1
|
Ling M, Szarvas J, Kurmauskaitė V, Kiseliovas V, Žilionis R, Avot B, Munk P, Aarestrup FM. High throughput single cell metagenomic sequencing with semi-permeable capsules: unraveling microbial diversity at the single-cell level in sewage and fecal microbiomes. Front Microbiol 2025; 15:1516656. [PMID: 39968047 PMCID: PMC11834865 DOI: 10.3389/fmicb.2024.1516656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025] Open
Abstract
Single-cell sequencing may serve as a powerful complementary technique to shotgun metagenomics to study microbiomes. This emerging technology allows the separation of complex microbial communities into individual bacterial cells, enabling high-throughput sequencing of genetic material from thousands of singular bacterial cells in parallel. Here, we validated the use of microfluidics and semi-permeable capsules (SPCs) technology (Atrandi) to isolate individual bacterial cells from sewage and pig fecal samples. Our method involves extracting and amplifying single bacterial DNA within individual SPCs, followed by combinatorial split-and-pool single-amplified genome (SAG) barcoding and short-read sequencing. We tested two different sequencing approaches with different numbers of SPCs from the same sample for each sequencing run. Using a deep sequencing approach, we detected 1,796 and 1,220 SAGs, of which 576 and 599 were used for further analysis from one sewage and one fecal sample, respectively. In shallow sequencing data, we aimed for 10-times more cells and detected 12,731 and 17,909 SAGs, of which we used 2,456 and 1,599 for further analysis for sewage and fecal samples, respectively. Additionally, we identified the top 10 antimicrobial resistance genes (ARGs) in both sewage and feces samples and linked them to their individual host bacterial species.
Collapse
Affiliation(s)
- Meilee Ling
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Judit Szarvas
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | | | - Rapolas Žilionis
- Atrandi Biosciences, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Baptiste Avot
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
- Imperial College London, London, United Kingdom
| | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Nassereddine ZN, Opara SD, Coutinho OA, Qyteti F, Book R, Heinicke MP, Napieralski J, Tiquia-Arashiro SM. Critical perspectives on advancing antibiotic resistant gene (ARG) detection technologies in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177775. [PMID: 39616917 DOI: 10.1016/j.scitotenv.2024.177775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
The spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a serious risk to environmental and public health, making advanced detection and monitoring methods essential. This review provides a fresh perspective and a critical evaluation of recent advances in detecting and monitoring ARGs in aquatic environments. It highlights the latest innovations in molecular, bioinformatic, and environmental techniques. While traditional methods like culture-based assays and polymerase chain reaction (PCR) remain important, they are increasingly being supplemented by high-throughput sequencing technologies applied to metagenomics. These technologies offer comprehensive insights into the diversity and distribution of ARGs in aquatic environments. The integration of bioinformatic tools and databases has improved the accuracy and efficiency of ARG detection, enabling the analysis of complex datasets and tracking the evolution of ARGs in aquatic settings. Additionally, new environmental monitoring methods, including novel biosensors, geographic information systems (GIS) applications, and remote sensing technologies, have emerged as powerful tools for real-time ARG surveillance in water systems. This review critically examines the challenges of standardizing these methodologies and emphasizes the need for interdisciplinary approaches to enhance ARG monitoring across different aquatic ecosystems. By assessing the strengths and limitations of various methods, this review aims to guide future research and the development of more effective strategies for managing antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Zainab N Nassereddine
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Somie D Opara
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Oliver A Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Florent Qyteti
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Reeghan Book
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Matthew P Heinicke
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Jacob Napieralski
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA
| | - Sonia M Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48124, USA.
| |
Collapse
|
3
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
5
|
Guo J, Sun D, Li K, Dai Q, Geng S, Yang Y, Mo M, Zhu Z, Shao C, Wang W, Song J, Yang C, Zhang H. Metabolic Labeling and Digital Microfluidic Single-Cell Sequencing for Single Bacterial Genotypic-Phenotypic Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402177. [PMID: 39077951 DOI: 10.1002/smll.202402177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024]
Abstract
Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.
Collapse
Affiliation(s)
- Junnan Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Di Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Kunjie Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Shichen Geng
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yuanyuan Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Mengwu Mo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Chen Shao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huimin Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Cheng XC, Tong WZ, Rui W, Feng Z, Shuai H, Zhe W. Single-cell sequencing technology in skin wound healing. BURNS & TRAUMA 2024; 12:tkae043. [PMID: 39445224 PMCID: PMC11497848 DOI: 10.1093/burnst/tkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 10/25/2024]
Abstract
Skin wound healing is a complicated biological process that mainly occurs in response to injury, burns, or diabetic ulcers. It can also be triggered by other conditions such as dermatitis and melanoma-induced skin cancer. Delayed healing or non-healing after skin injury presents an important clinical issue; therefore, further explorations into the occurrence and development of wound healing at the cellular and molecular levels are necessary. Single-cell sequencing (SCS) is used to sequence and analyze the genetic messages of a single cell. Furthermore, SCS can accurately detect cell expression and gene sequences. The use of SCS technology has resulted in the emergence of new concepts pertaining to wound healing, making it an important tool for studying the relevant mechanisms and developing treatment strategies. This article discusses the application value of SCS technology, the effects of the latest research on skin wound healing, and the value of SCS technology in clinical applications. Using SCS to determine potential biomarkers for wound repair will serve to accelerate wound healing, reduce scar formation, optimize drug delivery, and facilitate personalized treatments.
Collapse
Affiliation(s)
- Xu Cheng Cheng
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zi Tong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Rui
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Zhao Feng
- Department of Stem Cells and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang 110013, China
| | - Hou Shuai
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zhe
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| |
Collapse
|
7
|
Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. FRONTIERS IN BIOINFORMATICS 2024; 4:1278228. [PMID: 38560517 PMCID: PMC10978663 DOI: 10.3389/fbinf.2024.1278228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Metagenomic sequencing has revolutionized our understanding of microbiology. While metagenomic tools and approaches have been extensively evaluated and benchmarked, far less attention has been given to the reference sequence database used in metagenomic classification. Issues with reference sequence databases are pervasive. Database contamination is the most recognized issue in the literature; however, it remains relatively unmitigated in most analyses. Other common issues with reference sequence databases include taxonomic errors, inappropriate inclusion and exclusion criteria, and sequence content errors. This review covers ten common issues with reference sequence databases and the potential downstream consequences of these issues. Mitigation measures are discussed for each issue, including bioinformatic tools and database curation strategies. Together, these strategies present a path towards more accurate, reproducible and translatable metagenomic sequencing.
Collapse
|
8
|
Hosokawa M, Nishikawa Y. Tools for microbial single-cell genomics for obtaining uncultured microbial genomes. Biophys Rev 2024; 16:69-77. [PMID: 38495448 PMCID: PMC10937852 DOI: 10.1007/s12551-023-01124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 03/19/2024] Open
Abstract
The advent of next-generation sequencing technologies has facilitated the acquisition of large amounts of DNA sequence data at a relatively low cost, leading to numerous breakthroughs in decoding microbial genomes. Among the various genome sequencing activities, metagenomic analysis, which entails the direct analysis of uncultured microbial DNA, has had a profound impact on microbiome research and has emerged as an indispensable technology in this field. Despite its valuable contributions, metagenomic analysis is a "bulk analysis" technique that analyzes samples containing a wide diversity of microbes, such as bacteria, yielding information that is averaged across the entire microbial population. In order to gain a deeper understanding of the heterogeneous nature of the microbial world, there is a growing need for single-cell analysis, similar to its use in human cell biology. With this paradigm shift in mind, comprehensive single-cell genomics technology has become a much-anticipated innovation that is now poised to revolutionize microbiome research. It has the potential to enable the discovery of differences at the strain level and to facilitate a more comprehensive examination of microbial ecosystems. In this review, we summarize the current state-of-the-art in microbial single-cell genomics, highlighting the potential impact of this technology on our understanding of the microbial world. The successful implementation of this technology is expected to have a profound impact in the field, leading to new discoveries and insights into the diversity and evolution of microbes.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480 Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| |
Collapse
|
9
|
Zhao L, Wang Q, Yang C, Ye Y, Shen Z. Application of Single-Cell Sequencing Technology in Research on Colorectal Cancer. J Pers Med 2024; 14:108. [PMID: 38248808 PMCID: PMC10820918 DOI: 10.3390/jpm14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent and second most lethal cancer globally, with gene mutations and tumor metastasis contributing to its poor prognosis. Single-cell sequencing technology enables high-throughput analysis of the genome, transcriptome, and epigenetic landscapes at the single-cell level. It offers significant insights into analyzing the tumor immune microenvironment, detecting tumor heterogeneity, exploring metastasis mechanisms, and monitoring circulating tumor cells (CTCs). This article provides a brief overview of the technical procedure and data processing involved in single-cell sequencing. It also reviews the current applications of single-cell sequencing in CRC research, aiming to enhance the understanding of intratumoral heterogeneity, CRC development, CTCs, and novel drug targets. By exploring the diverse molecular and clinicopathological characteristics of tumor heterogeneity using single-cell sequencing, valuable insights can be gained into early diagnosis, therapy, and prognosis of CRC. Thus, this review serves as a valuable resource for identifying prognostic markers, discovering new therapeutic targets, and advancing personalized therapy in CRC.
Collapse
Affiliation(s)
- Long Zhao
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China; (L.Z.); (C.Y.); (Y.Y.)
- Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Quan Wang
- Department of Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi’an 710032, China;
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China; (L.Z.); (C.Y.); (Y.Y.)
- Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China; (L.Z.); (C.Y.); (Y.Y.)
- Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China; (L.Z.); (C.Y.); (Y.Y.)
- Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
10
|
Madhu B, Miller BM, Levy M. Single-cell analysis and spatial resolution of the gut microbiome. Front Cell Infect Microbiol 2023; 13:1271092. [PMID: 37860069 PMCID: PMC10582963 DOI: 10.3389/fcimb.2023.1271092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Over the past decade it has become clear that various aspects of host physiology, metabolism, and immunity are intimately associated with the microbiome and its interactions with the host. Specifically, the gut microbiome composition and function has been shown to play a critical role in the etiology of different intestinal and extra-intestinal diseases. While attempts to identify a common pattern of microbial dysbiosis linked with these diseases have failed, multiple studies show that bacterial communities in the gut are spatially organized and that disrupted spatial organization of the gut microbiome is often a common underlying feature of disease pathogenesis. As a result, focus over the last few years has shifted from analyzing the diversity of gut microbiome by sequencing of the entire microbial community, towards understanding the gut microbiome in spatial context. Defining the composition and spatial heterogeneity of the microbiome is critical to facilitate further understanding of the gut microbiome ecology. Development in single cell genomics approach has advanced our understanding of microbial community structure, however, limitations in approaches exist. Single cell genomics is a very powerful and rapidly growing field, primarily used to identify the genetic composition of microbes. A major challenge is to isolate single cells for genomic analyses. This review summarizes the different approaches to study microbial genomes at single-cell resolution. We will review new techniques for microbial single cell sequencing and summarize how these techniques can be applied broadly to answer many questions related to the microbiome composition and spatial heterogeneity. These methods can be used to fill the gaps in our understanding of microbial communities.
Collapse
Affiliation(s)
| | | | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Zhang J, Su X, Wang Y, Wang X, Zhou S, Jia H, Jing X, Gong Y, Wang J, Xu J. Improved single-cell genome amplification by a high-efficiency phi29 DNA polymerase. Front Bioeng Biotechnol 2023; 11:1233856. [PMID: 37456715 PMCID: PMC10347390 DOI: 10.3389/fbioe.2023.1233856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Single-cell genomic whole genome amplification (WGA) is a crucial step in single-cell sequencing, yet its low amplification efficiency, incomplete and uneven genome amplification still hinder the throughput and efficiency of single-cell sequencing workflows. Here we introduce a process called Improved Single-cell Genome Amplification (iSGA), in which the whole single-cell sequencing cycle is completed in a high-efficient and high-coverage manner, through phi29 DNA polymerase engineering and process engineering. By establishing a disulfide bond of F137C-A377C, the amplification ability of the enzyme was improved to that of single-cell. By further protein engineering and process engineering, a supreme enzyme named HotJa Phi29 DNA Polymerase was developed and showed significantly better coverage (99.75%) at a higher temperature (40°C). High single-cell genome amplification ability and high coverage (93.59%) were also achieved for commercial probiotic samples. iSGA is more efficient and robust than the wild-type phi29 DNA polymerase, and it is 2.03-fold more efficient and 10.89-fold cheaper than the commercial Thermo Scientific EquiPhi29 DNA Polymerase. These advantages promise its broad applications in large-scale single-cell sequencing.
Collapse
Affiliation(s)
- Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yefei Wang
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xiaohang Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Zhou
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Jia
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jichao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Dwivedi-Yu JA, Oppler ZJ, Mitchell MW, Song YS, Brisson D. A fast machine-learning-guided primer design pipeline for selective whole genome amplification. PLoS Comput Biol 2023; 19:e1010137. [PMID: 37068103 PMCID: PMC10138271 DOI: 10.1371/journal.pcbi.1010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/27/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales-precisely the scales at which these processes occur-microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.
Collapse
Affiliation(s)
- Jane A. Dwivedi-Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Facebook AI Research, 1 Rathbone Square, London, England
| | - Zachary J. Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Lu N, Qiao Y, Lu Z, Tu J. Chimera: The spoiler in multiple displacement amplification. Comput Struct Biotechnol J 2023; 21:1688-1696. [PMID: 36879882 PMCID: PMC9984789 DOI: 10.1016/j.csbj.2023.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple displacement amplification (MDA) based on isothermal random priming and high fidelity phi29 DNA polymerase-mediated processive extension has revolutionized the field of whole genome amplification by enabling the amplification of minute amounts of DNA, such as from a single cell, generating vast amounts of DNA with high genome coverage. Despite its advantages, MDA has its own challenges, one of the grandest being the formation of chimeric sequences (chimeras), which presents in all MDA products and seriously disturbs the downstream analysis. In this review, we provide a comprehensive overview of current research on MDA chimeras. We first reviewed the mechanisms of chimera formation and chimera detection methods. We then systematically summarized the characteristics of chimeras, including overlap, chimeric distance, chimeric density, and chimeric rate, as found in independently published sequencing data. Finally, we reviewed the methods used to process chimeric sequences and their impacts on the improvement of data utilization efficiency. The information presented in this review will be useful for those interested in understanding the challenges with MDA and in improving its performance.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Shin J, Kim G, Park J, Lee M, Park Y. Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization. Sci Rep 2023; 13:46. [PMID: 36593327 PMCID: PMC9806822 DOI: 10.1038/s41598-022-27158-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Three-dimensional (3D) quantitative phase imaging (QPI) enables long-term label-free tomographic imaging and quantitative analysis of live individual bacteria. However, the Brownian motion or motility of bacteria in a liquid medium produces motion artifacts during 3D measurements and hinders precise cell imaging and analysis. Meanwhile, existing cell immobilization methods produce noisy backgrounds and even alter cellular physiology. Here, we introduce a protocol that utilizes hydrogels for high-quality 3D QPI of live bacteria maintaining bacterial physiology. We demonstrate long-term high-resolution quantitative imaging and analysis of individual bacteria, including measuring the biophysical parameters of bacteria and responses to antibiotic treatments.
Collapse
Affiliation(s)
- Jeongwon Shin
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Geon Kim
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Jinho Park
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Moosung Lee
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - YongKeun Park
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,Tomocube Inc., Daejeon, 34051 South Korea
| |
Collapse
|
15
|
Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun Integr Biol 2022; 15:209-225. [PMID: 35967908 PMCID: PMC9367660 DOI: 10.1080/19420889.2022.2082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are present in the universe and they play role in beneficial and harmful to human life, society, and environments. Plant microbiome is a broad term in which microbes are present in the rhizo, phyllo, or endophytic region and play several beneficial and harmful roles with the plant. To know of these microorganisms, it is essential to be able to isolate purification and identify them quickly under laboratory conditions. So, to improve the microbial study, several tools and techniques such as microscopy, rRNA, or rDNA sequencing, fingerprinting, probing, clone libraries, chips, and metagenomics have been developed. The major benefits of these techniques are the identification of microbial community through direct analysis as well as it can apply in situ. Without tools and techniques, we cannot understand the roles of microbiomes. This review explains the tools and their roles in the understanding of microbiomes and their ecological diversity in environments.
Collapse
Affiliation(s)
- Enespa
- Department of Plant Pathology, School of Agriculture, SMPDC, University of Lucknow, Lucknow, India
| | - Prem Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, India
| |
Collapse
|
16
|
Damasceno MRA, Lemes CGDC, Braga LSSB, Tizioto PC, Montenegro H, Paduan M, Pereira JG, Cordeiro IF, Rocha LCM, da Silva SA, Sanchez AB, Lima WG, Yazbeck GM, Moreira LM, Garcia CCM. Hatchery tanks induce intense reduction in microbiota diversity associated with gills and guts of two endemic species of the São Francisco River. Front Microbiol 2022; 13:966436. [DOI: 10.3389/fmicb.2022.966436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022] Open
Abstract
The São Francisco River (SFR), one of the main Brazilian rivers, has suffered cumulative anthropogenic impacts, leading to ever-decreasing fish stocks and environmental, economic, and social consequences. Rhinelepis aspera and Prochilodus argenteus are medium-sized, bottom-feeding, and rheophilic fishes from the SFR that suffer from these actions. Both species are targeted for spawning and restocking operations due to their relevance in artisanal fisheries, commercial activities, and conservation concerns. Using high-throughput sequencing of the 16S rRNA gene, we characterized the microbiome present in the gills and guts of these species recruited from an impacted SFR region and hatchery tanks (HT). Our results showed that bacterial diversity from the gill and gut at the genera level in both fish species from HT is 87% smaller than in species from the SFR. Furthermore, only 15 and 29% of bacterial genera are shared between gills and guts in R. aspera and P. argenteus from SFR, respectively, showing an intimate relationship between functional differences in organs. In both species from SFR, pathogenic, xenobiont-degrading, and cyanotoxin-producer bacterial genera were found, indicating the critical pollution scenario in which the river finds itself. This study allowed us to conclude that the conditions imposed on fish in the HT act as important modulators of microbial diversity in the analyzed tissues. It also raises questions regarding the effects of these conditions on hatchery spawn fish and their suitability for restocking activities, aggravated by the narrow genetic diversity associated with such freshwater systems.
Collapse
|
17
|
Liu Y, Liang S, Wang B, Zhao J, Zi X, Yan S, Dou T, Jia J, Wang K, Ge C. Advances in Single-Cell Sequencing Technology and Its Application in Poultry Science. Genes (Basel) 2022; 13:genes13122211. [PMID: 36553479 PMCID: PMC9778011 DOI: 10.3390/genes13122211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Single-cell sequencing (SCS) uses a single cell as the research material and involves three dimensions: genes, phenotypes and cell biological mechanisms. This type of research can locate target cells, analyze the dynamic changes in the target cells and the relationships between the cells, and pinpoint the molecular mechanism of cell formation. Currently, a common problem faced by animal husbandry scientists is how to apply existing science and technology to promote the production of high-quality livestock and poultry products and to breed livestock for disease resistance; this is also a bottleneck for the sustainable development of animal husbandry. In recent years, although SCS technology has been successfully applied in the fields of medicine and bioscience, its application in poultry science has been rarely reported. With the sustainable development of science and technology and the poultry industry, SCS technology has great potential in the application of poultry science (or animal husbandry). Therefore, it is necessary to review the innovation of SCS technology and its application in poultry science. This article summarizes the current main technical methods of SCS and its application in poultry, which can provide potential references for its future applications in precision breeding, disease prevention and control, immunity, and cell identification.
Collapse
Affiliation(s)
- Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuangmin Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jinbo Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shixiong Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junjing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|
18
|
Nishikawa Y, Kogawa M, Hosokawa M, Wagatsuma R, Mineta K, Takahashi K, Ide K, Yura K, Behzad H, Gojobori T, Takeyama H. Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater. ISME COMMUNICATIONS 2022; 2:92. [PMID: 37938694 PMCID: PMC9723564 DOI: 10.1038/s43705-022-00179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 04/26/2023]
Abstract
Single-cell genomics is applied to environmental samples as a method to solve the problems of current metagenomics. However, in the fluorescence-activated cell sorting-based cell isolation and subsequent whole genome amplification, the sorting efficiency and the sequence quality are greatly affected by the type of target environment, limiting its adaptability. Here, we developed an improved single-cell genomics platform, named SAG-gel, which utilizes gel beads for single-cell isolation, lysis, and whole genome amplification. To validate the versatility of SAG-gel, single-cell genome sequencing was performed with model bacteria and microbial samples collected from eight environmental sites, including soil and seawater. Gel beads enabled multiple lysis treatments. The genome coverage with model bacteria was improved by 9.1-25%. A total of 734 single amplified genomes were collected from the diverse environmental samples, and almost full-length 16S rRNA genes were recovered from 57.8% of them. We also revealed two marine Rhodobacter strains harboring nearly identical 16S rRNA genes but having different genome contents. In addition, searching for viral sequences elucidated the virus-host linkage over the sampling sites, revealing the geographic distribution and diverse host range of viruses.
Collapse
Affiliation(s)
- Yohei Nishikawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Ryota Wagatsuma
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Katsuhiko Mineta
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kai Takahashi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Keigo Ide
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kei Yura
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hayedeh Behzad
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
19
|
Meng K, Chung CZ, Söll D, Krahn N. Unconventional genetic code systems in archaea. Front Microbiol 2022; 13:1007832. [PMID: 36160229 PMCID: PMC9499178 DOI: 10.3389/fmicb.2022.1007832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Archaea constitute the third domain of life, distinct from bacteria and eukaryotes given their ability to tolerate extreme environments. To survive these harsh conditions, certain archaeal lineages possess unique genetic code systems to encode either selenocysteine or pyrrolysine, rare amino acids not found in all organisms. Furthermore, archaea utilize alternate tRNA-dependent pathways to biosynthesize and incorporate members of the 20 canonical amino acids. Recent discoveries of new archaeal species have revealed the co-occurrence of these genetic code systems within a single lineage. This review discusses the diverse genetic code systems of archaea, while detailing the associated biochemical elements and molecular mechanisms.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
20
|
Bawn M, Hernandez J, Trampari E, Thilliez G, Quince C, Webber MA, Kingsley RA, Hall N, Macaulay IC. Single-cell genomics reveals population structures from in vitro evolutionary studies of Salmonella. Microb Genom 2022; 8:mgen000871. [PMID: 36125951 PMCID: PMC9676037 DOI: 10.1099/mgen.0.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Single-cell DNA sequencing has the potential to reveal detailed hierarchical structures in evolving populations of cells. Single cell approaches are increasingly used to study clonal evolution in human ageing and cancer but have not yet been deployed to study evolving clonal microbial populations. Here, we present an approach for single bacterial genomic analysis for in vitro evolution experiments using FACS isolation of individual bacteria followed by whole-genome amplification and sequencing. We apply this to the experimental evolution of a hypermutator strain of Salmonella in response to antibiotic stress (ciprofloxacin). By analysing sequence polymorphisms in individual cells from populations we identified the presence and prevalence of sub-populations which have acquired polymorphisms in genes previously demonstrated to be associated with ciprofloxacin susceptibility. We were also able to identify that the population exposed to antibiotic stress was able to develop resistance whilst maintaining diversity. This population structure could not be resolved from bulk sequence data, and our results show how high-throughput single-cell sequencing can enhance experimental studies of bacterial evolution.
Collapse
Affiliation(s)
- Matt Bawn
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | | | - Gaetan Thilliez
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Christopher Quince
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mark A. Webber
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Robert A. Kingsley
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
21
|
Liu Y, Chen L, Yu J, Ye L, Hu H, Wang J, Wu B. Advances in Single-Cell Toxicogenomics in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11132-11145. [PMID: 35881918 DOI: 10.1021/acs.est.2c01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The toxicity evaluation system of environmental pollutants has undergone numerous changes due to the application of new technologies. Single-cell toxicogenomics is rapidly changing our view on environmental toxicology by increasing the resolution of our analysis to the level of a single cell. Applications of this technology in environmental toxicology have begun to emerge and are rapidly expanding the portfolio of existing technologies and applications. Here, we first summarized different methods involved in single-cell isolation and amplification in single-cell sequencing process, compared the advantages and disadvantages of different methods, and analyzed their development trends. Then, we reviewed the main advances of single-cell toxicogenomics in environmental toxicology, emphatically analyzed the application prospects of this technology in identifying the target cells of pollutants in early embryos, clarifying the heterogeneous response of cell subtypes to pollutants, and finding pathogenic bacteria in unknown microbes, and highlighted the unique characteristics of this approach with high resolution, high throughput, and high specificity by examples. We also offered a prediction of the further application of this technology and the revolution it brings in environmental toxicology. Overall, these advances will provide practical solutions for controlling or mitigating exogenous toxicological effects that threaten human and ecosystem health, contribute to improving our understanding of the physiological processes affected by pollutants, and lead to the emergence of new methods of pollution control.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
22
|
Salwan R, Sharma V. Genomics of Prokaryotic Extremophiles to Unfold the Mystery of Survival in Extreme Environments. Microbiol Res 2022; 264:127156. [DOI: 10.1016/j.micres.2022.127156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
23
|
Whole-Genome Amplification—Surveying Yield, Reproducibility, and Heterozygous Balance, Reported by STR-Targeting MIPs. Int J Mol Sci 2022; 23:ijms23116161. [PMID: 35682839 PMCID: PMC9181316 DOI: 10.3390/ijms23116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Whole-genome amplification is a crucial first step in nearly all single-cell genomic analyses, with the following steps focused on its products. Bias and variance caused by the whole-genome amplification process add numerous challenges to the world of single-cell genomics. Short tandem repeats are sensitive genomic markers used widely in population genetics, forensics, and retrospective lineage tracing. A previous evaluation of common whole-genome amplification targeting ~1000 non-autosomal short tandem repeat loci is extended here to ~12,000 loci across the entire genome via duplex molecular inversion probes. Other than its improved scale and reduced noise, this system detects an abundance of heterogeneous short tandem repeat loci, allowing the allelic balance to be reported. We show here that while the best overall yield is obtained using RepliG-SC, the maximum uniformity between alleles and reproducibility across cells are maximized by Ampli1, rendering it the best candidate for the comparative heterozygous analysis of single-cell genomes.
Collapse
|
24
|
Cruz-Flores R, López-Carvallo JA, Cáceres-Martínez J, Dhar AK. Microbiome analysis from formalin-fixed paraffin-embedded tissues: Current challenges and future perspectives. METHODS IN MICROBIOLOGY 2022; 196:106476. [PMID: 35490989 DOI: 10.1016/j.mimet.2022.106476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues stored in thousands of human and animal pathology laboratories around the globe represent mines of stored genetic information. In recent years, the use of FFPE tissues as a viable source of DNA for diverse genetic studies has attracted attention for interrogating microbiomes from this sample type. These studies have proven that 16S rRNA amplicon sequencing-based microbiome studies are possible from FFPE samples but present some particular challenges. In this review, we summarize all aspects of microbiome studies from FFPE tissues including the challenges associated with working highly degraded DNA, best practices for reducing environmental contamination, and we propose solutions to address these issues. Finally, we discuss how the combination of FFPE microbiome studies and Laser Capture Microdissection and/or Laser Microdissection could enable to determine the spatial heterogeneity underlying complex bacterial communities.
Collapse
Affiliation(s)
- Roberto Cruz-Flores
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja California, Mexico.
| | - Jesús Antonio López-Carvallo
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja California, Mexico
| | - Jorge Cáceres-Martínez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja California, Mexico
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
25
|
Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring (DARTE-QM): a method for detection of antimicrobial resistance in environmental samples. Commun Biol 2022; 5:216. [PMID: 35301418 PMCID: PMC8931014 DOI: 10.1038/s42003-022-03155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022] Open
Abstract
Effective monitoring of antibiotic resistance genes and their dissemination in environmental ecosystems has been hindered by the cost and efficiency of methods available for the task. We developed the Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring (DARTE-QM), a method implementing TruSeq high-throughput sequencing to simultaneously sequence thousands of antibiotic resistant gene targets representing a full-spectrum of antibiotic resistance classes common to environmental systems. In this study, we demonstrated DARTE-QM by screening 662 antibiotic resistance genes within complex environmental samples originated from manure, soil, and livestock feces, in addition to a mock-community reference to assess sensitivity and specificity. DARTE-QM offers a new approach to studying antibiotic resistance in environmental microbiomes, showing advantages in efficiency and the ability to scale for many samples. This method provides a means of data acquisition that will alleviate some of the obstacles that many researchers in this area currently face. Smith et al. present DARTE-QM, a highthroughput sequencing method for screening environmental DNA samples for antibiotic resistance genes on a broad scale. This method is demonstrated as effective on soil, manure and livestock fecal samples, as well as a synthetic mock-community reference.
Collapse
|
26
|
Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, Chen H, Li S. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm (Beijing) 2022; 3:e116. [PMID: 35281794 PMCID: PMC8906466 DOI: 10.1002/mco2.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Whole genome amplification (WGA) is a technology for non-selective amplification of the whole genome sequence, first appearing in 1992. Its primary purpose is to amplify and reflect the whole genome of trace tissues and single cells without sequence bias and to provide sufficient DNA template for subsequent multigene and multilocus analysis, along with comprehensive genome research. WGA provides a method to obtain a large amount of genetic information from a small amount of DNA and provides a valuable tool for preserving limited samples in molecular biology. WGA technology is especially suitable for forensic identification and genetic disease research, along with new technologies such as next-generation sequencing (NGS). In addition, WGA is also widely used in single-cell sequencing. Due to the small amount of DNA in a single cell, it is often unable to meet the amount of samples needed for sequencing, so WGA is generally used to achieve the amplification of trace samples. This paper reviews WGA methods based on different principles, summarizes both amplification principle and amplification quality, and discusses the application prospects and challenges of WGA technology in molecular diagnosis and medicine.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yapeng Liu
- School of Early‐Childhood Education, Nanjing Xiaozhuang UniversityNanjingChina
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Xiangming Zheng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of TechnologyZhuzhouChina
| |
Collapse
|
27
|
Link A, McGrath JS, Zaimagaoglu M, Franke T. Active single cell encapsulation using SAW overcoming the limitations of Poisson distribution. LAB ON A CHIP 2021; 22:193-200. [PMID: 34889927 DOI: 10.1039/d1lc00880c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate the use of an acoustic device to actively encapsulate single red blood cells into individual droplets in a T-junction. We compare the active encapsulation with the passive encapsulation depending on the number of loaded cells as well as the created droplet volumes. This method overcomes the Poisson limitation statistical loading of cells for the passive encapsulation. In our experiments we reach a single cell encapsulation efficiency of 97.9 ± 2.1% at droplet formation rates exceeding 15 Hz.
Collapse
Affiliation(s)
- Andreas Link
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK.
| | - John S McGrath
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK.
| | - Mustafa Zaimagaoglu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK.
| | - Thomas Franke
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK.
| |
Collapse
|
28
|
Kotliarevski L, Mani KA, Feldbaum RA, Yaakov N, Belausov E, Zelinger E, Ment D, Mechrez G. Single-Conidium Encapsulation in Oil-in-Water Pickering Emulsions at High Encapsulation Yield. Front Chem 2021; 9:726874. [PMID: 34912776 PMCID: PMC8666500 DOI: 10.3389/fchem.2021.726874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study presents an individual encapsulation of fungal conidia in an oil-in-water Pickering emulsion at a single-conidium encapsulation yield of 44%. The single-conidium encapsulation yield was characterized by analysis of confocal microscopy micrographs. Mineral oil-in-water emulsions stabilized by amine-functionalized titania dioxide (TiO2-NH2 or titania-NH2) particles were prepared. The structure and the stability of the emulsions were investigated at different compositions by confocal microscopy and a LUMiSizer® respectively. The most stable emulsions with a droplet size suitable for single-conidium encapsulation were further studied for their individual encapsulation capabilities. The yields of individual encapsulation in the emulsions; i.e., the number of conidia that were individually encapsulated out of the total number of conidia, were characterized by confocal microscopy assay. This rapid, easy to use approach to single-conidium encapsulation, which generates a significantly high yield with eco-friendly titania-based emulsions, only requires commonly used emulsification and agitation methods.
Collapse
Affiliation(s)
- Liliya Kotliarevski
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|
29
|
Youk J, Kwon HW, Kim R, Ju YS. Dissecting single-cell genomes through the clonal organoid technique. Exp Mol Med 2021; 53:1503-1511. [PMID: 34663940 PMCID: PMC8569207 DOI: 10.1038/s12276-021-00680-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
The revolution in genome sequencing technologies has enabled the comprehensive detection of genomic variations in human cells, including inherited germline polymorphisms, de novo mutations, and postzygotic mutations. When these technologies are combined with techniques for isolating and expanding single-cell DNA, the landscape of somatic mosaicism in an individual body can be systematically revealed at a single-cell resolution. Here, we summarize three strategies (whole-genome amplification, microdissection of clonal patches in the tissue, and in vitro clonal expansion of single cells) that are currently applied for single-cell mutational analyses. Among these approaches, in vitro clonal expansion, particularly via adult stem cell-derived organoid culture technologies, yields the most sensitive and precise catalog of somatic mutations in single cells. Moreover, because it produces living mutant cells, downstream validation experiments and multiomics profiling are possible. Through the synergistic combination of organoid culture and genome sequencing, researchers can track genome changes at a single-cell resolution, which will lead to new discoveries that were previously impossible.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea.
| |
Collapse
|
30
|
Cui L, Li HZ, Yang K, Zhu LJ, Xu F, Zhu YG. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Contribution of single-cell omics to microbial ecology. Trends Ecol Evol 2021; 37:67-78. [PMID: 34602304 DOI: 10.1016/j.tree.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Micro-organisms play key roles in various ecosystems, but many of their functions and interactions remain undefined. To investigate the ecological relevance of microbial communities, new molecular tools are being developed. Among them, single-cell omics assessing genetic diversity at the population and community levels and linking each individual cell to its functions is gaining interest in microbial ecology. By giving access to a wider range of ecological scales (from individual to community) than culture-based approaches and meta-omics, single-cell omics can contribute not only to micro-organisms' genomic and functional identification but also to the testing of concepts in ecology. Here, we discuss the contribution of single-cell omics to possible breakthroughs in concepts and knowledge on microbial ecosystems and ecoevolutionary processes.
Collapse
|
32
|
Abstract
With the advent of metagenomics, a quest began to identify the dynamics of the microbial communities in different ecological niches. Altogether, this has resulted in identification of microorganisms but is limited to only a small number of phylogenetic groups that can be easily cultured. The majority of metagenomic sequencing data remains unassigned to any known microbial group and is regarded as the "microbial dark matter." Our group is now working on integrating culturomics (isolation of pure cultures) and metagenomics from extreme environments, particularly from hot water springs and chemically contaminated soils. Our target is to culture the rare extremophiles with biotechnological significance by designing culture media based on inputs from metagenomics. While culturomics integrated with metagenomics has been extensively employed for updating the microbial catalog from the human gut, there is a need to extend this approach to extreme environmental settings to explore the microbial dark matter.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhigrid.8195.5, New Delhi, India
| |
Collapse
|
33
|
Abstract
Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.
Collapse
Affiliation(s)
- Gilad D Evrony
- Center for Human Genetics and Genomics, Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Anjali Gupta Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
34
|
Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing. Sci Rep 2021; 11:17171. [PMID: 34433869 PMCID: PMC8387353 DOI: 10.1038/s41598-021-96045-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
Advances in whole genome amplification (WGA) techniques enable understanding of the genomic sequence at a single cell level. Demand for single cell dedicated WGA kits (scWGA) has led to the development of several commercial kit. To this point, no robust comparison of all available kits was performed. Here, we benchmark an economical assay, comparing all commercially available scWGA kits. Our comparison is based on targeted sequencing of thousands of genomic loci, including highly mutable regions, from a large cohort of human single cells. Using this approach we have demonstrated the superiority of Ampli1 in genome coverage and of RepliG in reduced error rate. In summary, we show that no single kit is optimal across all categories, highlighting the need for a dedicated kit selection in accordance with experimental requirements.
Collapse
|
35
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
36
|
Wiegand S, Dam HT, Riba J, Vollmers J, Kaster AK. Printing Microbial Dark Matter: Using Single Cell Dispensing and Genomics to Investigate the Patescibacteria/Candidate Phyla Radiation. Front Microbiol 2021; 12:635506. [PMID: 34220732 PMCID: PMC8241940 DOI: 10.3389/fmicb.2021.635506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
As of today, the majority of environmental microorganisms remain uncultured. They are therefore referred to as "microbial dark matter." In the recent past, cultivation-independent methods like single-cell genomics (SCG) enabled the discovery of many previously unknown microorganisms, among them the Patescibacteria/Candidate Phyla Radiation (CPR). This approach was shown to be complementary to metagenomics, however, the development of additional and refined sorting techniques beyond the most commonly used fluorescence-activated cell sorting (FACS) is still desirable to enable additional downstream applications. Adding image information on the number and morphology of sorted cells would be beneficial, as would be minimizing cell stress caused by sorting conditions such as staining or pressure. Recently, a novel cell sorting technique has been developed, a microfluidic single-cell dispenser, which assesses the number and morphology of the cell in each droplet by automated light microscopic processing. Here, we report for the first time the successful application of the newly developed single-cell dispensing system for label-free isolation of individual bacteria from a complex sample retrieved from a wastewater treatment plant, demonstrating the potential of this technique for single cell genomics and other alternative downstream applications. Genome recovery success rated above 80% with this technique-out of 880 sorted cells 717 were successfully amplified. For 50.1% of these, analysis of the 16S rRNA gene was feasible and led to the sequencing of 50 sorted cells identified as Patescibacteria/CPR members. Subsequentially, 27 single amplified genomes (SAGs) of 15 novel and distinct Patescibacteria/CPR members, representing yet unseen species, genera and families could be captured and reconstructed. This phylogenetic distinctness of the recovered SAGs from available metagenome-assembled genomes (MAGs) is accompanied by the finding that these lineages-in whole or in part-have not been accessed by genome-resolved metagenomics of the same sample, thereby emphasizing the importance and opportunities of SCGs.
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hang T. Dam
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julian Riba
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
37
|
Inada E, Saitoh I, Kubota N, Iwase Y, Kiyokawa Y, Noguchi H, Yamasaki Y, Sato M. RNA analysis based on a small number of manually isolated fixed cells (RNA-snMIFxC) to profile stem cells from human deciduous tooth-derived dental pulp cells. Biol Proced Online 2021; 23:12. [PMID: 34116635 PMCID: PMC8194139 DOI: 10.1186/s12575-021-00149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Background Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human deciduous tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Results Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. Conclusion These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale.
Collapse
Affiliation(s)
- Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, 501-0296, Japan.,Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan.,Department of Dentistry for the Disabled, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Yuki Kiyokawa
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Youichi Yamasaki
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, 2-10-1, Tokyo, 157-8535, Japan. .,Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, 890-8544, Japan.
| |
Collapse
|
38
|
One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). mSystems 2021; 6:e0018121. [PMID: 34042466 PMCID: PMC8269212 DOI: 10.1128/msystems.00181-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soil harbors arguably the most metabolically and genetically heterogeneous microbiomes on Earth, yet establishing the link between metabolic functions and genome at the precisely one-cell level has been difficult. Here, for mock microbial communities and then for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts, and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy water) and physiological (carotenoid-containing) functions. We showed that (i) metabolically active cells from numerically rare soil taxa, such as Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be readily identified and sorted based on D2O uptake, and their one-cell genome coverage can reach ∼93% to allow high-quality genome-wide metabolic reconstruction; (ii) similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were generated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells can be either metabolically active or inert, suggesting culture-based approaches can miss many such cells. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems. IMPORTANCE Soil is home to an enormous and complex microbiome that features arguably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their in situ metabolic activities drive many natural processes of pivotal ecological significance or underlie industrial production of numerous valuable bioactivities. However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cultured species, has remained a major challenge. Here, for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) method, which identifies, sorts, and sequences at the resolution of precisely one microbial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems.
Collapse
|
39
|
Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules 2021; 26:molecules26102977. [PMID: 34067778 PMCID: PMC8156983 DOI: 10.3390/molecules26102977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms are highly regarded as a prominent source of natural products that have significant importance in many fields such as medicine, farming, environmental safety, and material production. Due to this, only tiny amounts of microorganisms can be cultivated under standard laboratory conditions, and the bulk of microorganisms in the ecosystems are still unidentified, which restricts our knowledge of uncultured microbial metabolism. However, they could hypothetically provide a large collection of innovative natural products. Culture-independent metagenomics study has the ability to address core questions in the potential of NP production by cloning and analysis of microbial DNA derived directly from environmental samples. Latest advancements in next generation sequencing and genetic engineering tools for genome assembly have broadened the scope of metagenomics to offer perspectives into the life of uncultured microorganisms. In this review, we cover the methods of metagenomic library construction, and heterologous expression for the exploration and development of the environmental metabolome and focus on the function-based metagenomics, sequencing-based metagenomics, and single-cell metagenomics of uncultured microorganisms.
Collapse
|
40
|
Hu B, Xu P, Ma L, Chen D, Wang J, Dai X, Huang L, Du W. One cell at a time: droplet-based microbial cultivation, screening and sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:169-188. [PMID: 37073344 PMCID: PMC10077293 DOI: 10.1007/s42995-020-00082-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Microbes thrive and, in turn, influence the earth's environment, but most are poorly understood because of our limited capacity to reveal their natural diversity and function. Developing novel tools and effective strategies are critical to ease this dilemma and will help to understand their roles in ecology and human health. Recently, droplet microfluidics is emerging as a promising technology for microbial studies with value in microbial cultivating, screening, and sequencing. This review aims to provide an overview of droplet microfluidics techniques for microbial research. First, some critical points or steps in the microfluidic system are introduced, such as droplet stabilization, manipulation, and detection. We then highlight the recent progress of droplet-based methods for microbiological applications, from high-throughput single-cell cultivation, screening to the targeted or whole-genome sequencing of single cells.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA
| | - Liang Ma
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
41
|
Abstract
Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.
Collapse
|
42
|
Pan Y, Ren Q, Chen P, Wu J, Wu Z, Zhang G. Insight Into Microbial Community Aerosols Associated With Electronic Waste Handling Facilities by Culture-Dependent and Culture-Independent Methods. Front Public Health 2021; 9:657784. [PMID: 33889561 PMCID: PMC8055949 DOI: 10.3389/fpubh.2021.657784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Airborne microorganisms in the waste associated environments are more active and complex compared to other places. However, the diversity and structure of airborne bacteria in waste-associated environments are still not clearly understood. The purpose of this study was to assess airborne bacterial community in electronic waste dismantling site and a waste transfer station based on culture-dependent and culture-independent methods. A total of 229 isolates were obtained from four airborne sites collected from residential area, electronic industrial park, and office area in or near an electronic waste dismantling site and a waste transfer station in Southern China in the morning, afternoon, and evening. Most of the isolates were isolated from air for the first time and 14 potentially novel species were identified by Sanger sequencing. Bacterial communities in waste-associated bioaerosols were predominated by Proteobacteria and Bacteroidetes. Abundant genera (>1%) included Paracaedibacteraceae (uncultured EF667926), Ralstonia, Chroococcidiopsis, Chitinophagaceae (uncultured FN428761), Sphingobium, and Heliimonas. One-third of the species in these genera were uncultured approximately. Differences community structure existed in airborne bacterial diversity among different sampling sites. These results showed that waste-associated environments have unique bacterial diversity. Further studies on such environments could provide new insights into bacterial community.
Collapse
Affiliation(s)
- Yimin Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaoqiao Ren
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiguo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhendong Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
43
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
44
|
Busigny V, Mathon FP, Jézéquel D, Bidaud CC, Viollier E, Bardoux G, Bourrand JJ, Benzerara K, Duprat E, Menguy N, Monteil CL, Lefevre CT. Mass collection of magnetotactic bacteria from the permanently stratified ferruginous Lake Pavin, France. Environ Microbiol 2021; 24:721-736. [PMID: 33687779 DOI: 10.1111/1462-2920.15458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
Obtaining high biomass yields of specific microorganisms for culture-independent approaches is a challenge faced by scientists studying organism's recalcitrant to laboratory conditions and culture. This difficulty is highly decreased when studying magnetotactic bacteria (MTB) since their unique behaviour allows their enrichment and purification from other microorganisms present in aquatic environments. Here, we use Lake Pavin, a permanently stratified lake in the French Massif Central, as a natural laboratory to optimize collection and concentration of MTB that thrive in the water column and sediments. A method is presented to separate MTB from highly abundant abiotic magnetic particles in the sediment of this crater lake. For the water column, different sampling approaches are compared such as in situ collection using a Niskin bottle and online pumping. By monitoring several physicochemical parameters of the water column, we identify the ecological niche where MTB live. Then, by focusing our sampling at the peak of MTB abundance, we show that the online pumping system is the most efficient for fast recovering of large volumes of water at a high spatial resolution, which is necessary considering the sharp physicochemical gradients observed in the water column. Taking advantage of aerotactic and magnetic MTB properties, we present an efficient method for MTB concentration from large volumes of water. Our methodology represents a first step for further multidisciplinary investigations of the diversity, metagenomic and ecology of MTB populations in Lake Pavin and elsewhere, as well as chemical and isotopic analyses of their magnetosomes.
Collapse
Affiliation(s)
- Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - François P Mathon
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, 74200, France
| | - Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Eric Viollier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Gérard Bardoux
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Jean-Jacques Bourrand
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
45
|
Salem NFA, Abouelkheir SS, Yousif AM, Meneses-Brassea BP, Sabry SA, Ghozlan HA, El-Gendy AA. Large scale production of superparamagnetic iron oxide nanoparticles by the haloarchaeon Halobiforma sp. N1 and their potential in localized hyperthermia cancer therapy. NANOTECHNOLOGY 2021; 32:09LT01. [PMID: 33157540 DOI: 10.1088/1361-6528/abc851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles are among metal nanoparticles that attract huge attention in many biotechnological fields especially in the biomedical area. Their extensive capabilities and easy separation methodology drive them to be an interesting point to many researchers. Biosynthesis is of a major importance among different methods of nanoparticles production. Microbial synthesis of these nanoparticles by bacteria and yeasts have been reported on a wide scale. However, biosynthesis using halophilic archaea is still in an early stage. This study reveals the first contribution of the haloarchaeon Halobiforma sp. N1 to the nanobiotechnology field. It reports a rapid and economical one-step method of fabricating functionalized superparamagnetic iron oxide nanoparticles and their feasibility for hyperthermia treatment for cancer therapy. Herein, we have focused on optimizing the quantity of these fascinating nanoparticles, obtaining a very high yield of 15 g l-1 with high dispersion in water solution. Their unique characteristics enable them to participate in medical applications. They are nearly spherical in shape with a high degree of homogenity and uniformity with average diameter of 25 ± 9 nm. Also, the magnetic properties and elemental structure of the formed nanoparticles tend to be superparamagnetic like behavior with saturation magnetization of 62 emu g-1 and purity of 98.38% of iron oxide, respectively. The specific absorption rate (SAR) was measured and the particles induced significant heating power at lower frequencies which is a promising result to be applied for in vitro/in vivo hyperthermia studies in the near future.
Collapse
Affiliation(s)
- Nayera F A Salem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Samia S Abouelkheir
- National Institute of Oceanography and Fisheries (NIOF), Marine Microbiology Lab., Kayet Bay, El-Anfushy, Alexandria, Egypt
| | - Asmaa M Yousif
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Bianca P Meneses-Brassea
- Department of Physics, the University of Texas at El Paso (UTEP), El Paso, TX 79968, United States of America
| | - Soraya A Sabry
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hanan A Ghozlan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Ahmed A El-Gendy
- Department of Physics, the University of Texas at El Paso (UTEP), El Paso, TX 79968, United States of America
| |
Collapse
|
46
|
Sysoev M, Grötzinger SW, Renn D, Eppinger J, Rueping M, Karan R. Bioprospecting of Novel Extremozymes From Prokaryotes-The Advent of Culture-Independent Methods. Front Microbiol 2021; 12:630013. [PMID: 33643258 PMCID: PMC7902512 DOI: 10.3389/fmicb.2021.630013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Extremophiles are remarkable organisms that thrive in the harshest environments on Earth, such as hydrothermal vents, hypersaline lakes and pools, alkaline soda lakes, deserts, cold oceans, and volcanic areas. These organisms have developed several strategies to overcome environmental stress and nutrient limitations. Thus, they are among the best model organisms to study adaptive mechanisms that lead to stress tolerance. Genetic and structural information derived from extremophiles and extremozymes can be used for bioengineering other nontolerant enzymes. Furthermore, extremophiles can be a valuable resource for novel biotechnological and biomedical products due to their biosynthetic properties. However, understanding life under extreme conditions is challenging due to the difficulties of in vitro cultivation and observation since > 99% of organisms cannot be cultivated. Consequently, only a minor percentage of the potential extremophiles on Earth have been discovered and characterized. Herein, we present a review of culture-independent methods, sequence-based metagenomics (SBM), and single amplified genomes (SAGs) for studying enzymes from extremophiles, with a focus on prokaryotic (archaea and bacteria) microorganisms. Additionally, we provide a comprehensive list of extremozymes discovered via metagenomics and SAGs.
Collapse
Affiliation(s)
- Maksim Sysoev
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan W. Grötzinger
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dominik Renn
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jörg Eppinger
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Ram Karan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
47
|
Li W, Shi C, Yu Y, Ruan Y, Kong D, Lv X, Xu P, Awasthi MK, Dong M. Interrelationships between tetracyclines and nitrogen cycling processes mediated by microorganisms: A review. BIORESOURCE TECHNOLOGY 2021; 319:124036. [PMID: 33032187 DOI: 10.1016/j.biortech.2020.124036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Due to their broad-spectrum antibacterial activity and low cost, tetracyclines (TCs) are a class of antibiotics widely used for human and veterinary medical purposes and as a growth-promoting agent for aquaculture. Interrelationships between TCs and nitrogen cycling have attracted scientific attention due to the complicated processes mediated by microorganisms. TCs negatively impact the nitrogen cycling; however, simultaneous degradation of TCs during nitrogen cycling mediated by microorganisms can be achieved. This review encapsulates the background and distribution of TCs in the environment. Additionally, the main nitrogen cycling process mediated by microorganisms were retrospectively examined. Furthermore, effects of TCs on the nitrogen cycling processes, namely nitrification, denitrification, and anammox, have been summarized. Finally, the pathway and microbial mechanism of degradation of TCs accompanied by nitrogen cycling processes were reviewed, along with the scope for prospective studies.
Collapse
Affiliation(s)
- Wenbing Li
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Changze Shi
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanwen Yu
- Zhejiang Water Healer Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dedong Kong
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
48
|
Shitut S, Bergman GÖ, Kros A, Rozen DE, Claessen D. Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms 2020; 8:microorganisms8121897. [PMID: 33265975 PMCID: PMC7760116 DOI: 10.3390/microorganisms8121897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous actinobacteria are widely used as microbial cell factories to produce valuable secondary metabolites, including the vast majority of clinically relevant antimicrobial compounds. Secondary metabolites are typically encoded by large biosynthetic gene clusters, which allow for a modular approach to generating diverse compounds through recombination. Protoplast fusion is a popular method for whole genome recombination that uses fusion of cells that are transiently wall-deficient. This process has been applied for both inter- and intraspecies recombination. An important limiting step in obtaining diverse recombinants from fused protoplasts is regeneration of the cell wall, because this forces the chromosomes from different parental lines to segregate, thereby preventing further recombination. Recently, several labs have gained insight into wall-deficient bacteria that have the ability to proliferate without their cell wall, known as L-forms. Unlike protoplasts, L-forms can stably maintain multiple chromosomes over many division cycles. Fusion of such L-forms would potentially allow cells to express genes from both parental genomes while also extending the time for recombination, both of which can contribute to an increased chemical diversity. Here, we present a perspective on how L-form fusion has the potential to become a platform for novel compound discovery and may thus help to overcome the antibiotic discovery void.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Correspondence: (S.S.); (D.C.)
| | - Güniz Özer Bergman
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Daniel E. Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Dennis Claessen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Correspondence: (S.S.); (D.C.)
| |
Collapse
|
49
|
Sharma PV, Thaiss CA. Host-Microbiome Interactions in the Era of Single-Cell Biology. Front Cell Infect Microbiol 2020; 10:569070. [PMID: 33163417 PMCID: PMC7591464 DOI: 10.3389/fcimb.2020.569070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Microbes are the most prevalent form of life yet also the least well-understood in terms of their diversity. Due to a greater appreciation of their role in modulating host physiology, microbes have come to the forefront of biological investigation of human health and disease. Despite this, capturing the heterogeneity of microbes, and that of the host responses they induce, has been challenging due to the bulk methods of nucleic acid and cellular analysis. One of the greatest recent advancements in our understanding of complex organisms has happened in the field of single-cell analysis through genomics, transcriptomics, and spatial resolution. While significantly advancing our understanding of host biology, these techniques have only recently been applied to microbial systems to shed light on their diversity as well as interactions with host cells in both commensal and pathogenic contexts. In this review, we highlight emerging technologies that are poised to provide key insights into understanding how microbe heterogeneity can be studied. We then take a detailed look into how host single-cell analysis has uncovered the impact of microbes on host heterogeneity and the effect of host biology on microorganisms. Most of these insights would have been challenging, and in some cases impossible, without the advent of single-cell analysis, suggesting the importance of the single-cell paradigm for progressing the microbiology field forward through a host-microbiome perspective and applying these insights to better understand and treat human disease.
Collapse
Affiliation(s)
| | - Christoph A. Thaiss
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Microbial single-cell omics: the crux of the matter. Appl Microbiol Biotechnol 2020; 104:8209-8220. [PMID: 32845367 PMCID: PMC7471194 DOI: 10.1007/s00253-020-10844-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
Abstract Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies. Key points • Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways. • Disadvantages of metagenome-assembled genomes are overcome by single-cell omics. • Functional analysis of single cells explores the heterogeneity of gene expression. • Technical challenges still limit this field, thus prompting new method developments.
Collapse
|