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Adriatic, the northernmost part of the Mediterranean Sea, due its oligotrophy, topography, and hydrology dynamics, and complex circulation patterns, was suggested as an important study site for rapid climatology impacts. Its southern part is mainly oligotrophic and dominated by picophytoplankton, with cyanobacteria as main representatives. Diversity and distribution patterns of different Prochlorococcus ecotypes were investigated by molecular tools and flow cytometry during the winter convection event in the southern Adriatic (BIOTA winter cruise; February/March 2015). Phylogenetic diversity based on clone libraries of the 16S-23S ribosomal DNA ITS region, as well as flow cytometry (histograms of red fluorescence), indicated presence of 2 different Prochlorococcus in the Adriatic. HLI, as a typical clade for Mediterranean Sea, was likewise found to be dominant Prochlorococcus in the Adriatic, followed by less abundant LLI clade. In addition, Prochlorococcus were found to co-occur with diverse Synechococcus population (53% and 47% of obtained ITS sequences, respectively). Different Prochlorococcus ecotypes had similar patterns of vertical distribution, predominantly occupying upper 100m depth layer, but their distribution was clearly affected by the heterogeneity of hydrological conditions, nitrogen concentration and temperature along vertical and horizontal sampling points. Different studies pointed out that, as a consequence of climate changes, serious alteration of biological and ecological patterns are already taking place Therefore, understanding of the distribution and abundance of picophytoplankton in Adriatic, being still limited, is much needed baseline for predicting possible biogeochemical impact of future environmental changes.
Collapse
Affiliation(s)
- Ivana Babić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Hrvoje Mihanović
- Physical Oceanography Laboratory, Institute for Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
| | - Iris Dupčić Radić
- Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia
| | - Zrinka Ljubešić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. PLoS One 2016; 11:e0163939. [PMID: 27828965 PMCID: PMC5102394 DOI: 10.1371/journal.pone.0163939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
Collapse
Affiliation(s)
- Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Cornelia Roder
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- * E-mail:
| |
Collapse
|
15
|
Lupette J, Lami R, Krasovec M, Grimsley N, Moreau H, Piganeau G, Sanchez-Ferandin S. Marinobacter Dominates the Bacterial Community of the Ostreococcus tauri Phycosphere in Culture. Front Microbiol 2016; 7:1414. [PMID: 27656176 PMCID: PMC5013054 DOI: 10.3389/fmicb.2016.01414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
Microalgal–bacterial interactions are commonly found in marine environments and are well known in diatom cultures maintained in laboratory. These interactions also exert strong effects on bacterial and algal diversity in the oceans. Small green eukaryote algae of the class Mamiellophyceae (Chlorophyta) are ubiquitous and some species, such as Ostreococcus spp., are particularly important in Mediterranean coastal lagoons, and are observed as dominant species during phytoplankton blooms in open sea. Despite this, little is known about the diversity of bacteria that might facilitate or hinder O. tauri growth. We show, using rDNA 16S sequences, that the bacterial community found in O. tauri RCC4221 laboratory cultures is dominated by γ-proteobacteria from the Marinobacter genus, regardless of the growth phase of O. tauri RCC4221, the photoperiod used, or the nutrient conditions (limited in nitrogen or phosphorous) tested. Several strains of Marinobacter algicola were detected, all closely related to strains found in association with taxonomically distinct organisms, particularly with dinoflagellates and coccolithophorids. These sequences were more distantly related to M. adhaerens, M. aquaeoli and bacteria usually associated to euglenoids. This is the first time, to our knowledge, that distinct Marinobacter strains have been found to be associated with a green alga in culture.
Collapse
Affiliation(s)
- Josselin Lupette
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; CEA/CNRS/INRA/Université Grenoble Alpes, UMR 5168 Laboratoire Physiologie Cellulaire VégétaleGrenoble, France
| | - Raphaël Lami
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes, Observatoire OcéanologiqueBanyuls-sur-Mer, France
| | - Marc Krasovec
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France
| | - Hervé Moreau
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France
| | - Sophie Sanchez-Ferandin
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France; Centre National de la Recherche Scientifique, UMR 7232 Biologie Intégrative des Organismes Marins, Observatoire OcéanologiqueBanyuls-sur-Mer, France
| |
Collapse
|