1
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
2
|
Bian X, Chen Y, Zhang W, Liu X, Lei M, Yuan H, Li M, Liu Q, Kong Q. Salmonella Typhimurium derived OMV nanoparticle displaying mixed heterologous O-antigens confers immunogenicity and protection against STEC infections in mice. Microb Cell Fact 2025; 24:8. [PMID: 39773741 PMCID: PMC11705740 DOI: 10.1186/s12934-024-02640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections. In this study, we constructed an engineered S. Typhimurium to rapidly produce the outer membrane vesicle (OMV) with low endotoxic activity to deliver the O-antigen of E. coli. S. Typhimurium OMV (STmOMV), which displays mixed heterologous O-antigens, was systematically investigated in mice for immunogenicity and the ability to prevent wild-type STEC infection. Animal experiments demonstrated that STmOMV displaying both E. coli O111 and O157 O-antigens by intraperitoneal injection not only induced robust humoral immunity but also provided effective protection against wild-type E. coli O111 and O157 infection in mice, as well as long-lasting immunity. Meanwhile, the O-antigen polysaccharides of E. coli O26 and O45, and O145 and O103 were also mixedly exhibited on STmOMV as O-antigens of the O111 and O157 did. Three mixed STmOMVs were inoculated intraperitoneally to mice, and confer effective protection against six E. coli infections. The STmOMV developed in this study to display mixed heterologous O-antigens provides an innovative and improved strategy for the prevention of multiple STEC infections.
Collapse
Affiliation(s)
- Xiaoping Bian
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
- Yibin Academy of Southwest University, Sichuan, China
| | - Yaolin Chen
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Wenjin Zhang
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Xinyu Liu
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Meihong Lei
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Haoxiang Yuan
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Mengru Li
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Qing Liu
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
- Yibin Academy of Southwest University, Sichuan, China.
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
- Yibin Academy of Southwest University, Sichuan, China.
| |
Collapse
|
3
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
4
|
Mylona E, Pereira-Dias J, Keane JA, Karkey A, Dongol S, Khokhar F, Tran TA, Cormie C, Higginson E, Baker S. Phenotypic variation in the lipopolysaccharide O-antigen of Salmonella Paratyphi A and implications for vaccine development. Vaccine 2024; 42:126404. [PMID: 39383552 DOI: 10.1016/j.vaccine.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Enteric fever remains a major public health problem in South and Southeast Asia. The recent roll-out of the typhoid conjugate vaccine protecting against S. Typhi exhibits great promise for disease reduction in high burden areas. However, some endemic regions remain vulnerable to S. Paratyphi A due to a lack of licensed vaccines and inadequate WASH. Several developmental S. Paratyphi A vaccines exploit O-antigen as the target antigen. It has been hypothesised that O-antigen is under selective and environmental pressure, with mutations in O-antigen biosynthesis genes being reported, but their phenotypic effects are unknown. Here, we aimed to evaluate O-antigen variation in S. Paratyphi A originating from Nepal, and the potential effect of this variation on antibody binding. O-antigen variation was determined by measuring LPS laddering shift following electrophoresis; this analysis was complemented with genomic characterisation of the O-antigen region. We found structural O-antigen variation in <10 % of S. Paratyphi A organisms, but a direct underlying genetic cause could not be identified. High-content imaging was performed to determine antibody binding by commercial O2 monoclonal (mAb) and polyclonal antibodies, as well as polyclonal sera from convalescent patients naturally infected with S. Paratyphi A. Commercial mAbs detected only a fraction of an apparently "clonal" bacterial population, suggesting phase variation and nonuniform O-antigen composition. Notably, and despite visible subpopulation clusters, O-antigen structural changes did not appear to affect the binding ability of polyclonal human antibody considerably, which led to no obvious differences in the functionality of antibodies targeting organisms with different O-antigen conformations. Although these results need to be confirmed in organisms from alternative endemic areas, they are encouraging the use of O-antigen as the target antigen in S. Paratyphi A vaccines.
Collapse
Affiliation(s)
- Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; The Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Fahad Khokhar
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, UK
| | - Tuan-Anh Tran
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Claire Cormie
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Human Immunology Laboratory, IAVI, London, UK
| |
Collapse
|
5
|
Iduu NV, Kitchens S, Price SB, Wang C. Mutation in Wzz(fepE) Linked to Altered O-Antigen Biosynthesis and Attenuated Virulence in Rough Salmonella Infantis Variant. Vet Sci 2024; 11:603. [PMID: 39728943 DOI: 10.3390/vetsci11120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Salmonella enterica serovar Infantis has emerged as a prevalent foodborne pathogen in poultry with significant global health implications. This study investigates the molecular characteristics influencing virulence in a S. Infantis rough variant collected from a poultry farm in the USA. In this study, whole genome sequencing and comparative genomics were performed on smooth and rough poultry S. Infantis isolates, while chicken embryo lethality assay was conducted to assess their virulence. Comparative genomics between isolates was analyzed using Mauve pairwise Locally Collinear Blocks to measure the genetic conservation. Embryo survival rates between the isolates were compared using the Kaplan-Meier curves. High genomic conservation was observed between the two isolates, but a frameshift mutation was detected in the Wzz(fepE) gene of the rough variant, resulting in early protein truncation. The chicken embryo lethality assay showed that the lethality rate of the smooth strain was higher than that of the rough strain (p < 0.05). This study identifies a frameshift mutation in the Wzz(fepE) gene, leading to protein truncation, which may reduce bacterial virulence by impacting O-antigen biosynthesis in the rough Salmonella Infantis variant. These findings deepen our understanding of S. Infantis pathogenesis and suggest that targeting the Wzz(fepE) gene or related pathways could be a promising strategy for developing effective vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| | - Steven Kitchens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| | - Stuart B Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| |
Collapse
|
6
|
Napoleoni M, Ceschia S, Mitri E, Beneitez EE, Silenzi V, Staffolani M, Rocchegiani E, Blasi G, Gurian E. Identification of Salmonella Serogroups and Distinction Between Typhoidal and Non-Typhoidal Salmonella Based on ATR-FTIR Spectroscopy. Microorganisms 2024; 12:2318. [PMID: 39597707 PMCID: PMC11596249 DOI: 10.3390/microorganisms12112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonellosis is the second-most commonly reported foodborne gastrointestinal infection in the European Union and a major contributor to foodborne outbreaks globally. Salmonella serotyping differentiates typhoidal strains requiring antibiotic therapy (e.g., serovars Typhi, Paratyphi A, Paratyphi B-d-tartrate negative, Paratyphi C) from typically self-limiting non-typhoidal Salmonella (NTS) strains, making precise identification essential for appropriate treatment and epidemiological tracking. At the same time, the ability to identify the serogroup of Salmonella, regardless of which of the above two groups it belongs to, provides an important initial epidemiological indication that is useful for case management by competent health authorities. This study evaluates the effectiveness of ATR-FTIR spectroscopy coupled with a machine learning algorithm to identify four key Salmonella enterica serogroups (B, C1, D1-including typhoidal strains such as S. Typhi-and E1) directly from solid monomicrobial cultures without sample pretreatment. The system was paired with I-dOne software v2.2 already able to detect Salmonella spp., possibly leading to the characterisation of both the species and serotype from one colony. The multivariate classification model was trained and validated with 248 strains, with an overall accuracy of >98% over 113 samples. This approach offers a potential rapid alternative for clinical labs without serotyping facilities.
Collapse
Affiliation(s)
- Maira Napoleoni
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (E.E.B.); (V.S.); (M.S.); (E.R.); (G.B.)
| | - Stefano Ceschia
- Alifax S.r.l., Via Francesco Petrarca, 2/1, 35020 Polverara, Padova, Italy; (S.C.); (E.M.); (E.G.)
| | - Elisa Mitri
- Alifax S.r.l., Via Francesco Petrarca, 2/1, 35020 Polverara, Padova, Italy; (S.C.); (E.M.); (E.G.)
| | - Elisa Eleonora Beneitez
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (E.E.B.); (V.S.); (M.S.); (E.R.); (G.B.)
| | - Valentina Silenzi
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (E.E.B.); (V.S.); (M.S.); (E.R.); (G.B.)
| | - Monica Staffolani
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (E.E.B.); (V.S.); (M.S.); (E.R.); (G.B.)
| | - Elena Rocchegiani
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (E.E.B.); (V.S.); (M.S.); (E.R.); (G.B.)
| | - Giuliana Blasi
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (E.E.B.); (V.S.); (M.S.); (E.R.); (G.B.)
| | - Elisa Gurian
- Alifax S.r.l., Via Francesco Petrarca, 2/1, 35020 Polverara, Padova, Italy; (S.C.); (E.M.); (E.G.)
| |
Collapse
|
7
|
Kitchens SR, Wang C, Price SB. Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review. Microorganisms 2024; 12:2249. [PMID: 39597638 PMCID: PMC11596670 DOI: 10.3390/microorganisms12112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by Illumina, have been instrumental in generating draft genomes that facilitate serotyping and the detection of antimicrobial resistance. Long-read sequencing technologies, including those from Pacific Biosciences and Oxford Nanopore Technologies, offer the potential for more complete genome assemblies and better insights into genetic diversity. In addition to these sequencing approaches, machine learning techniques like decision trees and random forests provide powerful tools for pattern recognition and predictive modeling. Importantly, the study of bacteriophages, which interact with Salmonella, offers additional layers of understanding. Phages can impact Salmonella population dynamics and evolution, and their integration into Salmonella genomics research holds promise for novel insights into pathogen control and epidemiology. This review revisits the history of Salmonella and its pathogenesis and highlights the integration of these modern methodologies in advancing our understanding of Salmonella.
Collapse
Affiliation(s)
| | | | - Stuart B. Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA; (S.R.K.); (C.W.)
| |
Collapse
|
8
|
Rooke JL, Goodall ECA, Pullela K, Da Costa R, Martinelli N, Smith C, Mora M, Cunningham AF, Henderson IR. Genome-wide fitness analysis of Salmonella enterica reveals aroA mutants are attenuated due to iron restriction in vitro. mBio 2024; 15:e0331923. [PMID: 39287440 PMCID: PMC11481492 DOI: 10.1128/mbio.03319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica is a globally disseminated pathogen that is the cause of over 100 million infections per year. The resulting diseases are dependent upon host susceptibility and the infecting serovar. As S. enterica serovar Typhimurium induces a typhoid-like disease in mice, this model has been used extensively to illuminate various aspects of Salmonella infection and host responses. Due to the severity of infection in this model, researchers often use strains of mice resistant to infection or attenuated Salmonella. Despite decades of research, many aspects of Salmonella infection and fundamental biology remain poorly understood. Here, we use a transposon insertion sequencing technique to interrogate the essential genomes of widely used isogenic wild-type and attenuated S. Typhimurium strains. We reveal differential essential pathways between strains in vitro and provide a direct link between iron starvation, DNA synthesis, and bacterial membrane integrity.IMPORTANCESalmonella enterica is an important clinical pathogen that causes a high number of deaths and is increasingly resistant to antibiotics. Importantly, S. enterica is used widely as a model to understand host responses to infection. Understanding how Salmonella survives in vivo is important for the design of new vaccines to combat this pathogen. Live attenuated vaccines have been used clinically for decades. A widely used mutation, aroA, is thought to attenuate Salmonella by restricting the ability of the bacterium to access particular amino acids. Here we show that this mutation limits the ability of Salmonella to acquire iron. These observations have implications for the interpretation of many previous studies and for the use of aroA in vaccine development.
Collapse
Affiliation(s)
- Jessica L Rooke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Emily C A Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Nicole Martinelli
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Chelsie Smith
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Maria Mora
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Heffernan LM, Lawrence ALE, Marcotte HA, Sharma A, Jenkins AX, Iguwe D, Rood J, Herke SW, O'Riordan MX, Abuaita BH. Heterogeneity of Salmonella enterica lipopolysaccharide counteracts macrophage and antimicrobial peptide defenses. Infect Immun 2024; 92:e0025124. [PMID: 39225472 PMCID: PMC11475854 DOI: 10.1128/iai.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella enterica is comprised of over 2,500 serovars, in which non-typhoidal serovars (NTS), Enteritidis (SE), and Typhimurium (STM) are the most clinically associated with human infections. Although NTS have similar genetic elements to cause disease, phenotypic variation including differences in lipopolysaccharide (LPS) composition may control immune evasion. Here, we demonstrate that macrophage host defenses and LL-37 antimicrobial efficacy against SE and STM are substantially altered by LPS heterogeneity. We found that SE evades macrophage killing by inhibiting phagocytosis while STM survives better intracellularly post-phagocytosis. SE-infected macrophages failed to activate the inflammasomes and subsequently produced less interleukin-1β (IL-1β), IL-18, and interferon λ. Inactivation of LPS biosynthesis genes altered LPS composition, and the SE LPS-altered mutants could no longer inhibit phagocytosis, inflammasome activation, and type II interferon signaling. In addition, SE and STM showed differential susceptibility to the antimicrobials LL-37 and colistin, and alteration of LPS structure substantially increased susceptibility to these molecules. Collectively, our findings highlight that modification of LPS composition by Salmonella increases resistance to host defenses and antibiotics.
Collapse
Affiliation(s)
- Linda M. Heffernan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Anna-Lisa E. Lawrence
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Haley A. Marcotte
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Amit Sharma
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Aria X. Jenkins
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Damilola Iguwe
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Scott W. Herke
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mary X. O'Riordan
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Basel H. Abuaita
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
10
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
11
|
Hu B, Wang J, Li L, Wang Q, Qin J, Chi Y, Yan J, Sun W, Cao B, Guo X. Functional Identification and Genetic Analysis of O-Antigen Gene Clusters of Food-Borne Pathogen Yersinia enterocolitica O:10 and Other Uncommon Serotypes, Further Revealing Their Virulence Profiles. J Microbiol Biotechnol 2024; 34:1599-1608. [PMID: 39081257 PMCID: PMC11380512 DOI: 10.4014/jmb.2402.02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Linxing Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Qin Wang
- Disease Prevention and Control Center of Ganzhou District, 27 Xianfu Street, Ganzhou District, Zhangye City, Gansu Province, P.R. China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Yingxin Chi
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Wenkui Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| |
Collapse
|
12
|
Ceres K, Zehr JD, Murrell C, Millet JK, Sun Q, McQueary HC, Horton A, Cazer C, Sams K, Reboul G, Andreopoulos WB, Mitchell PK, Anderson R, Franklin-Guild R, Cronk BD, Stanhope BJ, Burbick CR, Wolking R, Peak L, Zhang Y, McDowall R, Krishnamurthy A, Slavic D, Sekhon PK, Tyson GH, Ceric O, Stanhope MJ, Goodman LB. Evolutionary genomic analyses of canine E. coli infections identify a relic capsular locus associated with resistance to multiple classes of antimicrobials. Appl Environ Microbiol 2024; 90:e0035424. [PMID: 39012166 PMCID: PMC11337803 DOI: 10.1128/aem.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/17/2024] Open
Abstract
Infections caused by antimicrobial-resistant Escherichia coli are the leading cause of death attributed to antimicrobial resistance (AMR) worldwide, and the known AMR mechanisms involve a range of functional proteins. Here, we employed a pan-genome wide association study (GWAS) approach on over 1,000 E. coli isolates from sick dogs collected across the US and Canada and identified a strong statistical association (empirical P < 0.01) of AMR, involving a range of antibiotics to a group 1 capsular (CPS) gene cluster. This cluster included genes under relaxed selection pressure, had several loci missing, and had pseudogenes for other key loci. Furthermore, this cluster is widespread in E. coli and Klebsiella clinical isolates across multiple host species. Earlier studies demonstrated that the octameric CPS polysaccharide export protein Wza can transmit macrolide antibiotics into the E. coli periplasm. We suggest that the CPS in question, and its highly divergent Wza, functions as an antibiotic trap, preventing antimicrobial penetration. We also highlight the high diversity of lineages circulating in dogs across all regions studied, the overlap with human lineages, and regional prevalence of resistance to multiple antimicrobial classes. IMPORTANCE Much of the human genomic epidemiology data available for E. coli mechanism discovery studies has been heavily biased toward shiga-toxin producing strains from humans and livestock. E. coli occupies many niches and produces a wide variety of other significant pathotypes, including some implicated in chronic disease. We hypothesized that since dogs tend to share similar strains with their owners and are treated with similar antibiotics, their pathogenic isolates will harbor unexplored AMR mechanisms of importance to humans as well as animals. By comparing over 1,000 genomes with in vitro antimicrobial susceptibility data from sick dogs across the US and Canada, we identified a strong multidrug resistance association with an operon that appears to have once conferred a type 1 capsule production system.
Collapse
Affiliation(s)
| | | | | | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, Paris, France
| | - Qi Sun
- Cornell University, Ithaca, New York, USA
| | | | | | | | - Kelly Sams
- Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | | | | - Claire R. Burbick
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Rebecca Wolking
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yan Zhang
- Ohio Department of Agriculture Animal Disease Diagnostic Laboratory, Reynoldsburg, Ohio, USA
| | - Rebeccah McDowall
- University of Guelph, Animal Health Laboratory, Guelph, Ontario, Canada
| | | | - Durda Slavic
- University of Guelph, Animal Health Laboratory, Guelph, Ontario, Canada
| | | | - Gregory H. Tyson
- US Food and Drug Administration, Veterinary Laboratory Investigation and Response Network, Laurel, Maryland, USA
| | - Olgica Ceric
- US Food and Drug Administration, Veterinary Laboratory Investigation and Response Network, Laurel, Maryland, USA
| | | | | |
Collapse
|
13
|
Kelly SD, Allas MJ, Goodridge LD, Lowary TL, Whitfield C. Structure, biosynthesis and regulation of the T1 antigen, a phase-variable surface polysaccharide conserved in many Salmonella serovars. Nat Commun 2024; 15:6504. [PMID: 39090110 PMCID: PMC11294581 DOI: 10.1038/s41467-024-50957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mikel Jason Allas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
14
|
Yates CR, Nguyen A, Liao J, Cheng RA. What's on a prophage: analysis of Salmonella spp. prophages identifies a diverse range of cargo with multiple virulence- and metabolism-associated functions. mSphere 2024; 9:e0003124. [PMID: 38775467 PMCID: PMC11332146 DOI: 10.1128/msphere.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
The gain of mobile elements, such as prophages, can introduce cargo to the recipient bacterium that could facilitate its persistence in or expansion to a new environment, such as a host. While previous studies have focused on identifying and characterizing the genetic diversity of prophages, analyses characterizing the cargo that prophages carry have not been extensively explored. We characterized prophage regions from 303 Salmonella spp. genomes (representing 254 unique serovars) to assess the distribution of prophages in diverse Salmonella. On average, prophages accounted for 3.7% (0.1%-8.8%) of the total genomic content of each isolate. Prophage regions annotated as Gifsy 1 and Salmon Fels 1 were the most commonly identified intact prophages, suggesting that they are common throughout the Salmonella genus. Among 21,687 total coding sequences (CDSs) from intact prophage regions in subsp. enterica genomes, 7.5% (median; range: 1.1%-47.6%) were categorized as having a function not related to prophage integration or phage structure, some of which could potentially provide a functional attribute to the host Salmonella cell. These predicted functions could be broadly categorized into CDSs involved in: (i) modification of cell surface structures (i.e., glycosyltransferases); (ii) modulation of host responses (e.g., SodC/SodA, SopE, ArtAB, and typhoid toxin); (iii) conferring resistance to heavy metals and antimicrobials; (iv) metabolism of carbohydrates, amino acids, and nucleotides; and (v) DNA replication, repair, and regulation. Overall, our systematic analysis of prophage cargo highlights a broader role for prophage cargo in influencing the metabolic, virulence, and resistance characteristics of Salmonella. IMPORTANCE Lysogenic bacteriophages (phages) can integrate their genome into a bacterial host's genome, potentially introducing genetic elements that can affect the fitness of the host bacterium. The functions of prophage-encoded genes are important to understand as these genes could be mobilized and transferred to a new host. Using a large genomic dataset representing >300 isolates from all known subspecies and species of Salmonella, our study contributes important new findings on the distribution of prophages and the types of cargo that diverse Salmonella prophages carry. We identified a number of coding sequences (CDSs) annotated as having cell surface-modifying attributes, suggesting that prophages may have played an important role in shaping Salmonella's diverse surface antigen repertoire. Furthermore, our characterization of prophages suggests that they play a broader role in facilitating the acquisition and transfer of CDSs associated with metabolism, DNA replication and repair, virulence factors, and to a lesser extent, antimicrobial resistance.
Collapse
Affiliation(s)
- Caroline R. Yates
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Anthony Nguyen
- Computational Modeling and Data Analytics Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
15
|
Mylona E, Pham Thanh D, Keane JA, Dongol S, Basnyat B, Dolecek C, Voong Vinh P, Tran Vu Thieu N, Nguyen Thi Nguyen T, Karkey A, Baker S. A retrospective investigation of the population structure and geospatial distribution of Salmonella Paratyphi A in Kathmandu, Nepal. PLoS Negl Trop Dis 2024; 18:e0011864. [PMID: 38889189 PMCID: PMC11216570 DOI: 10.1371/journal.pntd.0011864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/01/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Salmonella Paratyphi A, one of the major etiologic agents of enteric fever, has increased in prevalence in recent decades in certain endemic regions in comparison to S. Typhi, the most prevalent cause of enteric fever. Despite this increase, data on the prevalence and molecular epidemiology of S. Paratyphi A remain generally scarce. Here, we analysed the whole genome sequences of 216 S. Paratyphi A isolates originating from Kathmandu, Nepal between 2005 and 2014, of which 200 were from patients with acute enteric fever and 16 from the gallbladder of people with suspected chronic carriage. By exploiting the recently developed genotyping framework for S. Paratyphi A (Paratype), we identified several genotypes circulating in Kathmandu. Notably, we observed an unusual clonal expansion of genotype 2.4.3 over a four-year period that spread geographically and systematically replaced other genotypes. This rapid genotype replacement is hypothesised to have been driven by both reduced susceptibility to fluoroquinolones and genetic changes to virulence factors, such as functional and structural genes encoding the type 3 secretion systems. Finally, we show that person-to-person is likely the most common mode of transmission and chronic carriers seem to play a limited role in maintaining disease circulation.
Collapse
Affiliation(s)
- Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Jacqueline A. Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Christiane Dolecek
- The Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Phat Voong Vinh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nga Tran Vu Thieu
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - To Nguyen Thi Nguyen
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Abhilasha Karkey
- The Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- IAVI Human Immunology Laboratory, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
16
|
Yamada N, Kamoshida G, Shiraishi T, Yamaguchi D, Matsuoka M, Yamauchi R, Kanda N, Kamioka R, Takemoto N, Morita Y, Fujimuro M, Yokota SI, Yahiro K. PmrAB, the two-component system of Acinetobacter baumannii, controls the phosphoethanolamine modification of lipooligosaccharide in response to metal ions. J Bacteriol 2024; 206:e0043523. [PMID: 38661375 PMCID: PMC11112996 DOI: 10.1128/jb.00435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.
Collapse
Affiliation(s)
- Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Laboratory of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Go Kamoshida
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Momoko Matsuoka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reika Yamauchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Roku Kamioka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masahiro Fujimuro
- Laboratory of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
17
|
Krzyżewska-Dudek E, Dulipati V, Kapczyńska K, Noszka M, Chen C, Kotimaa J, Książczyk M, Dudek B, Bugla-Płoskońska G, Pawlik K, Meri S, Rybka J. Lipopolysaccharide with long O-antigen is crucial for Salmonella Enteritidis to evade complement activity and to facilitate bacterial survival in vivo in the Galleria mellonella infection model. Med Microbiol Immunol 2024; 213:8. [PMID: 38767707 PMCID: PMC11106168 DOI: 10.1007/s00430-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.
Collapse
Affiliation(s)
- Eva Krzyżewska-Dudek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Vinaya Dulipati
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Carmen Chen
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Juha Kotimaa
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Marta Książczyk
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Bartłomiej Dudek
- Platform for Unique Models Application (P.U.M.A), Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | | | - Krzysztof Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- HUSLAB Diagnostic Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
18
|
Xu Y, Wang X, Zaal EA, Berkers CR, Lorent JH, Heise T, Cox R, Pieters RJ, Breukink E. Specific labeling of newly synthesized lipopolysaccharide via metabolic incorporation of azido-galactose. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159467. [PMID: 38382574 DOI: 10.1016/j.bbalip.2024.159467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Torben Heise
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
19
|
Petrin S, Tiengo A, Longo A, Furlan M, Marafin E, Zavagnin P, Orsini M, Losasso C, Barco L. Uncommon Salmonella Infantis Variants with Incomplete Antigenic Formula in the Poultry Food Chain, Italy. Emerg Infect Dis 2024; 30:795-799. [PMID: 38526241 PMCID: PMC10977818 DOI: 10.3201/eid3004.231074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Uncommon Salmonella Infantis variants displaying only flagellar antigens phenotypically showed identical incomplete antigenic formula but differed by molecular serotyping. Although most formed rough colonies, all shared antimicrobial resistances and the presence of usg gene with wild-type Salmonella Infantis. Moreover, they were undistinguishable wild-type Salmonella Infantis by whole-genome sequencing.
Collapse
Affiliation(s)
| | | | - Alessandra Longo
- National and World Organisation for Animal Health Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maddalena Furlan
- National and World Organisation for Animal Health Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Elisa Marafin
- National and World Organisation for Animal Health Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola Zavagnin
- National and World Organisation for Animal Health Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Massimiliano Orsini
- National and World Organisation for Animal Health Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | | |
Collapse
|
20
|
Cho J, Song H, Yoon HC, Yoon H. Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes. J Microbiol Biotechnol 2024; 34:340-348. [PMID: 37986605 PMCID: PMC10940738 DOI: 10.4014/jmb.2308.08006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.
Collapse
Affiliation(s)
- Jeongik Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Heymin Song
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun C. Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
21
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Meitil IKS, Gippert GP, Barrett K, Hunt CJ, Henrissat B. Diversity of sugar-diphospholipid-utilizing glycosyltransferase families. Commun Biol 2024; 7:285. [PMID: 38454040 PMCID: PMC10920833 DOI: 10.1038/s42003-024-05930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Peptidoglycan polymerases, enterobacterial common antigen polymerases, O-antigen ligases, and other bacterial polysaccharide polymerases (BP-Pols) are glycosyltransferases (GTs) that build bacterial surface polysaccharides. These integral membrane enzymes share the particularity of using diphospholipid-activated sugars and were previously missing in the carbohydrate-active enzymes database (CAZy; www.cazy.org ). While the first three classes formed well-defined families of similar proteins, the sequences of BP-Pols were so diverse that a single family could not be built. To address this, we developed a new clustering method using a combination of a sequence similarity network and hidden Markov model comparisons. Overall, we have defined 17 new GT families including 14 of BP-Pols. We find that the reaction stereochemistry appears to be conserved in each of the defined BP-Pol families, and that the BP-Pols within the families transfer similar sugars even across Gram-negative and Gram-positive bacteria. Comparison of the new GT families reveals three clans of distantly related families, which also conserve the reaction stereochemistry.
Collapse
Affiliation(s)
- Ida K S Meitil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Garry P Gippert
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cameron J Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
23
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
24
|
Yang Y, Dufault-Thompson K, Yan W, Cai T, Xie L, Jiang X. Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants. Gigascience 2024; 13:giae017. [PMID: 38649301 PMCID: PMC11034027 DOI: 10.1093/gigascience/giae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a considerable challenge. Currently, there is a notable lack of tools designed for large-scale characterization of phage receptor-binding proteins, which are crucial in determining the phage host range. RESULTS In this study, we present SpikeHunter, a deep learning method based on the ESM-2 protein language model. With SpikeHunter, we identified 231,965 diverse phage-encoded tailspike proteins, a crucial determinant of phage specificity that targets bacterial polysaccharide receptors, across 787,566 bacterial genomes from 5 virulent, antibiotic-resistant pathogens. Notably, 86.60% (143,200) of these proteins exhibited strong associations with specific bacterial polysaccharides. We discovered that phages with identical tailspike proteins can infect different bacterial species with similar polysaccharide receptors, underscoring the pivotal role of tailspike proteins in determining host range. The specificity is mainly attributed to the protein's C-terminal domain, which strictly correlates with host specificity during domain swapping in tailspike proteins. Importantly, our dataset-driven predictions of phage-host specificity closely match the phage-host pairs observed in real-world phage therapy cases we studied. CONCLUSIONS Our research provides a rich resource, including both the method and a database derived from a large-scale genomics survey. This substantially enhances understanding of phage specificity determinants at the strain level and offers a valuable framework for guiding phage selection in therapeutic applications.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tian Cai
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Lei Xie
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
25
|
Sørensen AN, Kalmár D, Lutz VT, Klein-Sousa V, Taylor NMI, Sørensen MC, Brøndsted L. Agtrevirus phage AV101 recognizes four different O-antigens infecting diverse E. coli. MICROLIFE 2023; 5:uqad047. [PMID: 38234449 PMCID: PMC10791037 DOI: 10.1093/femsml/uqad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here, we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor-binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum β-lactamase (ESBL) Escherichia coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor-binding domain of TSP1, TSP2, TSP3, and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor-binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor-binding domains of Ackermannviridae phages.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dorottya Kalmár
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Veronika Theresa Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martine C Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
26
|
Hong Y, Hu D, Verderosa AD, Qin J, Totsika M, Reeves PR. Repeat-Unit Elongations To Produce Bacterial Complex Long Polysaccharide Chains, an O-Antigen Perspective. EcoSal Plus 2023; 11:eesp00202022. [PMID: 36622162 PMCID: PMC10729934 DOI: 10.1128/ecosalplus.esp-0020-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dalong Hu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter R. Reeves
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
27
|
Imperio D, Brentazzoli M, Valloni F, Minassi A, Panza L. Iodine-triphenylphosphine triggers an easy one-pot alpha stereoselective dehydrative glycosylation on hemiacetalic benzylated glycosyl donors. Carbohydr Res 2023; 533:108944. [PMID: 37729855 DOI: 10.1016/j.carres.2023.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
The discovery of new glycosylation reactions is still a major challenge in carbohydrate chemistry. Traditional glycosylation reactions require the preparation of sugar donors with anomeric active or latent leaving groups. Dehydrative glycosylation is a fascinating alternative that enables the direct formation of the glycosidic bond from the hemiacetal, eliminating the need for (sometimes unstable) leaving groups, and allowing to reduce reaction, work-up, and purification times. Although some interesting methods of dehydrative glycosylation have been reported, in order to compete with conventional chemical glycosylation, a greater number of efficient and stereoselective methods need to be developed. Herein, a dehydrative procedure that uses a combination of iodine, triphenylphosphine, and a base (DMAP or imidazole) is described. This methodology allows for the preparation of sugar derivatives from commercially available 1-hydroxy glycosyl donors. The reaction takes place under mild conditions through the in situ-formation of an anomeric iodide intermediate, which, upon reaction with an alcohol, gives the corresponding glycosides up to quantitative yields and with high α-stereoselectivity.
Collapse
Affiliation(s)
- Daniela Imperio
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Marco Brentazzoli
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Filippo Valloni
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Universita del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
28
|
Lu J, Li C, Zhang E, Hou S, Xiao K, Li X, Zhang L, Wang Z, Chen C, Li C, Li T. Novel Vertical Flow Immunoassay with Au@PtNPs for Rapid, Ultrasensitive, and On-Site Diagnosis of Human Brucellosis. ACS OMEGA 2023; 8:29534-29542. [PMID: 37599942 PMCID: PMC10433357 DOI: 10.1021/acsomega.3c03381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Brucellosis is an infectious zoonosis caused by Brucella with clinical symptoms of wavy fever, fatigue, and even invasion of tissues and organs in the whole body, posing a serious threat to public health around the world. Herein, a novel vertical flow immunoassay based on Au@Pt nanoparticles (Au@PtNPs-VFIA) was established for detection of Brucella IgG antibody in clinical serum samples. The testing card of Au@PtNPs-VFIA was manufactured by printing the purified Brucella LPS and goat antimouse IgG on the nitrocellulose membrane as the test-spot or control-spot, respectively. Au@PtNPs labeled with protein G (Au@PtNPs-prG) were concurrently employed as detection probes presenting visible spots and catalysts mimicking catalytic enzymes to catalyze the DAB substrate (H2O2 plus O-phenylenediamine) for deepening color development. The testing procedure of Au@PtNPs-VFIA takes 2-3 min, and the limit of detection (LOD) for Brucella antibody is 0.1 IU/mL, which is faster and more sensitive than that of Au@PtNP-based lateral flow immunoassay (Au@PtNPs-LFIA: 15 min and 1.56 IU/mL, respectively). By comparing with vertical flow immunoassay based on classic Au nanoparticles (AuNPs-VFIA), the Au@PtNPs-VFIA is 32 times or 16 times more sensitive with or without further development of DAB substrate catalysis. Au@PtNPs-VFIA did not react with the serum samples of Gram-negative bacterium infections but only weakly cross-reacted with diagnostic serum of Y. enterocolitica O9 infection. In detection of clinical samples, Au@PtNPs-VFIA was validated for possessing 98.33% sensitivity, 100% specificity, and 99.17% accuracy, which were comparable with or even better than those obtained by the Rose-Bengal plate agglutination test, serological agglutination test, AuNPs-VFIA, and Au@PtNPs-LFIA. Therefore, this newly developed Au@PtNPs-VFIA has potential for rapid, ultrasensitive, and on-site diagnosis of human Brucellosis in clinics.
Collapse
Affiliation(s)
- Jinhui Lu
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chengcheng Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Enhui Zhang
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shuiping Hou
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Microbiological
Laboratory, Guangzhou Center for Disease
Control and Prevention, Guangzhou 510440, China
| | - Ke Xiao
- Department
of laboratory Medicine, Guangdong Second
Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Xiaozhou Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ling Zhang
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhen Wang
- Animal
Science and Technology College, Shihezi
University, Shihezi 832002, Xinjiang, China
| | - Chuangfu Chen
- Animal
Science and Technology College, Shihezi
University, Shihezi 832002, Xinjiang, China
| | - Chengyao Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Tingting Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Rana A, Shit P, Misra AK. Straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62. Glycoconj J 2023; 40:449-459. [PMID: 37219745 DOI: 10.1007/s10719-023-10122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
A straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62 was achieved in very good yield applying sequential glycosylation strategy. Successful regioselective glycosylation of the di-hydroxylated L-rhamnose moiety allowed achieving the desired compound in minimum number of synthetic steps. TEMPO catalyzed and [bis(acetoxy)iodo]benzene (BAIB) mediated late stage regioselective oxidation of a primary hydroxyl group into carboxylic acid was achieved in the hexasaccharide derivative. The glycosylation steps were high yielding with high stereochemical outcome. The desired hexasaccharide was obtained in 7% over all yield in fourteen steps starting from suitably functionalized monosaccharide intermediates.
Collapse
Affiliation(s)
- Abhijit Rana
- Department of Chemical Science, Bose Institute, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Pradip Shit
- Department of Chemical Science, Bose Institute, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Anup Kumar Misra
- Department of Chemical Science, Bose Institute, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India.
| |
Collapse
|
30
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
31
|
Sundaresan S, Rathinavelan T. SSP: An In Silico Tool for Salmonella Species Serotyping Using the Sequences of O-Antigen Biosynthesis Proteins and H-Antigen Filament Proteins. J Mol Biol 2023; 435:168046. [PMID: 37356912 DOI: 10.1016/j.jmb.2023.168046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2023]
Abstract
Over 2500 Salmonella species (alternatively, serovars) encompassing different combinations of O-, H1- and H2-antigens are present in nature and cause millions of deaths worldwide every year. Since conventional serotyping is time-consuming, a user-friendly Salmonellaspecies serotyping (SSP) web tool (https://project.iith.ac.in/SSP/) is developed here to predict the serotypes using Salmonella protein(s) or whole proteome sequences. Prior to SSP implementation, a detailed analysis of protein sequences involved in O-antigen biosynthesis and H-antigen formation is carried out to assess their serotype specificity. Intriguingly, the results indicate that the initializing transferases WbaP, WecA and GNE can efficiently distinguish the O-antigens, which have Gal, GlcNAc and GalNAc as initial sugars respectively. Rigorous analysis shows that Wzx and Wzy are sufficient to distinguish the O-types. Exceptionally, some situations warrant additional proteins. Thus, 150 additional transferases, RfbE for O2, O9 and O9,46 types, Orf17.4 for O3,10 and O1,3,19 types, WecB, WbbE and WbbF for O54 and, Wzm and Wzt for O67 are utilized in serotyping. An in-depth analysis of 302 reference datasets representing 56 H1- and 20 H2-types leads to the identification and utilization of 61 unique sequence patterns of FliC and FljB in H-typing. A test dataset of 2136 whole proteome sequences covering 740 Salmonella serovars, including 13 new species are successfully predicted with 99.72% accuracy. Prior to this, all the O-, H1- and H2-antigens are predicted accurately when tested independently. Indeed, SSP also identifies wrongly annotated Salmonella species; hence, it can easily identify new species that emerge with any combination of O-, H1- and H2-antigens. Thus, SSP can act as a valuable tool in the surveillance of Salmonella species.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502284, India. https://twitter.com/Sruthi__Sundar
| | | |
Collapse
|
32
|
Kurzylewska M, Turska-Szewczuk A, Dworaczek K, Bomba A, Drzewiecka D, Pękala-Safińska A. Immunochemical studies and gene cluster relationships of closely related O-antigens of Aeromonas hydrophila Pt679, Aeromonas popoffii A4, and Aeromonas sobria K928 strains classified into the PGO1 serogroup dominant in Polish aquaculture of carp and rainbow trout. Carbohydr Res 2023; 531:108896. [PMID: 37437416 DOI: 10.1016/j.carres.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study included three Aeromonas sp. strains isolated from fish tissues during Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreaks on commercial farms, i.e.: Aeromonas hydrophila Pt679 obtained from rainbow trout as well as Aeromonas popoffii A4 (formerly Aeromonas encheleia) and Aeromonas sobria K928 both isolated from carp, which were classified into the new provisional PGO1 serogroup prevailing among aeromonads in Polish aquaculture. The structure of the O-specific polysaccharides of A4 and K928 has been previously established. Here, immunochemical studies of the O-specific polysaccharide of A. hydrophila Pt679 were undertaken. The O-specific polysaccharide was obtained from the lipopolysaccharide of A. hydrophila Pt679 after mild acid hydrolysis and separation by gel-permeation chromatography. The high-molecular-mass fraction was studied using chemical methods and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The following structure of the branched repeating unit of the O-polysaccharide from A. hydrophila Pt679 was determined: [Formula: see text] The studies indicated that O-polysaccharides from A. hydrophila Pt679, A. popoffii A4 and A. sobria K928 share similarities but they also contain unique characteristics. Western blotting and an enzyme-linked immunosorbent assay revealed that the cross-reactivity of the related O-antigens is caused by the occurrence of common structural elements, whereas additional epitopes define the specificity of the O-serotypes. For genetic relationship studies, the O-antigen gene cluster was characterized in the genome of the A. hydrophila Pt679 strain and compared with the corresponding sequences of A. popoffii A4 and A. sobria K928 and with sequences available in the databases. The composition of the regions was found to be consistent with the O-antigen structures of Aeromonas strains classified into the same PGO1 serogroup.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| |
Collapse
|
33
|
Carroll LM, Piacenza N, Cheng RA, Wiedmann M, Guldimann C. A multidrug-resistant Salmonella enterica Typhimurium DT104 complex lineage circulating among humans and cattle in the USA lost the ability to produce pertussis-like toxin ArtAB. Microb Genom 2023; 9:mgen001050. [PMID: 37402177 PMCID: PMC10438809 DOI: 10.1099/mgen.0.001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium definitive type 104 (DT104) can infect both humans and animals and is often multidrug-resistant (MDR). Previous studies have indicated that, unlike most S . Typhimurium, the overwhelming majority of DT104 strains produce pertussis-like toxin ArtAB via prophage-encoded genes artAB . However, DT104 that lack artAB have been described on occasion. Here, we identify an MDR DT104 complex lineage circulating among humans and cattle in the USA, which lacks artAB (i.e. the ‘U.S. artAB -negative major clade’; n =42 genomes). Unlike most other bovine- and human-associated DT104 complex strains from the USA (n =230 total genomes), which harbour artAB on prophage Gifsy-1 (n =177), members of the U.S. artAB -negative major clade lack Gifsy-1, as well as anti-inflammatory effector gogB . The U.S. artAB -negative major clade encompasses human- and cattle-associated strains isolated from ≥11 USA states over a 20-year period. The clade was predicted to have lost artAB , Gifsy-1 and gogB circa 1985–1987 (95 % highest posterior density interval 1979.0–1992.1). When compared to DT104 genomes from other regions of the world (n =752 total genomes), several additional, sporadic artAB , Gifsy-1 and/or gogB loss events among clades encompassing five or fewer genomes were observed. Using phenotypic assays that simulate conditions encountered during human and/or bovine digestion, members of the U.S. artAB -negative major clade did not differ from closely related Gifsy-1/artAB /gogB -harbouring U.S. DT104 complex strains (ANOVA raw P >0.05); thus, future research is needed to elucidate the roles that artAB , gogB and Gifsy-1 play in DT104 virulence in humans and animals.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Nicolo Piacenza
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| |
Collapse
|
34
|
Roshini J, Patro LPP, Sundaresan S, Rathinavelan T. Structural diversity among Acinetobacter baumannii K-antigens and its implication in the in silico serotyping. Front Microbiol 2023; 14:1191542. [PMID: 37415807 PMCID: PMC10320297 DOI: 10.3389/fmicb.2023.1191542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen. It exhibits multi-, extreme-, and pan-drug resistance against several classes of antibiotics. Capsular polysaccharide (CPS or K-antigen) is one of the major virulence factors which aids A. baumannii in evading the host immune system. K-antigens of A. baumannii exploit the Wzx/Wzy-dependent pathway that involves 13 different proteins for its assembly and transport onto the outer membrane. A total of 64 (out of 237 K-locus(KL) types) known K-antigen sugar repeating structures are discussed here and are classified into seven groups based on their initial sugars, QuiNAc4NAc, GalNAc, GlcNAc, Gal, QuiNAc/FucNAc, FucNAc, and GlcNAc along with Leg5Ac7Ac/Leg5Ac7R. Thus, the corresponding seven initializing glycosyltransferases (ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB3, and ItrA3 along with ItrB2) exhibit serotype specificity. The modeled 3D-structural repository of the 64 K-antigens can be accessed at https://project.iith.ac.in/ABSD/k_antigen.html. The topology of K-antigens further reveals the presence of 2-6 and 0-4 sugar monomers in the main and side chains, respectively. The presence of negatively (predominant) or neutrally charged K-antigens is observed in A. baumannii. Such diversity in the K-antigen sugar composition provides the K-typing specificity (viz., 18-69% in terms of reliability) for Wza, Wzb, Wzc, Wzx, and Wzy proteins involved in the Wzx/Wzy-dependent pathway. Interestingly, the degree of uniqueness of these proteins among different K-types is estimated to be 76.79%, considering the 237 reference sequences. This article summarizes the A. baumannii K-antigen structural diversity and creation of a K-antigen digital repository and provides a systematic analysis of the K-antigen assembly and transportation marker proteins.
Collapse
|
35
|
Yang Y, Dufault-Thompson K, Yan W, Cai T, Xie L, Jiang X. Deciphering Phage-Host Specificity Based on the Association of Phage Depolymerases and Bacterial Surface Glycan with Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545366. [PMID: 37503040 PMCID: PMC10370184 DOI: 10.1101/2023.06.16.545366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Phage tailspike proteins are depolymerases that target diverse bacterial surface glycans with high specificity, determining the host-specificity of numerous phages. To address the challenge of identifying tailspike proteins due to their sequence diversity, we developed SpikeHunter, an approach based on the ESM-2 protein language model. Using SpikeHunter, we successfully identified 231,965 tailspike proteins from a dataset comprising 8,434,494 prophages found within 165,365 genomes of five common pathogens. Among these proteins, 143,035 tailspike proteins displayed strong associations with serotypes. Moreover, we observed highly similar tailspike proteins in species that share closely related serotypes. We found extensive domain swapping in all five species, with the C-terminal domain being significantly associated with host serotype highlighting its role in host range determination. Our study presents a comprehensive cross-species analysis of tailspike protein to serotype associations, providing insights applicable to phage therapy and biotechnology.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Tian Cai
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Lei Xie
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA *
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Volpi M, Gambino M, Kirkeby K, Elsser-Gravesen A, Brøndsted L. Full-scale industrial phage trial targeting Salmonella on pork carcasses. Food Microbiol 2023; 112:104240. [PMID: 36906308 DOI: 10.1016/j.fm.2023.104240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Phages have been suggested as promising biocontrol agents in food, but trials demonstrating the efficiency of phage treatment under industrial settings are missing. Here we performed a full-scale industrial trial to evaluate the efficacy of a commercial phage product to reduce the prevalence of naturally occurring Salmonella on pork carcasses. A total of 134 carcasses from potentially Salmonella positive finisher herds were chosen to be tested at the slaughterhouse based on the level of antibodies in the blood. During five consecutive runs, carcasses were directed into a cabin spraying phages, resulting in a dosage of approximately 2 × 107 phages per cm2 carcass surface. To evaluate the presence of Salmonella, a predefined area of one half of the carcass was swabbed before phage application and the other half 15 min after. A total of 268 samples were analysed by Real-Time PCR. Under these optimized test conditions, 14 carcasses were found positive before phage application, while only 3 carcasses were positive after. This work shows that phage application allows to achieve approximatively 79% reduction of Salmonella-positive carcasses and demonstrates that implementation of phage application in industrial settings can be used as an additional strategy to control foodborne pathogens.
Collapse
Affiliation(s)
- Marta Volpi
- ISI Food Protection ApS, Agro Food Park 13, 8200 Aarhus N, Denmark
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | | | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
37
|
Liu Y, Koudelka G. O-Polysaccharides of LPS Modulate E. coli Uptake by Acanthamoeba castellanii. Microorganisms 2023; 11:1377. [PMID: 37374879 DOI: 10.3390/microorganisms11061377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Protozoan grazing is a major cause of bacterial mortality and controls bacterial population size and composition in the natural environment. To enhance their survival, bacteria evolved many defense strategies to avoid grazing by protists. Cell wall modification is one of the defense strategies that helps bacteria escape from recognition and/or internalization by its predators. Lipopolysaccharide (LPS) is the major component of Gram-negative bacterial cell wall. LPS is divided into three regions: lipid A, oligosaccharide core and O-specific polysaccharide. O-polysaccharide as the outermost region of E. coli LPS provides protection against predation by Acanthamoeba castellanii; however, the characteristics of O-polysaccharide contribute to this protection remain unknown. Here, we investigate how length, structure and composition of LPS affect E. coli recognition and internalization by A. castellanii. We found that length of O-antigen does not play a significant role in regulating bacterial recognition by A. castellanii. However, the composition and structure of O-polysaccharide play important roles in providing resistance to A. castellanii predation.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Gerald Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
38
|
Kurzylewska M, Bomba A, Dworaczek K, Pękala-Safińska A, Turska-Szewczuk A. Structure and gene cluster annotation of the O-antigen of Aeromonas sobria strain K928 isolated from common carp and classified into the new Aeromonas PGO1 serogroup. Carbohydr Res 2023; 528:108809. [PMID: 37086562 DOI: 10.1016/j.carres.2023.108809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Aeromonas sobria strain K928 was isolated from a common carp during a Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreak on a Polish fish farm and classified into the new provisional PGO1 serogroup. The lipopolysaccharide of A. sobria K928 was subjected to mild acid hydrolysis, and the O-specific polysaccharide, which was isolated by gel-permeation chromatography, was studied using sugar and methylation analyses and 1H and 13C NMR spectroscopy. The following structure of the branched O-specific polysaccharide repeating unit of A. sobria K928 was established. →2)[α-D-Fucp3NRHb-(1→3)]-α-L-Rhap-(1→3)-β-L-Rhap-(1→4)-α-L-Rhap-(1→3)-β-D-FucpNAc-(1→ The O-antigen gene cluster was identified and characterized in the genome of the A. sobria K928 strain after comparison with sequences in the available databases. The composition of the O-antigen genetic region was found to be consistent with the O-polysaccharide structure, and its organization was proposed.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
39
|
Tailoring the Host Range of Ackermannviridae Bacteriophages through Chimeric Tailspike Proteins. Viruses 2023; 15:v15020286. [PMID: 36851500 PMCID: PMC9965104 DOI: 10.3390/v15020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is challenging, time-consuming, and restrictive. To address this, SPTD1.NL, a previously published luciferase reporter bacteriophage for Salmonella, was used to investigate manipulation of host range through receptor-binding protein engineering. Similar to related members of the Ackermannviridae bacteriophage family, SPTD1.NL possessed a receptor-binding protein gene cluster encoding four tailspike proteins, TSP1-4. Investigation of the native gene cluster through chimeric proteins identified TSP3 as the tailspike protein responsible for Salmonella detection. Further analysis of chimeric phages revealed that TSP2 contributed off-target Citrobacter recognition, whereas TSP1 and TSP4 were not essential for activity against any known host. To improve the host range of SPTD1.NL, TSP1 and TSP2 were sequentially replaced with chimeric receptor-binding proteins targeting Salmonella. This engineered construct, called RBP-SPTD1-3, was a superior diagnostic reporter, sensitively detecting additional Salmonella serovars while also demonstrating improved specificity. For industrial applications, bacteriophages of the Ackermannviridae family are thus uniquely versatile and may be engineered with multiple chimeric receptor-binding proteins to achieve a custom-tailored host range.
Collapse
|
40
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
41
|
Multiple immunodominant O-epitopes co-expression in live attenuated Salmonella serovars induce cross-protective immune responses against S. Paratyphi A, S. Typhimurium and S. Enteritidis. PLoS Negl Trop Dis 2022; 16:e0010866. [PMID: 36228043 PMCID: PMC9595534 DOI: 10.1371/journal.pntd.0010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Salmonella enterica subsp. enterica (S. enterica) is a significant public health concern and is estimated to cause more than 300,000 deaths annually. Nowadays, the vaccines available for human Salmonellosis prevention are all targeting just one serovar, i.e., S. Typhi, leaving a huge potential risk of Salmonella disease epidemiology change. In this study, we explored the strategy of multiple immunodominant O-epitopes co-expression in S. enterica serovars and evaluated their immunogenicity to induce cross-immune responses and cross-protections against S. Paratyphi A, S. Typhimurium and S. Enteritidis. We found that nucleotide sugar precursors CDP-Abe and CDP-Par (or CDP-Tyv) could be utilized by S. enterica serovars simultaneously, exhibiting O2&O4 (or O4&O9) double immunodominant O-serotypes without obvious growth defects. More importantly, a triple immunodominant O2&O4&O9 O-serotypes could be achieved in S. Typhimurium by improving the substrate pool of CDP-Par, glycosyltransferase WbaV and flippase Wzx via a dual-plasmid overexpressing system. Through immunization in a murine model, we found that double or triple O-serotypes live attenuated vaccine candidates could induce significantly higher heterologous serovar-specific antibodies than their wild-type parent strain. Meanwhile, the bacterial agglutination, serum bactericidal assays and protection efficacy experiments had all shown that these elicited serum antibodies are cross-reactive and cross-protective. Our work highlights the potential of developing a new type of live attenuated Salmonella vaccines against S. Paratyphi A, S. Typhimurium and S. Enteritidis simultaneously.
Collapse
|
42
|
Mphande I, Kataba A, Muzandu K, Gono-Bwalya A. An Evaluation of the Antibacterial Activity of Pterocarpus tinctorius Bark Extract against Enteric Bacteria That Cause Gastroenteritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7973942. [PMID: 36204123 PMCID: PMC9532075 DOI: 10.1155/2022/7973942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Enteric bacteria are the leading cause of bacterial gastroenteritis worldwide, particularly in low-income countries. The bark decoction of Pterocarpus tinctorius (Fabaceae) has traditionally been used to treat bacterial gastroenteritis. However, studies reporting the antibacterial activity of Pterocarpus tinctorius are rare. Therefore, this study aimed to evaluate the antibacterial activity of stem bark extract of Pterocarpus tinctorius against Escherichia coli, Salmonella typhi, and Shigella dysenteriae. The powdered bark extract was successively extracted with methanol using the cold continuous maceration method, followed by partitioning the crude methanolic extract to obtain methanolic, hexane, and chloroform subextracts. Three fractions were isolated from the methanolic subextract using ordinary normal phase column chromatography. The antibacterial activity of the extracts and fractions was performed using the agar well diffusion method. The minimum inhibitory concentration (MIC) was determined using the agar well diffusion method. While, minimum bactericidal concentration (MBC) was obtained by the subculturing method. The methanolic subextract was the only extract that showed antibacterial activity against the tested bacteria, and its activity was highest on Shigella dysenteriae followed by Salmonella typhi and was least active on Escherichia coli, with mean inhibition zones of 14.3 ± 0.2, 13.7 ± 0.3, and 12.2 ± 0.1 at 200 mg/mL, respectively. Chloroform subextract showed antibacterial activity only on Shigella dysenteriae, while hexane subextract did not show antibacterial activity against all bacteria tested at 100 mg/mL and 200 mg/mL. Among the three subfractions of methanolic subextract, only one subfraction was active and had both mean minimum inhibitory concentration and a minimum bactericidal concentration against Escherichia coli at 1.25 mg/mL, Salmonella typhi at 1.25 mg/mL, and Shigella dysenteriae at 0.6 mg/mL. The findings of this study support the use of Pterocarpus tinctorius in traditional medicine. Therefore, purification and structural elucidation studies are highly recommended.
Collapse
Affiliation(s)
- Isaac Mphande
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Andrew Kataba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Angela Gono-Bwalya
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
43
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
44
|
Casjens SR, Davidson AR, Grose JH. The small genome, virulent, non-contractile tailed bacteriophages that infect Enterobacteriales hosts. Virology 2022; 573:151-166. [DOI: 10.1016/j.virol.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
|
45
|
Mejía L, Prado B, Cárdenas P, Trueba G, González-Candelas F. The impact of genetic recombination on pathogenic Leptospira. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105313. [PMID: 35688386 DOI: 10.1016/j.meegid.2022.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Leptospirosis is the most common zoonosis worldwide, and is increasingly common in poor urban communities, where there is inadequate sewage disposal and abundance of domestic and peridomestic animals. There are many risk factors associated with the disease, such as contaminated water exposure, close contact with animals, floods, recreational activities related to water, wet agriculture. The symptoms of leptospirosis are common to other infectious diseases and, if not treated, it can lead to meningitis, liver failure, kidney damage and death. Leptospirosis is caused by 38 pathogenic species of Leptospira, which are divided in almost 30 serogroups and more than 300 serovars. The serological classification (serogroups and serovars) is based on the expression of distinct lipopolysaccharide (LPS) antigens. These antigens are also associated to protective immunity; antibodies against a serovar protect from any member of the same serovar. Serologic and phylogenetic analyses are not congruent probably due to genetic recombination of LPS genes among different leptospiral species. To analyze the importance of recombination in leptospiral evolution, we performed a gene-by-gene tree topology comparison on closed genomes available in public databases at two levels: among core genomes of pathogenic species (34 recombinant among 1213 core genes), and among core genomes of L. interrogans isolates (178/798). We found that most recombinant genes code for proteins involved in translation, ribosomal structure and biogenesis, but also for cell wall, membrane and envelope biogenesis. Besides, our final results showed that half of LPS genes are recombinant (18/36). This is relevant because serovar classification and vaccine development are based on these epitopes. The frequent recombination of LPS-associated genes suggests that natural selection is promoting the survival of recombinant lineages. These results may help understanding the factors that make Leptospira a successful pathogen.
Collapse
Affiliation(s)
- Lorena Mejía
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Belén Prado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
46
|
Ramtahal MA, Amoako DG, Ismail A, Bester L, Abia ALK, Essack SY. Salmonella Yoruba: a rare serotype revealed through genomic sequencing along the farm-to-fork continuum of an intensive poultry farm in KwaZulu-Natal, South Africa. Acta Trop 2022; 234:106620. [PMID: 35907503 DOI: 10.1016/j.actatropica.2022.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
Abstract
Salmonella enterica is a zoonotic pathogen of worldwide public health importance. We characterised Salmonella isolates from poultry along the farm-to-fork continuum using whole genome sequencing (WGS) and bioinformatics analysis. Three multilocus sequence types (MLSTs), i.e., ST15 (1.9%), ST152 (5.9%) and ST1316 (92.2%) and three serotypes, i.e., S. Heidelberg (1.9%), Kentucky (5.9%) and Yoruba (92.2%) were detected. The rare serotype, S. Yoruba, was detected among the farm and abattoir isolates and contained resistance and virulence determinants. Resistome analysis revealed the presence of the aac(6')-Iaa gene associated with aminoglycoside resistance, a single point mutation in the parC gene associated with fluoroquinolone and quinolone resistance, and a single isolate contained the fosA7 gene responsible for fosfomycin resistance. No antibiotic resistance genes (ARGs) were identified for isolates phenotypically non-susceptible to azithromycin, cephalosporins, chloramphenicol and nitrofurantoin and resistance was thought to be attributable to other resistance mechanisms. The fully susceptible profiles observed for the wastewater isolates suggest that the poultry environment may receive antibiotic-resistant strains and resistance determinants from poultry with the potential of becoming a pathway of Salmonella transmission along the continuum. Six plasmids were identified and were only carried by 92.2% of the S. Yoruba isolates in varying combinations. Four plasmids were common to all S. Yoruba isolates along the continuum; isolates from the litter and faeces on the farm contained two additional plasmids. Ten Salmonella pathogenicity islands (SPIs) and 177 virulence genes were identified; some were serotype-specific. Phylogenetic analysis of S. Heidelberg and Kentucky showed that isolates were related to animal and human isolates from other countries. Phylogenetic analysis among the S. Yoruba isolates revealed four clades based on the isolate sources along the farm-to-fork continuum. Although the transmission of Salmonella strains along the farm-to-fork continuum was not evident, pathogenic, resistant Salmonella present in the poultry production chain poses a food safety risk. WGS analysis can provide important information on the spread, resistance, pathogenicity, and epidemiology of isolates and new, rare or emerging Salmonella strains to develop intervention strategies to improve food safety.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Core Sequencing Facility, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Linda Bester
- Biomedical Research Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Environmental Research Foundation, Westville 3630, KwaZulu-Natal
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
47
|
Wang S, Zhang J, Wei F, Li W, Wen L. Facile Synthesis of Sugar Nucleotides from Common Sugars by the Cascade Conversion Strategy. J Am Chem Soc 2022; 144:9980-9989. [PMID: 35583341 DOI: 10.1021/jacs.2c03138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sugar nucleotides are essential glycosylation donors in the carbohydrate metabolism. Naturally, most sugar nucleotides are derived from a limited number of common sugar nucleotides by de novo biosynthetic pathways, undergoing single or multiple reactions such as dehydration, epimerization, isomerization, oxidation, reduction, amination, and acetylation reactions. However, it is widely believed that such complex bioconversions are not practical for synthetic use due to the high preparation cost and great difficulties in product isolation. Therefore, most of the discovered sugar nucleotides are not readily available. Here, based on de novo biosynthesis mainly, 13 difficult-to-access sugar nucleotides were successfully prepared from two common sugars D-Man and sucrose in high yields, at a multigram scale, and without the need for tedious purification manipulations. This work demonstrated that de novo biosynthesis, although undergoing complex reactions, is also practical and cost-effective for synthetic use by employing a cascade conversion strategy.
Collapse
Affiliation(s)
- Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| |
Collapse
|
48
|
Vogel U, Beerens K, Desmet T. Nucleotide sugar dehydratases: Structure, mechanism, substrate specificity, and application potential. J Biol Chem 2022; 298:101809. [PMID: 35271853 PMCID: PMC8987622 DOI: 10.1016/j.jbc.2022.101809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.
Collapse
Affiliation(s)
- Ulrike Vogel
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| |
Collapse
|
49
|
Pearson C, Tindall S, Potts JR, Thomas GH, van der Woude MW. Diverse functions for acyltransferase-3 proteins in the modification of bacterial cell surfaces. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001146. [PMID: 35253642 PMCID: PMC9558356 DOI: 10.1099/mic.0.001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
Abstract
The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins - acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in O-acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.
Collapse
Affiliation(s)
| | - Sarah Tindall
- Department of Biology, University of York, Heslington, UK
| | | | - Gavin H. Thomas
- Department of Biology, University of York, Heslington, UK
- York Biomedical Institute, University of York, Heslington, UK
| | - Marjan W. van der Woude
- York Biomedical Institute, University of York, Heslington, UK
- Hull York Medical School, Heslington, UK
| |
Collapse
|
50
|
Zhao F, Ding G, Wang Q, Du H, Xiao G, Zhou D. Deletion of the waaf gene affects O antigen synthesis and pathogenicity in Vibrio parahaemolyticus from shellfish. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|