1
|
Negri LB, Mannaa Y, Korupolu S, Farinelli WA, Anderson RR, Gelfand JA. Vitamin K3 (Menadione) is a multifunctional microbicide acting as a photosensitizer and synergizing with blue light to kill drug-resistant bacteria in biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112720. [PMID: 37186990 DOI: 10.1016/j.jphotobiol.2023.112720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.
Collapse
Affiliation(s)
- Laisa Bonafim Negri
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yara Mannaa
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sandeep Korupolu
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - William A Farinelli
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Gelfand
- Wellman Center for Photomedicine, Thier 2, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Valluvar Oli A, Li Z, Chen Y, Ivaturi A. Near-Ultraviolet Indoor Black Light-Harvesting Perovskite Solar Cells. ACS APPLIED ENERGY MATERIALS 2022; 5:14669-14679. [PMID: 36590877 PMCID: PMC9795417 DOI: 10.1021/acsaem.2c01560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Indoor light-energy-harvesting solar cells have long-standing history with perovskite solar cells (PSCs) recently emerging as potential candidates with high power conversion efficiencies (PCEs). However, almost all of the reported studies on indoor light-harvesting solar cells utilize white light in the visible wavelength. Low wavelength near-ultraviolet (UV) lights used under indoor environments are not given attention despite their high photon energy. In this study, perovskite solar cells have been investigated for the first time for harvesting energy from a commercially available near-UV (UV-A) indoor LED light (395-400 nm). Also called black lights, these near-UV lights are commonly used for decoration (e.g., in bars, pubs, aquariums, parties, clubs, body art studios, neon lights, and Christmas and Halloween decorations). The optimized perovskite solar cells with the n-i-p architecture using the CH3NH3PbI3 absorber were fabricated and characterized under different illumination intensities of near-UV indoor LEDs. The champion devices delivered a PCE and power output of 20.63% and 775.86 μW/cm2, respectively, when measured under UV illumination of 3.76 mW/cm2. The devices retained 84.10% of their initial PCE when aged under near-UV light for 24 h. The effects of UV exposure on the device performance have been comprehensively characterized. Furthermore, UV-stable solar cells fabricated with a modified electron transport layer retained 95.53% of its initial PCE after 24 h UV exposure. The champion devices delivered enhanced PCE and power output of 26.19% and 991.21 μW/cm2, respectively, when measured under UV illumination of 3.76 mW/cm2. This work opens up a novel direction for energy harvesting from near-UV indoor light sources for applications in microwatt-powered electronics such as internet of things sensors.
Collapse
Affiliation(s)
- Arivazhagan Valluvar Oli
- Smart
Materials Research and Device Technology (SMaRDT) Group, Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, U.K.
| | - Zinuo Li
- Department
of Physics, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Yu Chen
- Department
of Physics, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Aruna Ivaturi
- Smart
Materials Research and Device Technology (SMaRDT) Group, Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, U.K.
| |
Collapse
|
3
|
Thongkham E, Junnu S, Borlace GN, Uopasai S, Aiemsaard J. Efficacy of common disinfection processes against infective spores (arthroconidia) and mycelia of Microsporum gallinae causing avian dermatophytosis. Vet World 2022; 15:1413-1422. [PMID: 35993074 PMCID: PMC9375226 DOI: 10.14202/vetworld.2022.1413-1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: Microsporum gallinae is the major dermatophyte species that causes avian dermatophytosis. Disinfection plays an important role in controlling and preventing dermatophytosis; however, information about the effect of common disinfection processes on M. gallinae is limited. This study aimed to investigate the disinfection efficacy of ultraviolet (UV) irradiation, heat treatment, detergents, and germicides against infective spores (arthroconidia) and vegetative mycelia of M. gallinae. Materials and Methods: The minimum inhibitory and minimum fungicidal concentrations of benzalkonium chloride, chlorhexidine, ethanol, formaldehyde, glutaraldehyde, hydrogen peroxide, phenol, povidone-iodine, and sodium hypochlorite germicides against arthroconidia and mycelia of M. gallinae American type culture collection (ATCC) 90749 were determined by broth microdilution. Time-kill assays were used to determine the fungicidal efficacy of moist heat treatment, UV irradiation, commercially available detergents, and germicides. Results: There were no significant differences between the arthroconidia and mycelia growth stages of M. gallinae ATCC 90749 in the magnitude of the log10 cell reductions in the number of viable fungal cells induced by the disinfection treatments (all p > 0.05). Moist heat treatment at 40°C did not reduce the number of viable fungal cells at any time (1–60 min); however, treatment at 50°C for 25 min and either 60°C or 80°C for 5 min eliminated > 99.999% of viable fungal cells. Irradiation of fungal cultures with UVC and UVB at doses higher than or equal to 0.4 and 0.8 J/cm2, respectively, resulted in a 5-log10 reduction in the number of viable fungal cells, whereas UVA only reduced the number of viable fungal cells by < 2-log10 up to a dose of 1.6 J/cm2. All the tested detergents demonstrated minimal fungicidal effects with < 1-log10 reductions in the number of viable fungal cells at concentrations up to 8% w/v. All of the tested germicides eradicated the fungus after treatment for 1 min at 1–1000× minimum inhibitory concentration (MIC), except for hydrogen peroxide, which was not fungicidal after treatment for 20 min at 100× MIC. Conclusion: Moist heat treatment at temperatures greater than or equal to 50°C, UVC and UVB irradiation at doses higher than or equal to 0.4 and 0.8 J/cm2, respectively, and treatment with all tested germicides except hydrogen peroxide can be considered effective processes for disinfecting the fungus M. gallinae from the equipment employed in poultry farming. In contrast, commercially available detergents are not suitable for use as M. gallinae disinfectants.
Collapse
Affiliation(s)
- Eakachai Thongkham
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Sucheeva Junnu
- Division of Livestock Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Glenn Neville Borlace
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Suwit Uopasai
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Jareerat Aiemsaard
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
4
|
Wang R, Hu Q, Wang H, Zhu G, Wang M, Zhang Q, Zhao Y, Li C, Zhang Y, Ge G, Chen H, Chen L. Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CL pro. Int J Biol Macromol 2021; 183:182-192. [PMID: 33901557 PMCID: PMC8064871 DOI: 10.1016/j.ijbiomac.2021.04.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 μM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Ruyu Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haonan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guanghao Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengge Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yishu Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyu Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yani Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
He Y, Xu F, Ibrahim Z, Feyissa Q, Reed JL, Vostal JG. Viral reduction of human blood by ultraviolet A-photosensitized vitamin K5. J Med Virol 2021; 93:5134-5140. [PMID: 33837954 DOI: 10.1002/jmv.27008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022]
Abstract
Blood product transfusion can transmit viral pathogens. Pathogen reduction methods for blood products have been developed but, so far, are not available for whole blood. We evaluated if vitamin K5 (VK5) and ultraviolet A (UVA) irradiation could be used for virus inactivation in plasma and whole blood. Undiluted human plasma and whole blood diluted to 20% were spiked with high levels of vaccinia or Zika viruses. Infectious titers were measured by standard TCID50 assay before and after VK5/UVA treatments. Up to 3.6 log of vaccinia and 3.2 log of Zika were reduced in plasma by the combination of 500 μM VK5 and 3 J/cm2 UVA, and 3.1 log of vaccinia and 2.9 log of Zika were reduced in diluted human blood (20%) by the combination of 500 μM VK5 and 70 J/cm2 UVA. At end of whole blood treatment, hemolysis increased from 0.18% to 0.41% but remained below 1% hemolysis, which is acceptable to the Food and Drug Administration for red cell transfusion products. No significant alteration of biochemical parameters of red blood cells occurred with treatment. Our results provide proof of the concept that a viral pathogen reduction method based on VK5/UVA may be developed for whole blood.
Collapse
Affiliation(s)
- Yong He
- Division of Plasma Protein Therapeutics, OTAT, CBER, FDA, Silver Spring, Maryland, USA
| | - Fei Xu
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| | - Zina Ibrahim
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| | - Qinati Feyissa
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| | - Jennifer L Reed
- Division of Plasma Protein Therapeutics, OTAT, CBER, FDA, Silver Spring, Maryland, USA
| | - Jaroslav G Vostal
- Division of Blood Components and Devices, OBRR, CBER, FDA, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Chu Z, Huang X, Su Y, Yu H, Rong H, Wang R, Zhang L. Low-dose Ultraviolet-A irradiation selectively eliminates nitrite oxidizing bacteria for mainstream nitritation. CHEMOSPHERE 2020; 261:128172. [PMID: 33113654 DOI: 10.1016/j.chemosphere.2020.128172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Nitritation is currently known as a bottleneck for mainstream nitrite shunt or partial nitritation/anammox (PN/A). Here we propose a new approach to selectively eliminate nitrite oxidizing bacteria (NOB) for mainstream nitritation by low-dose ultraviolet-A (UVA) irradiation. The results showed that mainstream nitritation was rapidly achieved within 10 days with UVA irradiation at the dose of 0.87 μE L-1 s-1, and nitrite accumulation ratio (NO2--N/(NO2--N + NO3--N) ×100%) stabilized over 80%. Microbial community analysis revealed that two typical NOB populations (Nitrospira and Ca. Nitrotoga) detected in the control reactor were suppressed efficiently in UVA irradiation reactor, whereas the Nitrosomonas genus of ammonium oxidizing bacteria (AOB) remained at similar level. Intracellular reactive oxygen species (ROS) analysis indicated that NOB-dominant sludge tends to generate more intracellular ROS compared with AOB-dominant sludge in the presence of UVA, leading to the inactivation and elimination of NOB. Additionally, amounts of microalgae found in UVA irradiation reactor could help to suppress NOB by generating ROS during photosynthesis. Briefly, the UVA irradiation approach proposed in this study was shown to be promising in NOB suppression for reliable mainstream nitritation.
Collapse
Affiliation(s)
- Zhaorui Chu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaoyu Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yikui Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Randeng Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Liqiu Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Feyissa Q, Xu F, Ibrahim Z, Li Y, Xu KL, Guo Z, Ahmad J, Vostal JG. Synergistic bactericidal effects of pairs of photosensitizer molecules activated by ultraviolet A light against bacteria in plasma. Transfusion 2020; 61:594-602. [PMID: 33219568 DOI: 10.1111/trf.16180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The current approach to reducing bacterial contamination in blood transfusion products is through detection or pathogen reduction methods, some of which utilize ultraviolet (UV) light photosensitizers. A small number of photosensitizers are being used as single agents in combination with UV light, but their efficacy can be limited against some pathogens. Benzophenone (BP) and vitamins B1, B6, and K3 have been identified as effective UVA photosensitizers for inactivation of bacteria. We evaluated whether combining pairs of photosensitizers in this group would have synergistic bactericidal effects on Gram-negative and Gram-positive bacteria. STUDY DESIGN AND METHODS Bacteria species of Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Klebsiella pneumoniae were mixed with 0 to 100 mM concentrations of photosensitizers and exposed to UVA irradiation at 18 J/cm2 to assess their bactericidal effects. RESULTS Single photosensitizers irradiated with UVA produced a range of bactericidal activity. When combined in pairs, all demonstrated some synergistic bactericidal effects with up to 4-log reduction above the sum of activities of individual molecules in the pair against bacteria in plasma. Photosensitizer pairs with BP had the highest synergism across all bacteria. With vitamin K3 in the pair, synergism was evident for Gram-positive but not for Gram-negative bacteria. Vitamin B1 and vitamin B6 had the least synergism. These results indicate that a combination approach with multiple photosensitizers may extend effectiveness of pathogen reduction in plasma. CONCLUSIONS Combining photosensitizers in pathogen reduction methods could improve bactericidal efficacy and lead to use of lower concentrations of photosensitizers to reduce toxicities and unwanted side effects.
Collapse
Affiliation(s)
- Qinati Feyissa
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Fei Xu
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Zina Ibrahim
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Ying Li
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Kevin L Xu
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Zihan Guo
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Justen Ahmad
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Jaroslav G Vostal
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| |
Collapse
|
8
|
Zhang Z, El-Moghazy AY, Wisuthiphaet N, Nitin N, Castillo D, Murphy BG, Sun G. Daylight-Induced Antibacterial and Antiviral Nanofibrous Membranes Containing Vitamin K Derivatives for Personal Protective Equipment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49416-49430. [PMID: 33089989 DOI: 10.1021/acsami.0c14883] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During the development of antibacterial and antiviral materials for personal protective equipment (PPE), daylight active functional polymeric materials containing vitamin K compounds (VKs) and impacts of polymer structures to the functions were investigated. As examples, hydrophobic polyacrylonitrile (PAN) and hydrophilic poly(vinyl alcohol-co-ethylene) (PVA-co-PE) polymers were directly blended with three VK compounds and electrospun into VK-containing nanofibrous membranes (VNFMs). The prepared VNFMs exhibited robust photoactivity in generating reactive oxygen species (ROS) under both daylight (D65, 300-800 nm) and ultraviolet A (UVA, 365 nm) irradiation, resulting in high antimicrobial and antiviral efficiency (>99.9%) within a short exposure time (<90 min). Interestingly, the PVA-co-PE/VK3 VNFM showed higher ROS production rates and better biocidal functions than those of the PAN/VK3 VNFM under the same photoirradiation conditions, indicating that PVA-co-PE is a better matrix polymer material for these functions. Moreover, the prepared PVA-co-PE/VK3 VNFM maintains its powerful microbicidal function even after five times of repeated exposures to bacteria and viruses, showing the stability and reusability of the antimicrobial materials. The fabrication of photoinduced antimicrobial VNFMs may provide new insights into the development of non-toxic and reusable photoinduced antimicrobial materials that could be applied in personal protective equipment with improved biological protections.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Ahmed Y El-Moghazy
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Nicharee Wisuthiphaet
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California 95616, United States
| | - Brian G Murphy
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California 95616, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
9
|
Sheng L, Zhang Z, Sun G, Wang L. Light-driven antimicrobial activities of vitamin K3 against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Enteritidis. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Kvam E, Benner K. Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111899. [PMID: 32485344 DOI: 10.1016/j.jphotobiol.2020.111899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
Abstract
UV-A and visible light are thought to excite endogenous photosensitizers in microbes, thereby initiating complex chemical interactions that ultimately kill cells. Natural solar-based disinfection methods have been adapted into commercial lighting technologies with varying degrees of reported efficacy and associated safety hazards for human exposure. Here we utilize a narrow-spectrum UV-A LED prototype (currently in development for health care applications) to investigate the mechanism of bacterial photoinactivation using 365 nm light. Using a combination of reverse genetics and biochemical investigation, we report mechanistic evidence that 365nm light initiates a chain-reaction of superoxide-mediated damage via auto-excitation of vitamin-based electron carriers, specifically vitamin K2 menaquinones and the FAD flavoprotein in Complex II in the electron transport chain. We observe that photoinactivation is modifiable through supplementation of the environment to bypass cell damage. Lastly, we observe that bacteria forced into metabolic dormancy by desiccation become hypersensitized to the effects of UV-A light, thereby permitting photoinactivation at fluences that are significantly lower than the industry threshold for safe human exposure. In total, these results substantiate the mechanism and potential application of narrow- spectrum UV-A light for bacterial disinfection purposes.
Collapse
Affiliation(s)
- Erik Kvam
- GE Research, One Research Circle, Niskayuna, NY 12309, USA.
| | - Kevin Benner
- GE Current, a Daintree Company, East Cleveland, OH 44112, USA
| |
Collapse
|
11
|
Inactivation of bacteria in plasma by photosensitizers benzophenone and vitamins K3, B1 and B6 with UV A light irradiation. Photodiagnosis Photodyn Ther 2020; 30:101713. [DOI: 10.1016/j.pdpdt.2020.101713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
|
12
|
Shi S, Zheng G, Yang C, Chen X, Yan Q, Jiang F, Jiang X, Xin Y, Jiang G. Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 Cells. Onco Targets Ther 2020; 12:11715-11727. [PMID: 32099380 PMCID: PMC6997229 DOI: 10.2147/ott.s228792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer and its incidence continues to rise yearly. Photodynamic therapy (PDT) is a non-invasive form of cancer therapy, which utilizes the combined action of a photosensitizer, light, and oxygen molecules to selectively cause cellular damage to tumor cells. Vitamin K3 (VitK3) has been shown to induce apoptosis and inhibit the growth of tumor cells in humans. The purpose of this study was to determine the effect of VitK3 and ultraviolet radiation B (UVB) on oxidative damage, proliferation and apoptosis of A431 cells. Methods CCK-8 assay was used to detect cell proliferation; Hoechst staining, TUNEL assay and flow cytometry analysis were used to detect apoptosis. Western Blot was perfomed to measure the expression of apoptosis-related proteins. Flow cytometry analysis was employed to detect the reactive oxygen species (ROS) levels and mitochondrial membrane potential. Finally, the role of VitK3 in combination with UVB on the proliferation and apoptosis of A431 cells was investigated using mice xenograft models. Results We found that the co-treatment of VitK3 combined with UVB more significantly inhibited the growth and proliferation of A431 cells than either VitK3 or UVB alone. Hoechst 33258 staining and flow cytometry analysis revealed that apoptosis was more pronounced in the VitK3-UVB group compared to the VitK3 and UVB groups. Moreover, flow cytometry analysis showed that ROS and the depolarization of the mitochondrial membrane potential were higher in all the co-treatment groups compared to the control, VitK3, and UVB groups. The VitK3-UVB group exhibited a significantly lower tumor growth rate in mouse xenograft models. Conclusion This study reveals that VitK3 combined with UVB inhibits the growth and induces apoptosis of A431 cells in vitro and suppresses tumor growth and promotes apoptosis of cSCC in vivo.
Collapse
Affiliation(s)
- Shangyuchen Shi
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Gang Zheng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Dermatology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an 221003, People's Republic of China
| | - Chunsheng Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Xi Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Qiuyue Yan
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Fan Jiang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Xiaojie Jiang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yong Xin
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
13
|
Borland K, Diesend J, Ito-Kureha T, Heissmeyer V, Hammann C, Buck AH, Michalakis S, Kellner S. Production and Application of Stable Isotope-Labeled Internal Standards for RNA Modification Analysis. Genes (Basel) 2019; 10:E26. [PMID: 30621251 PMCID: PMC6356711 DOI: 10.3390/genes10010026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/04/2022] Open
Abstract
Post-transcriptional RNA modifications have been found to be present in a wide variety of organisms and in different types of RNA. Nucleoside modifications are interesting due to their already known roles in translation fidelity, enzyme recognition, disease progression, and RNA stability. In addition, the abundance of modified nucleosides fluctuates based on growth phase, external stress, or possibly other factors not yet explored. With modifications ever changing, a method to determine absolute quantities for multiple nucleoside modifications is required. Here, we report metabolic isotope labeling to produce isotopically labeled internal standards in bacteria and yeast. These can be used for the quantification of 26 different modified nucleosides. We explain in detail how these internal standards are produced and show their mass spectrometric characterization. We apply our internal standards and quantify the modification content of transfer RNA (tRNA) from bacteria and various eukaryotes. We can show that the origin of the internal standard has no impact on the quantification result. Furthermore, we use our internal standard for the quantification of modified nucleosides in mouse tissue messenger RNA (mRNA), where we find different modification profiles in liver and brain tissue.
Collapse
Affiliation(s)
- Kayla Borland
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Jan Diesend
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany.
| | - Taku Ito-Kureha
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
- Helmholtz Zentrum München, Research Unit Molecular Immune Regulation, Marchioninistr. 25, 81377 Munich, Germany.
| | - Christian Hammann
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany.
| | - Amy H Buck
- Institute of Immunology & Infection and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
14
|
Xu F, Li Y, Ahmad J, Wang Y, Scott DE, Vostal JG. Vitamin K5 is an efficient photosensitizer for ultraviolet A light inactivation of bacteria. FEMS Microbiol Lett 2018; 365:4810545. [DOI: 10.1093/femsle/fny005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
|