1
|
Selvarajan R, Sibanda T, Pandian J, Mearns K. Taxonomic and Functional Distribution of Bacterial Communities in Domestic and Hospital Wastewater System: Implications for Public and Environmental Health. Antibiotics (Basel) 2021; 10:antibiotics10091059. [PMID: 34572642 PMCID: PMC8470611 DOI: 10.3390/antibiotics10091059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
The discharge of untreated hospital and domestic wastewater into receiving water bodies is still a prevalent practice in developing countries. Unfortunately, because of an ever-increasing population of people who are perennially under medication, these wastewaters contain residues of antibiotics and other antimicrobials as well as microbial shedding, the direct and indirect effects of which include the dissemination of antibiotic resistance genes and an increase in the evolution of antibiotic-resistant bacteria that pose a threat to public and environmental health. This study assessed the taxonomic and functional profiles of bacterial communities, as well as the antibiotic concentrations in untreated domestic wastewater (DWW) and hospital wastewater (HWW), using high-throughput sequencing analysis and solid-phase extraction coupled to Ultra-high-performance liquid chromatography Mass Spectrometry (UHPLC–MS/MS) analysis, respectively. The physicochemical qualities of both wastewater systems were also determined. The mean concentration of antibiotics and the concentrations of Cl−, F− and PO43 were higher in HWW samples than in DWW samples. The phylum Firmicutes was dominant in DWW with a sequence coverage of 59.61% while Proteobacteria was dominant in HWW samples with a sequence coverage of 86.32%. At genus level, the genus Exiguobacterium (20.65%) and Roseomonas (67.41%) were predominant in DWW and HWW samples, respectively. Several pathogenic or opportunistic bacterial genera were detected in HWW (Enterococcus, Pseudomonas and Vibrio) and DWW (Clostridium, Klebsiella, Corynebacterium, Bordetella, Staphylocccus and Rhodococcus) samples. Functional prediction analysis indicated the presence of beta-lactam resistance, cationic antimicrobial peptide (CAMP) resistance and vancomycin resistance genes in HWW samples. The presence of these antibiotic resistance genes and cassettes were positively correlated with the presence of pathogens. These findings show the risk posed to public and environmental health by the discharge of untreated domestic and hospital wastewaters into environmental water bodies.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, UNISA, Florida 1709, South Africa;
- Correspondence:
| | - Timothy Sibanda
- Department of Biochemistry, Microbiology and Biotechnology, University of Namibia, Mandume Ndemufayo Ave, Pionierspark, Windhoek 13301, Namibia;
| | - Jeevan Pandian
- P.G and Research Department of Microbiology, J.J College of Arts and Science (Autonomous), Pudukkottai 622422, Tamil Nadu, India;
| | - Kevin Mearns
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, UNISA, Florida 1709, South Africa;
| |
Collapse
|
2
|
Bougnom BP, McNally A, Etoa FX, Piddock LJ. Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:146-154. [PMID: 31078086 DOI: 10.1016/j.envpol.2019.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
A comparative study was conducted to (1) assess the potential of raw sewage used for urban agriculture to disseminate bacterial resistance in two cities of different size in Cameroon (Central Africa) and (2) compare the outcome with data obtained in Burkina Faso (West Africa). In each city, raw sewage samples were sampled from open-air canals in three neighbourhoods. After DNA extraction, the microbial population structure and function, presence of pathogens, antibiotic resistance genes and Enterobacteriaceae plasmids replicons were analysed using whole genome shotgun sequencing and bioinformatics. Forty-three pathogen-specific virulenc e factor genes were detected in the sewage. Eighteen different incompatibility groups of Enterobacteriaceae plasmid replicon types (ColE, A/C, B/O/K/Z, FIA, FIB, FIC, FII, H, I, N, P, Q, R, T, U, W, X, and Y) implicated in the spread of drug-resistance genes were present in the sewage samples. One hundred thirty-six antibiotic resistance genes commonly associated with MDR plasmid carriage were identified in both cities. Enterobacteriaceae plasmid replicons and ARGs found in Burkina Faso wastewaters were also present in Cameroon waters. The abundance of Enterobacteriaceae, plasmid replicons and antibiotic resistance genes was greater in Yaounde, the city with the greater population. In conclusion, the clinically relevant environmental resistome found in raw sewage used for urban agriculture is common in West and Central Africa. The size of the city impacts on the abundance of drug-resistant genes in the raw sewage while ESBL gene abundance is related to the prevalence of Enterobacteriaceae along with plasmid Enterobacteriaceae abundance associated to faecal pollution.
Collapse
Affiliation(s)
- Blaise P Bougnom
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK; Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box, 812, Yaounde, Cameroon
| | - Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK
| | - François-X Etoa
- Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box, 812, Yaounde, Cameroon
| | - Laura Jv Piddock
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Selvarajan R, Sibanda T, Venkatachalam S, Kamika I, Nel WAJ. Industrial wastewaters harbor a unique diversity of bacterial communities revealed by high-throughput amplicon analysis. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1349-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Kamika I, Tekere M. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 2017; 7:63. [PMID: 28299750 PMCID: PMC5352701 DOI: 10.1186/s13568-017-0365-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 11/10/2022] Open
Abstract
Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium oxide nanoparticles (nCeO) on the microbiome of activated sludge system. The results showed that 18,330 over 28,201 reads generated from control samples were assigned to Proteobacteria while 5527 reads (19.6%), 3260 reads (11.567%), and 719 reads (2.55%) were assigned to unclassified_Bacteria, Firmicutes and Actinobacteria, respectively. When stressed with nCeO2 NPs, a decrease on reads was noted with 53, 48, 27.7 and 24% assigned to Proteobacteria. Gammaproteobacteria (80.57%) was found to be the most predominant Proteobacteria. The impact of nCeO2 NPs was also observed on pollutants removal as only 1.83 and 35.15% of phosphate and nitrate could be removed in the bioreactor stressed with 40 mg-nCeO2-NPs/L. This was confirmed by a drastic reduction of activities for enzymes catalysing denitrification (NaR and NiR) and degradation of polyphosphate (ADK and PPK). ADK appeared to be the most affected enzyme with activity decrease reaching over 90% when stressed with 10 mg-nCeO2/L. Furthermore, bacterial diversity was not significantly different whereas their species richness showed significant difference between control and treated samples. A large number of reads from control samples could not be classified down to the lower taxonomic level "genera" suggesting hitherto vast untapped microbial diversity. The denitrification related genera including Trichococcus and Acinetobacter were found to alternatively dominating treated samples highlighting those nCeO2 NPs could enhance the growth of some bacterial species while inhibiting those of others. Nevertheless, the study indicates that nCeO2 NPs in wastewater at very high concentrations may have some adverse effects on activated sludge process as they inhibit the removal of phosphate.
Collapse
|
5
|
Paul S, Cortez Y, Vera N, Villena GK, Gutiérrez-Correa M. Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru. GENOMICS DATA 2016; 9:63-6. [PMID: 27408814 PMCID: PMC4932623 DOI: 10.1016/j.gdata.2016.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/25/2022]
Abstract
Aguas Calientes (AC) is an isolated geothermal spring located deep into the Amazon rainforest (7°21′12″ S, 75°00′54″ W) of Peru. This geothermal spring is slightly acidic (pH 5.0–7.0) in nature, with temperatures varying from 45 to 90 °C and continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). Pooled water sample was analyzed at 16S rRNA V3–V4 hypervariable region by amplicon metagenome sequencing on Illumina HiSeq platform. A total of 2,976,534 paired ends reads were generated which were assigned into 5434 numbers of OTUs. All the resulting 16S rRNA fragments were then classified into 58 bacterial phyla and 2 archaeal phyla. Proteobacteria (88.06%) was found to be the highest represented phyla followed by Thermi (6.43%), Firmicutes (3.41%) and Aquificae (1.10%), respectively. Crenarchaeota and Euryarchaeota were the only 2 archaeal phyla detected in this study with low abundance. Metagenomic sequences were deposited to SRA database which is available at NCBI with accession number SRX1809286. Functional categorization of the assigned OTUs was performed using PICRUSt tool. In COG analysis “Amino acid transport and metabolism” (8.5%) was found to be the highest represented category whereas among predicted KEGG pathways “Metabolism” (50.6%) was the most abundant. This is the first report of a high resolution microbial phylogenetic profile of an Amazonian hot spring.
Collapse
Affiliation(s)
- Sujay Paul
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Yolanda Cortez
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Nadia Vera
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Gretty K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Marcel Gutiérrez-Correa
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| |
Collapse
|
6
|
Azizi S, Kamika I, Tekere M. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor. PLoS One 2016; 11:e0155462. [PMID: 27186636 PMCID: PMC4871482 DOI: 10.1371/journal.pone.0155462] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater.
Collapse
Affiliation(s)
- Shohreh Azizi
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa, P. O. Box 392, Florida, 1710, South Africa
- * E-mail:
| | - Ilunga Kamika
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa, P. O. Box 392, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa, P. O. Box 392, Florida, 1710, South Africa
| |
Collapse
|
7
|
Microbial profiling of South African acid mine water samples using next generation sequencing platform. Appl Microbiol Biotechnol 2016; 100:6069-79. [DOI: 10.1007/s00253-016-7428-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 11/25/2022]
|