1
|
Zhang X, Nie P, Hu X, Feng J. Future Range Expansions of Invasive Wasps Suggest Their Increasing Impacts on Global Apiculture. INSECTS 2024; 15:546. [PMID: 39057278 PMCID: PMC11276961 DOI: 10.3390/insects15070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Until now, no study has examined the future range dynamics of major invasive wasp species to assess their future impacts on global apiculture. Here, we developed 12 species distribution models to calibrate the future range dynamics of 12 major invasive Vespidae wasp species under a unified framework. An increase in their habitat suitability was identified in more than 75% of global land. Substantial range expansions were detected for all 12 species, and they were primarily induced by future climate changes. Notably, Polistes dominula and Vespa crabro had the largest potential ranges under all scenarios, suggesting their greater impact on global apiculture. Polistes chinensis and Vespa velutina nigrithorax had the highest range expansion ratios, so they warrant more urgent attention than the other species. Polistes versicolor and P. chinensis are expected to exhibit the largest centroid shifts, suggesting that substantial shifts in prioritizing regions against their invasions should be made. Europe and the eastern part of the USA were future invasion hotspots for all major invasive wasp species, suggesting that apiculture might face more pronounced threats in these regions than in others. In conclusion, given their substantial range shifts, invasive wasps will likely have increasingly negative impacts on global apiculture in the future.
Collapse
Affiliation(s)
- Xueyou Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (X.Z.); (P.N.)
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| | - Peixiao Nie
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (X.Z.); (P.N.)
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| | - Xiaokang Hu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (X.Z.); (P.N.)
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (X.Z.); (P.N.)
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
2
|
Sedira N, Pinto J, Ginja M, Gomes AP, Nepomuceno MCS, Pereira S. Investigating the Architecture and Characteristics of Asian Hornet Nests: A Biomimetics Examination of Structure and Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7027. [PMID: 37959626 PMCID: PMC10647307 DOI: 10.3390/ma16217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
This study investigates the internal architecture of Asian hornet nests (AHNs) using advanced imaging techniques, such as CT scanning and X-ray radiography, to understand their construction and function. The primary objective and significance of this study centre on drawing inspiration from the creative way Asian hornets construct their nests, with a particular focus on the architecture, design, functionality, and building materials of these nests. The architectural principles governing the construction of these nests, such as the arrangement of hexagonal cells, pedicels for load bearing, and adhesive materials, serve as a source of inspiration for innovative and sustainable design practices. The pedicels in Asian hornet nests play a crucial role in transferring load and ensuring stability. Additionally, AHNs' adhesion to tree branches is essential for preventing collapse, and the pedicels provide necessary structural support. The knowledge gained from studying AHNs' internal architecture could be applied directly to the architecture and civil engineering fields to improve structure stability and durability. The microstructure analysis of the paper-like material that hornets produce to build their nests indicates a complex and heterogeneous structure, composed of various plant fragments and fibres. This unique composition creates intricate grooves and pores, which are essential for regulating temperature and humidity levels within the outer envelope of the nest. The study of Asian hornet nests' internal structure demonstrated that nature's engineering principles inspire the design of durable and resilient structures in the construction industry. Civil engineers can incorporate similar principles into their designs to enhance the structural integrity and performance of buildings, bridges, and other infrastructure.
Collapse
Affiliation(s)
- Naim Sedira
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
| | - Jorge Pinto
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
| | - Mário Ginja
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- Centre for Animal Sciences and Veterinary Studies (CECAV), UTAD, 5000-801 Vila Real, Portugal
| | - Ana P. Gomes
- University of Beira Interior (UBI), 6201-001 Covilhã, Portugal; (A.P.G.); (M.C.S.N.)
- FibEnTech–Fiber Materials and Environmental Technologies, Optical Centre, UBI, 6201-001 Covilhã, Portugal
| | - Miguel C. S. Nepomuceno
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
- University of Beira Interior (UBI), 6201-001 Covilhã, Portugal; (A.P.G.); (M.C.S.N.)
- Lab2PT, Landscape, Heritage and Territory Laboratory, 4800-058 Guimarães, Portugal
| | - Sandra Pereira
- University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.P.); (M.G.); (S.P.)
- C-MADE–Centre of Materials and Building Technologies, UBI, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Tison L, Franc C, Burkart L, Jactel H, Monceau K, de Revel G, Thiéry D. Pesticide contamination in an intensive insect predator of honey bees. ENVIRONMENT INTERNATIONAL 2023; 176:107975. [PMID: 37216836 DOI: 10.1016/j.envint.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Pesticides used for plant protection can indirectly affect target and non-target organisms and are identified as a major cause of insect decline. Depending on species interactions, pesticides can be transferred into the environment from plants to preys and predators. While the transfer of pesticides is often studied through vertebrate and aquatic exposure, arthropod predators of insects may represent valuable bioindicators of environmental exposure to pesticides. A modified QuEChERS extraction coupled with HPLC-MS/MS analysis was used to address the question of the exposure to pesticides of the invasive hornet Vespa velutina, a specialist predator of honey bees. This analytical method allows the accurate quantification of nanogram/gram levels of 42 contaminants in a sample weight that can be obtained from single individuals. Pesticide residues were analyzed in female workers from 24 different hornet nests and 13 different pesticides and 1 synergist, piperonyl butoxide, were identified and quantified. In 75 % of the explored nests, we found at least one compound and in 53 % of the positive samples we could quantify residues ranging from 0.5 to 19.5 ng.g-1. In this study, hornets from nests located in sub-urban environments were the most contaminated. Pesticide residue analysis in small and easy to collect predatory insects opens new perspectives for the study of environmental contamination and the transfer of pesticides in terrestrial trophic chains.
Collapse
Affiliation(s)
- Léa Tison
- INRAE, UMR1065 SAVE, 33140 Villenave d'Ornon, France.
| | - Céline Franc
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140 Villenave d'Ornon, France
| | | | | | - Karine Monceau
- Univ. La Rochelle CEBC, UMR CNRS 7372, 79360 Villiers-en-Bois, France
| | - Gilles de Revel
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140 Villenave d'Ornon, France
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140 Villenave d'Ornon, France
| |
Collapse
|
4
|
Monitoring Study in Honeybee Colonies Stressed by the Invasive Hornet Vespa velutina. Vet Sci 2022; 9:vetsci9040183. [PMID: 35448681 PMCID: PMC9032408 DOI: 10.3390/vetsci9040183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Vespa velutina is an invasive species that is currently the main concern for beekeeping in some areas of northern Spain. The hornet hunts honeybees to feed its larvae, stressing and weakening the honeybee colonies. To avoid losses of honeybee colonies, it is essential to investigate the pressure that is exerted by the yellow-legged hornet on apiaries and its consequences. In the present study, hives were monitored in an apiary that was situated in a high-pressure area of V. velutina during the years 2020 and 2021. The monitoring of environmental conditions of the apiary, the internal conditions of the colonies, and a hunting camera were used to relate the presence of hornets in front of the hives to the weather conditions in the apiary and the consequences caused on the colonies. The relationships between weather conditions and the hornet’s activity showed two types of hornet behavior. In the months of July and August, the maximum number of hornets appeared in non-central hours of the day. Meanwhile, in the months of September and October, the highest pressure in the apiary occurred in the central hours of the day, coinciding with temperatures between 15 °C and 25 °C and a relative humidity that was higher than 60%. The honeybee colony with the highest thermoregulatory capacity was the strongest and it was the key factor for the colony survival even when the hornet pressure was high too. Therefore, strengthening the hives and improving beehive health status is essential to avoid colonies decline.
Collapse
|
5
|
Do Y, Park WB, Park JK, Kim CJ, Choi MB. Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area. Sci Rep 2022; 12:4737. [PMID: 35304542 PMCID: PMC8933441 DOI: 10.1038/s41598-022-08756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
The yellow-legged hornet (Vespa velutina nigrithorax) is an invasive species in South Korea with negative economic, ecological, and public health impacts. We investigated genetic and morphological variation in the species populations on Mt. Jiri, the tallest mountain in South Korea. We hypothesized that a high-altitude would be negatively correlated with the genetic diversity of the hornet population, and hornet wing morphology would change with an increase in altitude. Our results showed that the genetic diversity of yellow-legged hornets did not decrease as altitude increased. Regardless of the altitude, the inbreeding coefficient was high at the newly colonized sites. A single genetic population occurred in the mountainous areas examined and gradually expanded its range. Wing morphology, especially shape, did not change with an increase in altitude or decrease in temperature. Although snow cover and cool temperatures at high altitudes could limit nest-building activities, they did not prevent the extension of the range of the species. Therefore, the yellow-legged hornet cannot be controlled naturally by climate or topography; combined approaches, including chemical control, nest removal, and bait-trapping techniques should be implemented.
Collapse
Affiliation(s)
- Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Woong-Bae Park
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Chang-Jun Kim
- Research Panning and Coordination Team, Korea National Arboretum, Pocheon, Gyeonggi, Republic of Korea.
| | - Moon Bo Choi
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Lima CG, Sofia Vaz A, Honrado JP, Aranha J, Crespo N, Vicente JR. The invasion by the Yellow-legged hornet: a systematic review. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Vidal C. The Asian wasp Vespa velutina nigrithorax: Entomological and allergological characteristics. Clin Exp Allergy 2021; 52:489-498. [PMID: 34822191 DOI: 10.1111/cea.14063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
The yellow-legged or Asian wasp (Vespa velutina nigrithorax) has spread rapidly across Europe since its first introduction in France, in 2004. Originally from South-East Asia, it is considered an invasive species outside its native region. Apart from the ecological and economic implications of its presence, it may cause health problems to humans due to the toxic and allergenic components of its venom. Vespa velutina nigrithorax has become the most prevalent cause of anaphylaxis due to Hymenoptera venom in some regions of Spain. Although sIgE against both antigen 5 (Vesp v 5) and A1-phospholipase (Vesp v 1) has been detected in these patients, only Vesp v 5 may be considered a dominant allergen. Interestingly, Vesp v 1 appears to be a glycosylated allergen different from A1-phospholipases from other species. Inhibition studies suggest that Vespula spp venom could behave as primary sensitizer. Besides, changes in sIgE and sIgG4 during Vespula venom immunotherapy in patients with anaphylaxis due to V. velutina support the use of Vespula venom extracts to treat these patients. The purpose of this review is to explore the biological behaviour of V. velutina and to summarize the current knowledge of the allergic reactions provoked by this wasp.
Collapse
Affiliation(s)
- Carmen Vidal
- Allergy Department, Complejo Hospitalario Universitario de Santiago, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Wilson Rankin EE. Emerging patterns in social wasp invasions. CURRENT OPINION IN INSECT SCIENCE 2021; 46:72-77. [PMID: 33667693 DOI: 10.1016/j.cois.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 05/06/2023]
Abstract
Invasive species are a main driver of biodiversity loss and ecological change globally. Consequently, there is a need to understand how invaders damage ecosystems and to develop effective management strategies. Social wasps (Hymenoptera: Vespidae) include some of the world's most ecologically damaging invasive insects. In recent decades, the invasive social wasp literature has grown rapidly. This may be due in part to increased rate of introduction as well as greater public awareness of invasive wasps and their potential negative impacts on bees. Here, we investigate trends in invasive social wasp research, identifying the emergence of Vespa invasions, the mechanism-based inquiry into Vespula invasions, and the increased application of molecular methods to track invasive species through the invasion process.
Collapse
Affiliation(s)
- Erin E Wilson Rankin
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Evidence for Range Expansion and Origins of an Invasive Hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with Notes on Its Natural Status. INSECTS 2021; 12:insects12040320. [PMID: 33918421 PMCID: PMC8066726 DOI: 10.3390/insects12040320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary The invasive hornet Vespa bicolor Fabricius was first discovered in Taiwan in 2003 and was not confirmed to have been established until 2014. This study was conducted in order to (1) assess the current status of V. bicolor abundance, dispersal, seasonality, and possible impact on honeybee (Apis mellifera Linnaeus) in Taiwan; (2) and to trace the origins of Taiwan’s V. bicolor population. To assess V. bicolor abundance, we used visual surveys, sweep netting, and hornet traps in four known ranges in northern and central Taiwan from 2016 to 2020. Additionally, to understand V. bicolor dispersion, we mapped environmental data using ArcGIS, and to predict future V. bicolor range, we used ecological niche modeling. The results show that V. bicolor has stable populations in three areas in northern and central Taiwan, and mainly preys on Apis mellifera. Our analyses suggest samples from Southeastern China as having the closest relation in DNA sequences with Taiwan’s V. bicolor population. Due to the negative economic and ecological impacts of V. bicolor in Taiwan, our findings shed light on the value of monitoring and controlling its populations, rather than working exclusively towards elimination. Abstract The invasive alien species (IAS) Vespa bicolor is the first reported hornet that has established in Taiwan and is concerning as they prey on honeybee Apis mellifera, which leads to colony losses and public concerns. Thus, the aim of this study was to assess the current status of V. bicolor abundance, dispersal, and impact and to trace the origins of Taiwan’s V. bicolor population. Our studies took place in five areas in northern to central Taiwan. We used mtDNA in the phylogenetic analyses. Field survey and ecological niche modeling (ENM) were used to understand the origins and current range of the invasive species. Two main subgroups of V. bicolor in the phylogenetic tree were found, and a clade with short branch lengths in Southeastern China and Taiwan formed a subgroup, which shows that the Taiwan population may have invaded from a single event. Evidence shows that V. bicolor is not a severe pest to honeybees in the study area; however, using ENM, we predict the rapid dispersion of this species to the cooler and hilly mountain areas of Taiwan. The management of V. bicolor should also involve considering it a local pest to reduce loss by beekeepers and public fear in Taiwan. Our findings highlight how the government, beekeepers, and researchers alike should be aware of the implications of V. bicolor’s rapid range expansion in Taiwan, or in other countries.
Collapse
|
10
|
Yun HS, Oh J, Lim JS, Kim HJ, Kim JS. Anti-Inflammatory Effect of Wasp Venom in BV-2 Microglial Cells in Comparison with Bee Venom. INSECTS 2021; 12:insects12040297. [PMID: 33805372 PMCID: PMC8066097 DOI: 10.3390/insects12040297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary As the population of the yellow-legged hornet (Vespa velutina) spreads, this study investigated ways to utilize this resource of abundant invasive wasp species. Hymenoptera venoms, including bee venom and wasp venom, have therapeutic potential. Although the venoms are toxic to humans, the elucidation of their composition and working mechanisms has led to discoveries about their potential applications in treatment modalities for a variety of disorders. Therefore, we examined the anti-inflammatory effect of wasp venom from V. velutina in comparison with that of bee venom from honey bee on BV-2 murine microglial cells. Treatment with wasp venom reduced the secretion of nitric oxide and pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that wasp venom and bee venom decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, wasp venom decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Overall, the findings demonstrated that wasp venom inhibited LPS-induced inflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases. Abstract The aim of this study was to compare the anti-inflammatory effect of wasp venom (WV) from the yellow-legged hornet (Vespa velutina) with that of bee venom (BV) on BV-2 murine microglial cells. WV was collected from the venom sac, freeze-dried, and used for in vitro examinations. WV and BV were non-toxic to BV-2 cells at concentrations of 160 and 12 µg/mL or lower, respectively. Treatment with WV reduced the secretion of nitric oxide and proinflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that WV and BV decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, WV decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Cumulatively, the results demonstrated that WV inhibited LPS-induced neuroinflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun Seok Yun
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
11
|
Effectiveness and Selectiveness of Traps and Baits for Catching the Invasive Hornet Vespa velutina. INSECTS 2020; 11:insects11100706. [PMID: 33081133 PMCID: PMC7602873 DOI: 10.3390/insects11100706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Vespa velutina is an invasive hornet that is colonising several countries worldwide, with detrimental effects on multiple components but primarily affecting honey bees and native insect species. Traps for wasps and hornets are commonly used for trapping V. velutina, both for monitoring and control purposes. In this study, we compared the performances of two typologies of traps and baits widely used for trapping this invasive hornet, by evaluating their effectiveness and selectiveness in trapping V. velutina in two sites during two different periods of the year, spring and autumn. The performance of the traps changed in relation to (i) the trap's model, (ii) the bait's typology and (iii) the period of the year. In spring, traps with common beer as bait were more effective and more selective independently of trap's model than the commercial bait that has been tested. On the contrary, in autumn, just one combination of trap and attractant (the commercial trap and bait) achieved higher effectiveness and selectiveness. Despite the underlined variations among traps and baits, overall catches of V. velutina were scanty compared to bycatches of non-target insects, since best performing traps either in term of effectiveness and selectiveness caught 3.65% of the target species in spring and 1.35% in autumn upon the total trapped insects. This highlights the urgent necessity of developing more selective trapping methods for monitoring and particularly for controlling purposes.
Collapse
|
12
|
Abstract
Vespa velutina, or Asian yellow-legged hornet, was accidentally introduced from China to other parts of the world: South Korea in 2003, Europe in 2004, and Japan in 2012. V. velutina represents a serious threat to native pollinators. It is known to be a fierce predator of honey bees, but can also hunt wild bees, native wasps, and other flying insects. When V. velutina colonies are developed, many hornets capture foraging bees which are coming back to their hives, causing an increase in homing failure and paralysis of foraging thus leading to colony collapse. The hornets may enter weak beehives to prey on brood and pillage honey. Unlike Apis cerana, Apis mellifera is unable to cope with the predation pressure of V. velutina. Monitoring the spread of an invasive alien species is crucial to plan appropriate management actions and activities to limit the expansion of the species. In addition, an early detection of V. velutina in areas far away from the expansion front allows a rapid response aimed to remove these isolated populations before the settlement of the species. Where V. velutina is now established, control measures to prevent colony losses must be implemented with an integrated pest management approach.
Collapse
|
13
|
Viruses in the Invasive Hornet Vespa velutina. Viruses 2019; 11:v11111041. [PMID: 31717432 PMCID: PMC6893812 DOI: 10.3390/v11111041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA sequences present in asymptomatic or symptomatic hornets. Among 19 detected viruses, the honey bee virus Deformed wing virus-B was predominant in all the samples, particularly in muscles from the symptomatic hornet, suggesting a putative cause of the deformed wing symptom. Interestingly, two new viruses closely related to Acyrthosiphon pisumvirus and Himetobi Pvirus and viruses typically associated with honey bees, Acute bee paralysis virus and Black queen cell virus, were detected in the brain and muscles, and may correspond to the circulation and possible replication forms of these viruses in the hornet. Aphid lethal paralysis virus, Bee Macula-like virus, and Moku virus, which are known to infect honey bees, were also identified in the gut virus metagenome of hornets. Therefore, our study underlined the urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina.
Collapse
|
14
|
|
15
|
Chen G, Wang ZW, Wen P, Wei W, Chen Y, Ai H, Sun WB. Hydrocarbons mediate seed dispersal: a new mechanism of vespicochory. THE NEW PHYTOLOGIST 2018; 220:714-725. [PMID: 29677396 DOI: 10.1111/nph.15166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Vespicochory, seed dispersal by hornets, is an uncommon seed dispersal pattern in angiosperms. To date, this phenomenon has been recorded in only four families. Because of its rarity, the causes and consequences of vespicochory remain unclear. Hence, this seed dispersal syndrome is often regarded as anecdotal. Through field investigations, chemical analyses, electrophysiological tests, identification of chemosensory proteins from the antennae of hornets, and behavioral assays, we investigated whether olfactory and/or visual cues of the diaspores of Stemona tuberosa mediate the behavior of the social hornets and maintain their mutualism. This study demonstrated that the elaiosome of S. tuberosa emits hydrocarbons, which are attractive to hornets. However, these compounds, which induce responses in the antennae of naive hornets, are ubiquitous substances on insect cuticle surfaces. Innate preference and experienced foraging behavior of hornets can increase their seed dispersal efficiency. This is the first example in which hydrocarbons have been identified as a diaspore odour involved in the attraction of hornets. Given that the ubiquity of hornets, and the communication function of hydrocarbons in insects, we predict that this rare seed dispersal mechanism may be an overlooked mechanism of insect-plant mutualism.
Collapse
Affiliation(s)
- Gao Chen
- Yunnan Key Laboratory of Integrative Conservation for Plant Species with Extremely Small Populations, Kunming, 650204, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zheng-Wei Wang
- Chemical Ecology Group of Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650204, China
| | - Ping Wen
- Chemical Ecology Group of Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650204, China
| | - Wei Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wei-Bang Sun
- Yunnan Key Laboratory of Integrative Conservation for Plant Species with Extremely Small Populations, Kunming, 650204, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| |
Collapse
|
16
|
Budge GE, Hodgetts J, Jones EP, Ostojá-Starzewski JC, Hall J, Tomkies V, Semmence N, Brown M, Wakefield M, Stainton K. The invasion, provenance and diversity of Vespa velutina Lepeletier (Hymenoptera: Vespidae) in Great Britain. PLoS One 2017; 12:e0185172. [PMID: 28950004 PMCID: PMC5614577 DOI: 10.1371/journal.pone.0185172] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
The yellow-legged or Asian hornet (Vespa velutina colour form nigrithorax) was introduced into France from China over a decade ago. Vespa velutina has since spread rapidly across Europe, facilitated by suitable climatic conditions and the ability of a single nest to disperse many mated queens over a large area. Yellow-legged hornets are a major concern because of the potential impact they have on populations of many beneficial pollinators, most notably the western honey bee (Apis mellifera), which shows no effective defensive behaviours against this exotic predator. Here, we present the first report of this species in Great Britain. Actively foraging hornets were detected at two locations, the first around a single nest in Gloucestershire, and the second a single hornet trapped 54 km away in Somerset. The foraging activity observed in Gloucestershire was largely restricted to within 700 m of a single nest, suggesting highly localised movements. Genetic analyses of individuals from the Gloucestershire nest and the single hornet from Somerset suggest that these incursions represent an expansion of the European population, rather than a second incursion from Asia. The founding queen of the Gloucestershire nest mated with a single male, suggesting that sexual reproduction may have occurred in an area of low nest density. Whilst the nest contained diploid adult males, haploid ‘true’ males were only present at the egg stage, indicating that the nest was detected and removed before the production of queens. Members of the public reported additional dead hornets associated with camping equipment recently returned from France and imported timber products, highlighting possible pathways of incursion. The utility of microsatellites to inform surveillance during an incursion and the challenge of achieving eradication of this damaging pest are discussed.
Collapse
Affiliation(s)
- Giles E. Budge
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Jennifer Hodgetts
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Eleanor P. Jones
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | | | - Jayne Hall
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Victoria Tomkies
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Nigel Semmence
- National Bee Unit, Animal and Plant Health Agency, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Mike Brown
- National Bee Unit, Animal and Plant Health Agency, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Maureen Wakefield
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Kirsty Stainton
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| |
Collapse
|
17
|
Franklin DN, Brown MA, Datta S, Cuthbertson AGS, Budge GE, Keeling MJ. Invasion dynamics of Asian hornet, Vespa velutina (Hymenoptera: Vespidae): a case study of a commune in south-west France. APPLIED ENTOMOLOGY AND ZOOLOGY 2017; 52:221-229. [PMID: 28515497 PMCID: PMC5409922 DOI: 10.1007/s13355-016-0470-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/06/2016] [Indexed: 06/07/2023]
Abstract
Asian hornet, Vespa velutina Lepeletier nests were discovered in 2007 in Andernos-les-Bains on the south-west coast of France, 3 years after the first reported sightings in France. The number of nests increased in the commune over the following 7 years, despite local authorities enacting a destruction policy. The nests existed in close proximity to one another leading to a high density of over 10 nests per square kilometre in urban areas. New information on the chosen habitat for nests is presented, and the differences between primary and secondary locations are evident, with primary nests mostly occupying buildings and man-made structures, while secondary nests were found on trees. Using Bayesian inference methods, we fit a basic model to the observational data, which allows us to estimate key demographic parameters. This model fit is highly informative for predicting V. velutina spread and colonisation of other at-risk regions, and suggests that local control has a limited impact on the spread of V. velutina once established within a region.
Collapse
Affiliation(s)
- Daniel N. Franklin
- ZEEMAN Institute: SBIDER, University of Warwick, Coventry, CV4 7AL UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Mike A. Brown
- National Bee Unit, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ UK
| | - Samik Datta
- ZEEMAN Institute: SBIDER, University of Warwick, Coventry, CV4 7AL UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL UK
| | | | | | - Matt J. Keeling
- ZEEMAN Institute: SBIDER, University of Warwick, Coventry, CV4 7AL UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
18
|
Monceau K, Maher N, Bonnard O, Thiéry D. Evaluation of competition between a native and an invasive hornet species: do seasonal phenologies overlap? BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:462-469. [PMID: 25895505 DOI: 10.1017/s0007485315000280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One common dogma in ecology is based on the competitive exclusion principle. Hence, competition is often considered to be one of the primary determinants of the structure and functioning of ecosystems. In this paper, we investigate how the native Vespa crabro and the recently introduced Vespa velutina show some degree of niche differentiation that potentially minimizes their interspecific competition, the two dimensions investigated here being seasonal activity patterns and preferences for food. These two species share common characteristics: they are closely related, live in the same areas, belong to the same guild (predators), exploit the same kind of food sources, and exhibit a similar annual life cycle. Considering all these similarities, interspecific competition may occur if the two species exhibit identical seasonal phenologies. Our data show that their seasonal phenologies overlap to some extent probably due to biological constraints common to Vespinae. The shifts in time observed here allow the hornet species to not directly compete for food sources at the same time. It does not however exclude indirect competition, especially in a 'first-come, first-served' fashion.
Collapse
Affiliation(s)
- K Monceau
- INRA,UMR 1065 Santé et Agroécologie du Vignoble,ISVV,F-33883 Villenave d'Ornon,France
| | - N Maher
- INRA,UMR 1065 Santé et Agroécologie du Vignoble,ISVV,F-33883 Villenave d'Ornon,France
| | - O Bonnard
- INRA,UMR 1065 Santé et Agroécologie du Vignoble,ISVV,F-33883 Villenave d'Ornon,France
| | - D Thiéry
- INRA,UMR 1065 Santé et Agroécologie du Vignoble,ISVV,F-33883 Villenave d'Ornon,France
| |
Collapse
|
19
|
Olfactory attraction of the hornet Vespa velutina to honeybee colony odors and pheromones. PLoS One 2014; 9:e115943. [PMID: 25549358 PMCID: PMC4280141 DOI: 10.1371/journal.pone.0115943] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022] Open
Abstract
Since the beginning of the last century, the number of biological invasions has continuously increased worldwide. Due to their environmental and economical consequences, invasive species are now a major concern. Social wasps are particularly efficient invaders because of their distinctive biology and behavior. Among them, the yellow-legged hornet, Vespa velutina, is a keen hunter of domestic honeybees. Its recent introduction to Europe may induce important beekeeping, pollination, and biodiversity problems. Hornets use olfactory cues for the long-range detection of food sources, in this case the location of honeybee colonies, but the exact nature of these cues remains unknown. Here, we studied the orientation behavior of V. velutina workers towards a range of hive products and protein sources, as well as towards prominent chemical substances emitted by these food sources. In a multiple choice test performed under controlled laboratory conditions, we found that hornets are strongly attracted to the odor of some hive products, especially pollen and honey. When testing specific compounds, the honeybee aggregation pheromone, geraniol, proved highly attractive. Pheromones produced by honeybee larvae or by the queen were also of interest to hornet workers, albeit to a lesser extent. Our results indicate that V. velutina workers are selectively attracted towards olfactory cues from hives (stored food, brood, and queen), which may signal a high prey density. This study opens new perspectives for understanding hornets’ hunting behavior and paves the way for developing efficient trapping strategies against this invasive species.
Collapse
|
20
|
Arca M, Papachristoforou A, Mougel F, Rortais A, Monceau K, Bonnard O, Tardy P, Thiéry D, Silvain JF, Arnold G. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator. Behav Processes 2014; 106:122-9. [PMID: 24857979 DOI: 10.1016/j.beproc.2014.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 04/05/2014] [Accepted: 05/13/2014] [Indexed: 11/19/2022]
Abstract
We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators.
Collapse
Affiliation(s)
- Mariangela Arca
- CNRS, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France; Université Paris-Sud 11, 91405 Orsay cedex, France; Unité de Recherche IRD 072, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Alexandros Papachristoforou
- CNRS, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France; Université Paris-Sud 11, 91405 Orsay cedex, France; Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Florence Mougel
- CNRS, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France; Université Paris-Sud 11, 91405 Orsay cedex, France
| | - Agnès Rortais
- CNRS, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France; Université Paris-Sud 11, 91405 Orsay cedex, France
| | - Karine Monceau
- INRA, UMR1065 Save, ISVV, B.P. 81, F-33883 Villenave d'Ornon Cedex, France; Université de Bordeaux, UMR1065 Save, Bordeaux Sciences Agro, B.P. 81, F-33883 Villenave d'Ornon Cedex, France
| | - Olivier Bonnard
- INRA, UMR1065 Save, ISVV, B.P. 81, F-33883 Villenave d'Ornon Cedex, France; Université de Bordeaux, UMR1065 Save, Bordeaux Sciences Agro, B.P. 81, F-33883 Villenave d'Ornon Cedex, France
| | - Pascal Tardy
- Université de Bordeaux, Laboratoire de l'Intégration du Matériau au Système (IMS), CNRS UMR 5218, ENSCBP, 16, av. Pey Berland, F-33607 Pessac, France
| | - Denis Thiéry
- INRA, UMR1065 Save, ISVV, B.P. 81, F-33883 Villenave d'Ornon Cedex, France; Université de Bordeaux, UMR1065 Save, Bordeaux Sciences Agro, B.P. 81, F-33883 Villenave d'Ornon Cedex, France
| | - Jean-François Silvain
- Unité de Recherche IRD 072, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Gérard Arnold
- CNRS, Laboratoire Evolution, Génomes et Spéciation, UPR 9034, CNRS, 91198 Gif-sur-Yvette cedex, France; Université Paris-Sud 11, 91405 Orsay cedex, France
| |
Collapse
|