1
|
Achimón F, Pizzolitto RP. Volatilome of the maize phytopathogenic fungus Fusarium verticillioides: potential applications in diagnosis and biocontrol. PEST MANAGEMENT SCIENCE 2024. [PMID: 39354900 DOI: 10.1002/ps.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Fusarium verticillioides is a maize fungal phytopathogen and a producer of volatile organic compounds (VOCs) and fumonisin B1 (FB1). Our aim was to study the volatilome, conidial production, ergosterol and FB1 biosynthesis in maize cultures over a 30-day incubation period (5, 10, 15, 20, 25, 30 days post inoculation [DPI]). The effect of pure VOCs on the same parameters was then evaluated to study their potential role as biocontrol agents. RESULTS In total, 91 VOCs were detected, with volatile profiles being more similar between 5 and 10 DPI compared with 15, 20, 25 and 30 DPI. Ergosterol content increased steadily with incubation time, and three growth stages were identified: a lag phase (0 to 15 DPI), an exponential phase (15 to 20 DPI) and a stationary phase (20 to 30 DPI). The maximum concentration of FB1 was detected at 25 (0.030 μg FB1/μg ergosterol) and 30 DPI (0.037 μg FB1/μg ergosterol), whereas conidial production showed a maximum value at 15 DPI (4.3 ± 0.2 × 105 conidia/μg ergosterol). Regarding pure VOCs, minimal inhibitory concentration values ranged from 0.3 mm for 4-hexen-3-one to 7.4 mm for 2-undecanone. Pure VOCs reduced radial growth, conidial production and ergosterol and FB1 biosynthesis. CONCLUSIONS The marked resemblance between VOC profiles at 5 and 10 DPI suggests that they could act as early indicators of fungal contamination, particularly 4-ethylguaiacol, 4-ethyl-2-methoxyanisole, heptanol and heptyl acetate. On the other hand, their role as inhibitors of fungal growth and FB1 biosynthesis prove their great potential as safer alternatives to control phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Buśko M, Gracka A, Jeleń H, Szablewska KS, Przybylska-Balcerek A, Szwajkowska-Michałek L, Góral T. The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight. Metabolites 2023; 13:1045. [PMID: 37887370 PMCID: PMC10609054 DOI: 10.3390/metabo13101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The grain of 30 winter wheat cultivars differing in terms of their resistance to FHB (Fusarium head blight) was tested. The cultivars were grown in four variants of field trials established in a split-plot design: control without fungicides, chemical control of FHB with fungicides after Fusarium inoculation, Fusarium head inoculation, and organic cultivation. The profile of volatile compounds in grain samples was determined by mean headspace-solid phase microextraction and analyzed by gas chromatography time-of-flight mass spectroscopy. The identified volatile profile comprised 146 compounds belonging to 14 chemical groups. The lowest abundance of volatile organic compounds (VOCs) was found for the organic cultivation variant. The performed discriminant analysis facilitated the complete separation of grain for individual experimental variants based on the number of VOCs decreasing from 116 through 62, 37 down to 14. The grain from organic farming was characterized by a significantly different VOCs profile than the grain from the other variants of the experiment. The compounds 1-methylcycloheptanol, 2-heptanone, 2(3H)-furanone, and 5-hexyldihydro-2(3H)-furanone showed statistically significant differences between all four experimental variants.
Collapse
Affiliation(s)
- Maciej Buśko
- Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland; (M.B.); (K.S.S.); (L.S.-M.)
| | - Anna Gracka
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland; (A.G.); (H.J.)
| | - Henryk Jeleń
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland; (A.G.); (H.J.)
| | - Kinga Stuper Szablewska
- Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland; (M.B.); (K.S.S.); (L.S.-M.)
| | - Anna Przybylska-Balcerek
- Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland; (M.B.); (K.S.S.); (L.S.-M.)
| | - Lidia Szwajkowska-Michałek
- Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland; (M.B.); (K.S.S.); (L.S.-M.)
| | - Tomasz Góral
- Plant Breeding and Acclimatization Institute-National Research Institute, 05-870 Radzików, Poland;
| |
Collapse
|
3
|
Borowik P, Dyshko V, Tarakowski R, Tkaczyk M, Okorski A, Oszako T. Analysis of the Response Signals of an Electronic Nose Sensor for Differentiation between Fusarium Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:7907. [PMID: 37765964 PMCID: PMC10535949 DOI: 10.3390/s23187907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Fusarium is a genus of fungi found throughout the world. It includes many pathogenic species that produce toxins of agricultural importance. These fungi are also found in buildings and the toxins they spread can be harmful to humans. Distinguishing Fusarium species can be important for selecting effective preventive measures against their spread. A low-cost electronic nose applying six commercially available TGS-series gas sensors from Figaro Inc. was used in our research. Different modes of operation of the electronic nose were applied and compared, namely, gas adsorption and desorption, as well as modulation of the sensor's heating voltage. Classification models using the random forest technique were applied to differentiate between measured sample categories of four species: F. avenaceum, F. culmorum, F. greaminarum, and F. oxysporum. In our research, it was found that the mode of operation with modulation of the heating voltage had the advantage of collecting data from which features can be extracted, leading to the training of machine learning classification models with better performance compared to cases where the sensor's response to the change in composition of the measured gas was exploited. The optimization of the data collection time was investigated and led to the conclusion that the response of the sensor at the beginning of the heating voltage modulation provides the most useful information. For sensor operation in the mode of gas desorption/absorption (i.e., modulation of the gas composition), the optimal time of data collection was found to be longer.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland (T.O.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland (T.O.)
| |
Collapse
|
4
|
Parmagnani AS, Kanchiswamy CN, Paponov IA, Bossi S, Malnoy M, Maffei ME. Bacterial Volatiles (mVOC) Emitted by the Phytopathogen Erwinia amylovora Promote Arabidopsis thaliana Growth and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030600. [PMID: 36978848 PMCID: PMC10045578 DOI: 10.3390/antiox12030600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | | | - Ivan A. Paponov
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Simone Bossi
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-5967
| |
Collapse
|
5
|
Higgins Keppler EA, Van Dyke MCC, Mead HL, Lake DF, Magee DM, Barker BM, Bean HD. Volatile Metabolites in Lavage Fluid Are Correlated with Cytokine Production in a Valley Fever Murine Model. J Fungi (Basel) 2023; 9:jof9010115. [PMID: 36675936 PMCID: PMC9864585 DOI: 10.3390/jof9010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi of arid regions in North and South America that are responsible for Valley fever (coccidioidomycosis). Forty percent of patients with Valley fever exhibit symptoms ranging from mild, self-limiting respiratory infections to severe, life-threatening pneumonia that requires treatment. Misdiagnosis as bacterial pneumonia commonly occurs in symptomatic Valley fever cases, resulting in inappropriate treatment with antibiotics, increased medical costs, and delay in diagnosis. In this proof-of-concept study, we explored the feasibility of developing breath-based diagnostics for Valley fever using a murine lung infection model. To investigate potential volatile biomarkers of Valley fever that arise from host−pathogen interactions, we infected C57BL/6J mice with C. immitis RS (n = 6), C. posadasii Silveira (n = 6), or phosphate-buffered saline (n = 4) via intranasal inoculation. We measured fungal dissemination and collected bronchoalveolar lavage fluid (BALF) for cytokine profiling and for untargeted volatile metabolomics via solid-phase microextraction (SPME) and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). We identified 36 volatile organic compounds (VOCs) that were significantly correlated (p < 0.05) with cytokine abundance. These 36 VOCs clustered mice by their cytokine production and were also able to separate mice with moderate-to-high cytokine production by infection strain. The data presented here show that Coccidioides and/or the host produce volatile metabolites that may yield biomarkers for a Valley fever breath test that can detect coccidioidal infection and provide clinically relevant information on primary pulmonary disease severity.
Collapse
Affiliation(s)
- Emily A. Higgins Keppler
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | - Heather L. Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - D. Mitchell Magee
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Heather D. Bean
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Correspondence:
| |
Collapse
|
6
|
Gamboa-Becerra R, Desgarennes D, Molina-Torres J, Ramírez-Chávez E, Kiel-Martínez AL, Carrión G, Ortiz-Castro R. Plant growth-promoting and non-promoting rhizobacteria from avocado trees differentially emit volatiles that influence growth of Arabidopsis thaliana. PROTOPLASMA 2022; 259:835-854. [PMID: 34529144 DOI: 10.1007/s00709-021-01705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.
Collapse
Affiliation(s)
- Roberto Gamboa-Becerra
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Ana L Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
7
|
Steglińska A, Pielech-Przybylska K, Janas R, Grzesik M, Borowski S, Kręgiel D, Gutarowska B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato ( Solanum tuberosum L.) Infection with Phytopathogens. Molecules 2022; 27:molecules27123708. [PMID: 35744835 PMCID: PMC9230024 DOI: 10.3390/molecules27123708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
- Correspondence:
| | - Katarzyna Pielech-Przybylska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland;
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| |
Collapse
|
8
|
Volatile Organic Compound Profile Fingerprints Using DART-MS Shows Species-Specific Patterns in Fusarium Mycotoxin Producing Fungi. J Fungi (Basel) 2021; 8:jof8010003. [PMID: 35049943 PMCID: PMC8780669 DOI: 10.3390/jof8010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal volatile organic compounds (VOCs) are low-molecular weight fungal metabolites that have high vapor pressure at ambient temperatures and can function as airborne signals. Here, we report a VOC study of several different species of Fusarium. Direct analysis in real time mass spectrometry (DART-MS) was applied for non-invasive VOC fingerprinting of Fusarium isolates growing under standardized conditions. A large number of ions were detected from the headspaces of the Fusarium species sampled here. Ions were detected with distinctively high concentrations in some species. While there were few VOCs produced by only one species, the relative concentrations of VOCs differed between species. The methodology has potential for convenient detection and identification of Fusarium contamination in agricultural commodities.
Collapse
|
9
|
Ratajczak M, Kaminska D, Światły-Błaszkiewicz A, Matysiak J. Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186837. [PMID: 32962120 PMCID: PMC7558626 DOI: 10.3390/ijerph17186837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Dietary supplements cover a wide range of products, the most popular are those containing plant-based ingredients. Supplements are consumed by consumers of all ages as well as by both healthy and sick people. The lack of unified regulation in this sector increases the probability that supplements are poor chemical and microbiological quality and can be dangerous for patients. The aim of this paper is to highlight selected issues associated with the microbiological quality of dietary supplements containing plant materials. We focus on the most recent reports referring to bacterial and fungal contaminations as well as the presence of mycotoxins. Dietary supplements containing plant ingredients commonly show a variety of microbial contaminants, which might be crucial for consumer safety. They often contain microorganisms potentially pathogenic to humans. Metabolites produced by microorganisms may pose a threat to the health of consumers. Because of that, in this review, we emphasize the risk that may be associated with the lack of appropriate studies of the quality of the supplements.
Collapse
Affiliation(s)
- Magdalena Ratajczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Dorota Kaminska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Agata Światły-Błaszkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.Ś.-B.); (J.M.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.Ś.-B.); (J.M.)
| |
Collapse
|
10
|
Wang F, Cale JA, Hussain A, Erbilgin N. Exposure to Fungal Volatiles Can Influence Volatile Emissions From Other Ophiostomatoid Fungi. Front Microbiol 2020; 11:567462. [PMID: 33042073 PMCID: PMC7527408 DOI: 10.3389/fmicb.2020.567462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Fungal volatile organic compounds (FVOCs) can act as intra- and inter-kingdom communication signals that influence the growth and behaviors of organisms involved in antagonistic or mutualistic relationships with fungi. There is growing evidence suggesting that FVOCs can mediate interactions between organisms within and across different ecological niches. Bark beetles have established mutualistic relationships with ophiostomatoid fungi which can serve as a food source and condition host plant tissues for developing beetle larvae. While the profiles (both composition and concentrations) of volatile emission from ophiostomatoid fungi can be influenced by abiotic factors, whether emissions from a given fungal species can be influenced by those from another is still unknown. Here, we analyzed FVOCs emitted from the two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma ips, associated with mountain pine beetle and pine engraver beetle, respectively, when each fungus was growing alone or in a shared headspace. We used two isolates of each fungus species. Overall, we detected a total of eight volatiles in both G. clavigera alone or in combination with O. ips including acetoin, ethyl acetate, cis-grandisol, isoamyl alcohol, isobutanol, 2-methyl-1-butanol, phenethyl acetate, and phenethyl alcohol. The profiles of volatiles emitted differed between the two fungal species but not between the two isolates of the same fungus. Six compounds were common between the species, whereas two compounds were detected only when G. clavigera was present. Moreover, the majority of volatiles were detected less frequently and at lower concentrations when the two fungi were grown together in a shared headspace. These results are likely due to reduced volatile emissions from O. ips in the presence of G. clavigera. However, changes in the profiles of fungal volatiles did not correspond with the observed changes in the growth of either species. Overall, these results suggest that the similarities in fungal volatiles among different species of fungi may reflect a common ecological niche and that the differences may correspond to species-specific adaptation to their respective host beetles or genetic factors.
Collapse
|
11
|
Gavrilova OP, Orina AS, Kessenikh ED, Gustyleva LK, Savelieva EI, Gogina NN, Gagkaeva TY. Diversity of Physiological and Biochemical Characters of Microdochium Fungi. Chem Biodivers 2020; 17:e2000294. [PMID: 32421897 DOI: 10.1002/cbdv.202000294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
Abstract
The biological characterization of Microdochium majus, M. nivale, and M. seminicola strains with wide geographical origins showed the diversity of their pathogenic properties and metabolite compounds, allowing them to exist in their habitats. Significant differences in the ability of Microdochium fungi to cause lesions on wheat and oat leaves were found. The intensity of symptoms depended on the species and substrate origin of the strains. On average M. seminicola strains were able to cause less leaf necrosis than M. majus and M. nivale. The volatile organic compound (VOC) profile of Microdochium fungi included 29 putative fungal metabolites. The spectrum of the identified VOCs in M. seminicola strains was much richer than that in M. majus and M. nivale strains. In addition, the strains of M. seminicola emitted at least six sesquiterpenes. Mycotoxin analysis by HPLC/MS/MS revealed that the analyzed Microdochium strains did not produce any toxic metabolites typically produced by filamentous fungi.
Collapse
Affiliation(s)
- Olga P Gavrilova
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), Podbelskogo sh., 3, 196608, St. Petersburg, Russia
| | - Aleksandra S Orina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), Podbelskogo sh., 3, 196608, St. Petersburg, Russia
| | - Elizaveta D Kessenikh
- Laboratory of Analytical Toxicology, Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663, St. Petersburg, Russia
| | - Lyudmila K Gustyleva
- Laboratory of Analytical Toxicology, Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663, St. Petersburg, Russia
| | - Elena I Savelieva
- Laboratory of Analytical Toxicology, Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663, St. Petersburg, Russia
| | - Nadezhda N Gogina
- Laboratory of Biochemical Analysis, All-Russian Scientific Research and Technological Institute of Poultry, 141311, Sergiev Posad, Moscow region, Russia
| | - Tatiana Yu Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), Podbelskogo sh., 3, 196608, St. Petersburg, Russia
| |
Collapse
|
12
|
Villafana RT, Ramdass AC, Rampersad SN. TRI Genotyping and Chemotyping: A Balance of Power. Toxins (Basel) 2020; 12:E64. [PMID: 31973043 PMCID: PMC7076749 DOI: 10.3390/toxins12020064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
Fusarium is among the top 10 most economically important plant pathogens in the world. Trichothecenes are the principal mycotoxins produced as secondary metabolites by select species of Fusarium and cause acute and chronic toxicity in animals and humans upon exposure either through consumption and/or contact. There are over 100 trichothecene metabolites and they can occur in a wide range of commodities that form food and feed products. This review discusses strategies to mitigate the risk of mycotoxin production and exposure by examining the Fusarium-trichothecene model. Fundamental to mitigation of risk is knowing the identity of the pathogen. As such, a comparison of current, recommended molecular approaches for sequence-based identification of Fusaria is presented, followed by an analysis of the rationale and methods of trichothecene (TRI) genotyping and chemotyping. This type of information confirms the source and nature of risk. While both are powerful tools for informing regulatory decisions, an assessment of the causes of incongruence between TRI genotyping and chemotyping data must be made. Reconciliation of this discordance will map the way forward in terms of optimization of molecular approaches, which includes data validation and sharing in the form of accessible repositories of genomic data and browsers for querying such data.
Collapse
Affiliation(s)
| | | | - Sephra N. Rampersad
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
13
|
Dekel A, Yakir E, Bohbot JD. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103174. [PMID: 31129164 DOI: 10.1016/j.ibmb.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Controlling Ae. aegypti populations and the prevention of mosquito bites includes the development of monitoring, repelling and attract-and-kill strategies that are based on understanding the chemical ecology of these pests. Olfactory-mediated attraction to mammals has recently been linked to the mosquito Aedes aegypti odorant receptor Or4, which is activated by animal-released 6-Methyl-5-hepten-2-one (sulcatone). This odorant is also a major component of flower scents and may play a role outside animal-host seeking. To explore the role of this chemical cue, we looked at the interaction between sulcatone and an Or4 homolog expressed in the antennae of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Using the two-electrode voltage clamp of Xenopus oocytes as a heterologous expression system, we show that this receptor is a high intensity sulcatone receptor comparable to its Aedes counterparts. We also show that OR4 is activated by other aliphatic ketones and is inhibited by DEET. This pharmacological characterization suggests that sulcatone may be operating in more than one context in the Culicidae family.
Collapse
Affiliation(s)
- Amir Dekel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Jonathan D Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
14
|
Wang A, Haapalainen M, Latvala S, Edelenbos M, Johansen A. Discriminant analysis of volatile organic compounds of Fusarium oxysporum f. sp. cepae and Fusarium proliferatum isolates from onions as indicators of fungal growth. Fungal Biol 2018; 122:1013-1022. [DOI: 10.1016/j.funbio.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022]
|
15
|
Lippolis V, Cervellieri S, Damascelli A, Pascale M, Di Gioia A, Longobardi F, De Girolamo A. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4955-4962. [PMID: 29577312 DOI: 10.1002/jsfa.9028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) is a mycotoxin, mainly produced by Fusarium sp., most frequently occurring in cereals and cereal-based products. Wheat bran refers to the outer layers of the kernel, which has a high risk of damage due to chemical hazards, including mycotoxins. Rapid methods for DON detection in wheat bran are required. RESULTS A rapid screening method using an electronic nose (e-nose), based on metal oxide semiconductor sensors, has been developed to distinguish wheat bran samples with different levels of DON contamination. A total of 470 naturally contaminated wheat bran samples were analyzed by e-nose analysis. Wheat bran samples were divided in two contamination classes: class A ([DON] ≤ 400 µg kg-1 , 225 samples) and class B ([DON] > 400 µg kg-1 , 245 samples). Discriminant function analysis (DFA) classified wheat bran samples with good mean recognizability in terms of both calibration (92%) and validation (89%). A pattern of 17 volatile compounds of wheat bran samples that were associated (positively or negatively) with DON content was also characterized by HS-SPME/GC-MS. CONCLUSIONS These results indicate that the e-nose method could be a useful tool for high-throughput screening of DON-contaminated wheat bran samples for their classification as acceptable / rejectable at contamination levels close to the EU maximum limit for DON, reducing the number of samples to be analyzed with a confirmatory method. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Anna Damascelli
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| | - Annalisa Di Gioia
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Bari, Italy
| | | | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Bari, Italy
| |
Collapse
|
16
|
Chemometric Analysis of the Volatile Compounds Generated by Aspergillus carbonarius Strains Isolated from Grapes and Dried Vine Fruits. Toxins (Basel) 2018; 10:toxins10020071. [PMID: 29415459 PMCID: PMC5848172 DOI: 10.3390/toxins10020071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/31/2022] Open
Abstract
Ochratoxin A (OTA) contamination in grape production is an important problem worldwide. Microbial volatile organic compounds (MVOCs) have been demonstrated as useful tools to identify different toxigenic strains. In this study, Aspergillus carbonarius strains were classified into two groups, moderate toxigenic strains (MT) and high toxigenic strains (HT), according to OTA-forming ability. The MVOCs were analyzed by GC-MS and the data processing was based on untargeted profiling using XCMS Online software. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) was performed using extract ion chromatogram GC-MS datasets. For contrast, quantitative analysis was also performed. Results demonstrated that the performance of the OPLS-DA model of untargeted profiling was better than the quantitative method. Potential markers were successfully discovered by variable importance on projection (VIP) and t-test. (E)-2-octen-1-ol, octanal, 1-octen-3-one, styrene, limonene, methyl-2-phenylacetate and 3 unknown compounds were selected as potential markers for the MT group. Cuparene, (Z)-thujopsene, methyl octanoate and 1 unknown compound were identified as potential markers for the HT groups. Finally, the selected markers were used to construct a supported vector machine classification (SVM-C) model to check classification ability. The models showed good performance with the accuracy of cross-validation and test prediction of 87.93% and 92.00%, respectively.
Collapse
|
17
|
Rychlik M, Kanawati B, Schmitt-Kopplin P. Foodomics as a promising tool to investigate the mycobolome. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Zhang X, Cheng Z, Ma L, Li J. A study on accumulation of volatile organic compounds during ochratoxin a biosynthesis and characterization of the correlation in Aspergillus carbonarius isolated from grape and dried vine fruit. Food Chem 2017; 227:55-63. [DOI: 10.1016/j.foodchem.2016.12.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/23/2022]
|
19
|
Katoch M, Bindu K, Phull S, Verma MK. An endophytic Fusarium sp. isolated from Monarda citriodora produces the industrially important plant-like volatile organic compound hexanal. MICROBIOLOGY-SGM 2017. [PMID: 28640741 DOI: 10.1099/mic.0.000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An endophytic fungus, MC_25L, has been isolated from the leaves of MonardacitriodoraCerv. ex Lag., a medicinal and aromatic herb from the northwestern Himalayas. It produces a fruity fragrance while growing on potato dextrose agar, suggesting that it is producing volatile organic compounds (VOCs). The endophyte inhibited the growth of plant pathogens such asSclerotiniasp. and Aspergillusflavus by virtue of VOCs. Identification of MC_25L based on morphological and microscopic features, as well as ITS-based rDNA sequence analysis, revealed that it is a Fusariumsp. GC-MS analysis revealed that this endophyte produces a unique array of VOCs, in particular hexanal, p-fluoroanisole, pentafluoropropionic acid 2-ethylhexyl, (5E)-5-ethyl-2-methyl-5-hepten-3-one, 2-butyl-2-hexanol, (7E)-2-methyl-7-hexadecene and acoradiene. Three major compounds were hexanal, (5E)-5-ethyl-2-methyl-5-hepten-3-one and acoradiene, and they account for around 84.57 % of the total VOCs. Moreover, of interest was the presence of hexanal, which has applications in the food and cosmetic industries, as well as in mycofumigation. This is the first report of a fungal endophyte producing the industrially important plant-like VOC hexanal. Hexanal is also active biologically. Thus this study indicates that Fusariumsp. (MC_25L) is a potential candidate for the up-scaling of hexanal.
Collapse
Affiliation(s)
- Meenu Katoch
- Microbial Biotechnology Department, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| | - Kushal Bindu
- Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| | - Shipra Phull
- Microbial Biotechnology Department, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| | - M K Verma
- Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| |
Collapse
|
20
|
Abstract
Covering: up to January 2017This review gives a comprehensive overview of the production of fungal volatiles, including the history of the discovery of the first compounds and their distribution in the various investigated strains, species and genera, as unravelled by modern analytical methods. Biosynthetic aspects and the accumulated knowledge about the bioactivity and biological functions of fungal volatiles are also covered. A total number of 325 compounds is presented in this review, with 247 cited references.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
21
|
Kulik T, Abarenkov K, Buśko M, Bilska K, van Diepeningen AD, Ostrowska-Kołodziejczak A, Krawczyk K, Brankovics B, Stenglein S, Sawicki J, Perkowski J. ToxGen: an improved reference database for the identification of type B-trichothecene genotypes in Fusarium. PeerJ 2017; 5:e2992. [PMID: 28229023 PMCID: PMC5314956 DOI: 10.7717/peerj.2992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/15/2017] [Indexed: 01/17/2023] Open
Abstract
Type B trichothecenes, which pose a serious hazard to consumer health, occur worldwide in grains. These mycotoxins are produced mainly by three different trichothecene genotypes/chemotypes: 3ADON (3-acetyldeoxynivalenol), 15ADON (15-acetyldeoxynivalenol) and NIV (nivalenol), named after these three major mycotoxin compounds. Correct identification of these genotypes is elementary for all studies relating to population surveys, fungal ecology and mycotoxicology. Trichothecene producers exhibit enormous strain-dependent chemical diversity, which may result in variation in levels of the genotype's determining toxin and in the production of low to high amounts of atypical compounds. New high-throughput DNA-sequencing technologies promise to boost the diagnostics of mycotoxin genotypes. However, this requires a reference database containing a satisfactory taxonomic sampling of sequences showing high correlation to actually produced chemotypes. We believe that one of the most pressing current challenges of such a database is the linking of molecular identification with chemical diversity of the strains, as well as other metadata. In this study, we use the Tri12 gene involved in mycotoxin biosynthesis for identification of Tri genotypes through sequence comparison. Tri12 sequences from a range of geographically diverse fungal strains comprising 22 Fusarium species were stored in the ToxGen database, which covers descriptive and up-to-date annotations such as indication on Tri genotype and chemotype of the strains, chemical diversity, information on trichothecene-inducing host, substrate or media, geographical locality, and most recent taxonomic affiliations. The present initiative bridges the gap between the demands of comprehensive studies on trichothecene producers and the existing nucleotide sequence databases, which lack toxicological and other auxiliary data. We invite researchers working in the fields of fungal taxonomy, epidemiology and mycotoxicology to join the freely available annotation effort.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Maciej Buśko
- Department of Chemistry, Poznań University of Life Sciences, Poznań, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury, Olsztyn, Poland
| | - Anne D. van Diepeningen
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | | | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury, Olsztyn, Poland
| | - Balázs Brankovics
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastian Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC, CONICET, Azul, Buenos Aires, Argentina
- Cátedra de Microbiología-Facultad de Agronomía de Azul-UNCPBA, Azul, Buenos Aires, Argentina
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, Olsztyn, Poland
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
22
|
Sinuco León DC, Pérez Cortés AC, Moreno Sarmiento NC. Evaluación de la actividad fungicida e identificación de compuestos orgánicos volátiles liberados por Trichoderma viride. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n1.65969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los metabolitos secundarios producidos por hongos son ampliamente diversos en estructura y función, lo que provee una fuente de compuestos con actividad biológica para aplicaciones en agricultura, farmacia y procesamiento de alimentos. Entre los metabolitos secundarios se encuentran compuestos orgánicos volátiles (COVs) a los cuales se atribuye un papel determinante en la comunicación entre microorganismos. En este trabajo empleamos una cámara de ensayos comunicada por el espacio de cabeza para evaluar la actividad debida únicamente a COVs. Los resultados indican que los COVs liberados por T. viride afectan el crecimiento de los hongos fitopatógenos evaluados. En el caso de Fusarium sp. se afectaron los halos de crecimiento y para Colletotrichum gloeosporioides se observaron cambios morfológicos en su color. Para identificar los COVs responsables de esta actividad, se usaron 3 técnicas de extracción: Headspace dinámico (HSD), headspace estático (HSE) y extracción líquido-líquido (ELL) y el análisis por cromatografía de gases acoplada a espectrometría de masas (GCMS). Mediante el muestreo del HSD y HSE se encontraron alcoholes y lactonas, mientras que en ELL los compuestos mayoritarios fueron alcoholes y varios ácidos orgánicos. Entre los compuestos determinados por las tres técnicas se encuentran alcohol bencílico, alcohol 2-feniletílico, 6-pentil-2H-piran-2-ona y gama-butirolactona. Esta última identificada por primera vez en T. viride. La comparación de las tres técnicas de extracción permitió establecer que HSD es el método de extracción de COVs que mejor simula la situación presentada en la cámara de evaluación de actividad biológica, permitiendo así identificar los COVs responsables de la actividad antifúngica detectada.
Collapse
|
23
|
Buśko M, Stuper K, Jeleń H, Góral T, Chmielewski J, Tyrakowska B, Perkowski J. Comparison of Volatiles Profile and Contents of Trichothecenes Group B, Ergosterol, and ATP of Bread Wheat, Durum Wheat, and Triticale Grain Naturally Contaminated by Mycobiota. FRONTIERS IN PLANT SCIENCE 2016; 7:1243. [PMID: 27597856 PMCID: PMC4992695 DOI: 10.3389/fpls.2016.01243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
In natural conditions cereals can be infested by pathogenic fungi. These can reduce the grain yield and quality by contamination with mycotoxins which are harmful for plants, animals, and humans. To date, performed studies of the compounds profile have allowed for the distinction of individual species of fungi. The aim of this study was to determine the profile of volatile compounds and trichothecenes of group B, ergosterol, adenosine triphosphate content carried out on a representative sample of 16 genotypes of related cereals: triticale, bread wheat, and durum wheat. Based on an analysis of volatile compounds by means of gas chromatography mass spectrometry and with the use of an electronic nose, volatile profiles for cereals were determined. Differentiation is presented at four levels through discriminant analysis, heatmaps, principal component analysis (PCA), and electronic nose maps. The statistical model was built by subsequent incorporation of chemical groups such as trichothecenes (GC/MS), fungal biomass indicators ergosterol (HPLC) and ATP (luminometric) and volatiles. The results of the discriminatory analyses showed that the volatile metabolites most markedly differentiated grain samples, among which were mainly: lilial, trichodiene, p-xylene. Electronic nose analysis made it possible to completely separate all the analyzed cereals based only on 100 ions from the 50-150 m/z range. The research carried out using chemometric analysis indicated significant differences in the volatile metabolites present in the grain of bread wheat, durum wheat and triticale. The end result of the performed analyses was a complete discrimination of the examined cereals based on the metabolites present in their grain.
Collapse
Affiliation(s)
- Maciej Buśko
- Department of Chemistry, Poznań University of Life SciencesPoznan, Poland
| | - Kinga Stuper
- Department of Chemistry, Poznań University of Life SciencesPoznan, Poland
| | - Henryk Jeleń
- Department of Food Science and Nutrition, Poznań University of Life SciencesPoznan, Poland
| | - Tomasz Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute NRIRadzików, Poland
| | - Jarosław Chmielewski
- Department of Instrumental Analysis, Poznań University of EconomicsPoznan, Poland
| | - Bożena Tyrakowska
- Department of Instrumental Analysis, Poznań University of EconomicsPoznan, Poland
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life SciencesPoznan, Poland
| |
Collapse
|
24
|
Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P. Microbial Small Talk: Volatiles in Fungal-Bacterial Interactions. Front Microbiol 2016; 6:1495. [PMID: 26779150 PMCID: PMC4700264 DOI: 10.3389/fmicb.2015.01495] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that volatile organic compounds (VOCs) play an important role in the interactions between fungi and bacteria, two major groups of soil inhabiting microorganisms. Yet, most of the research has been focused on effects of bacterial volatiles on suppression of plant pathogenic fungi whereas little is known about the responses of bacteria to fungal volatiles. In the current study we performed a metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains under different nutrient conditions and growth stages. The metabolomics analysis of the tested fungal and oomycetal strains revealed different volatile profiles dependent on the age of the strains and nutrient conditions. Furthermore, we screened the phenotypic responses of soil bacterial strains to volatiles emitted by fungi. Two bacteria, Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C, showed significant changes in their motility, in particular to volatiles emitted by Fusarium culmorum. This fungus produced a unique volatile blend, including several terpenes. Four of these terpenes were selected for further tests to investigate if they influence bacterial motility. Indeed, these terpenes induced or reduced swimming and swarming motility of S. plymuthica PRI-2C and swarming motility of C. pratensis Ter291, partly in a concentration-dependent manner. Overall the results of this work revealed that bacteria are able to sense and respond to fungal volatiles giving further evidence to the suggested importance of volatiles as signaling molecules in fungal-bacterial interactions.
Collapse
Affiliation(s)
- Ruth Schmidt
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Victor de Jager
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Saskia Gerards
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Soil Quality, Wageningen UniversityWageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| |
Collapse
|
25
|
Hertel M, Hartwig S, Schütte E, Gillissen B, Preissner R, Schmidt-Westhausen AM, Paris S, Kastner I, Preissner S. Identification of signature volatiles to discriminateCandida albicans, glabrata, kruseiandtropicalisusing gas chromatography and mass spectrometry. Mycoses 2015; 59:117-26. [DOI: 10.1111/myc.12442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Moritz Hertel
- Department of Oral Medicine; Dental Radiology and Oral Surgery; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Stefan Hartwig
- Department of Oral and Maxillofacial Surgery/Clinical Navigation; Charité Universitätsmedizin Berlin; Berlin Germany
| | - Eyke Schütte
- Department of Oral Medicine; Dental Radiology and Oral Surgery; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Bernhard Gillissen
- German Cancer Consortium (DKTK); Heidelberg Germany
- Hematology, Oncology and Tumor Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Robert Preissner
- Structural Bioinformatics Group; Institute for Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | | | - Sebastian Paris
- Department of Operative and Preventive Dentistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Isabell Kastner
- Department of Operative and Preventive Dentistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Saskia Preissner
- Department of Operative and Preventive Dentistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
26
|
Góral T, Stuper-Szablewska K, Buśko M, Boczkowska M, Walentyn-Góral D, Wiśniewska H, Perkowski J. Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars. THE PLANT PATHOLOGY JOURNAL 2015; 31:226-44. [PMID: 26361471 PMCID: PMC4564148 DOI: 10.5423/ppj.oa.03.2015.0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/19/2015] [Indexed: 06/05/2023]
Abstract
Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars - for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or trichothecene concentration in naturally infected grain matrices.
Collapse
Affiliation(s)
- Tomasz Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, 05-870 Błonie,
Poland
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań,
Poland
| | - Maciej Buśko
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań,
Poland
| | - Maja Boczkowska
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute – NRI, Radzików, 05-870 Błonie,
Poland
| | - Dorota Walentyn-Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, 05-870 Błonie,
Poland
| | - Halina Wiśniewska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań,
Poland
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań,
Poland
| |
Collapse
|
27
|
Spakowicz DJ, Strobel SA. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 2015; 99:4943-51. [PMID: 25957494 DOI: 10.1007/s00253-015-6641-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.
Collapse
Affiliation(s)
- Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, 260/266 Whitney Avenue, PO Box 208114, New Haven, CT, 06520-8114, USA
| | | |
Collapse
|