1
|
Wu M, Sun H, Wang A, Lao J, Liu D, Chen C, Zhang Y, Xia Q, Ma S. Effects of poly (ADP-ribose) polymerase 1 (PARP1) on silk proteins in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38961541 DOI: 10.1111/imb.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Animal silk is economically important, while silk secretion is a complex and subtle mechanism regulated by many genes. We identified the poly (ADP-ribose) polymerase (PARP1) gene of the silkworm and successfully cloned its coding sequence (CDS) sequence. Using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) technology, we screened single guide RNA (sgRNA) with high knockout efficiency by cellular experiments and obtained PARP1 mutants by knocking out the PARP1 gene of the silkworm at the individual level. We found that the mutants mainly exhibited phenotypes such as smaller cocoon size and reduced cocoon shell rate than the wild type. We also detected the expression of silk protein genes in the mutant by quantitative real-time PCR (qPCR) and found that the expression of some silk protein genes was slightly down-regulated. Meanwhile, together with the results of transcriptomic analysis, we hypothesized that PARP1 may affect the synthesis of silk proteins, resulting in their failure to function properly. Our study may provide an important reference for future in-depth refinement of the molecular mechanism of silk protein expression in silk-producing animals, as well as a potential idea for future development of molecular breeding lines of silkworms to improve silk production.
Collapse
Affiliation(s)
- Mingke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Chaojie Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Deng X, Liu L, Deng J, Zha X. Specific Expression of Antimicrobial Peptides from the Black Soldier Fly in the Midgut of Silkworms ( Bombyx mori) Regulates Silkworm Immunity. INSECTS 2023; 14:insects14050443. [PMID: 37233071 DOI: 10.3390/insects14050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Antimicrobial peptides are molecules with strong antimicrobial activity and are of substantial interest for the immunization of insects. As a type of dipteran insect that can turn organic waste into animal feed, the black soldier fly (BSF) can "turn waste into treasure". In this study, we investigated the antimicrobial activity of the antimicrobial peptide genes, HiCG13551 and Hidiptericin-1, of BSF in silkworms, by overexpressing the genes specifically in the midgut. Changes in the mRNA levels of the transgenic silkworms after infection with Staphylococcus aureus were evaluated using transcriptome sequencing. The results showed that Hidiptericin-1 had stronger antimicrobial activity than HiCG13551. KEGG enrichment analysis showed that the differentially expressed genes in the transgenic overexpressed Hidiptericin-1 silkworm lines from the D9L strain were mainly enriched in the starch and sucrose metabolism, pantothenate and CoA biosynthesis, drug metabolism (other enzymes), biotin metabolism, platinum drug resistance, galactose metabolism, and pancreatic secretion pathways. In addition, immune-related genes were up-regulated in this transgenic silkworm strain. Our study may provide new insights for future immune studies on insects.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhang K, Hu X, Zhao Y, Pan G, Li C, Ji H, Li C, Yang L, Abbas MN, Cui H. Scavenger receptor B8 improves survivability by mediating innate immunity in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103917. [PMID: 33159959 DOI: 10.1016/j.dci.2020.103917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Scavenger receptor class B (SR-B) is an extracellular transmembrane glycoprotein that plays a vital role in innate immunity. Although SR-Bs have been widely studied in vertebrates, their functions remained to elucidate in insects. Here, we identified and characterized a scavenger receptor class B member from the silkworm, Bombyx mori (designated as BmSCRB8). BmSCRB8 is broadly expressed in various immune tissues/organs, including fat body, gut, and hemocyte. Its expression is dramatically enhanced after challenge with different types of bacteria or pathogen-associated molecular patterns (PAMPs). The recombinant BmSCRB8 protein can detect different types of bacteria by directly binding to PAMPs and significantly improve the bacterial clearance in vivo. After knockdown of BmSCRB8, the pathogenic bacterial clearance was strongly impaired, and several AMP genes were down-regulated following E. coli challenge. Moreover, pathogenic bacteria's treatment following the depletion of BmSCRB8 remarkably decreased silkworm larvae's survival rate. Taken together, these results demonstrate that BmSCRB8 acts as a pattern recognition protein and plays an essential role in silkworm innate immunity by enhancing bacterial clearance and contributing to the production of AMPs in vivo.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China.
| |
Collapse
|
4
|
Igarashi F, Ogihara MH, Iga M, Kataoka H. Cholesterol internalization and metabolism in insect prothoracic gland, a steroidogenic organ, via lipoproteins. Steroids 2018; 134:110-116. [PMID: 29410082 DOI: 10.1016/j.steroids.2018.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 11/15/2022]
Abstract
Dietary sterols including cholesterol and phytosterols are essential substrates for insect steroid hormone (ecdysteroid) synthesis in the prothoracic glands (PGs). In the silkworm Bombyx mori, one of the model species of insects, the steroidogenesis has been well demonstrated that cholesterol biotransformation into ecdysone in the PG cells. Because insects lack the ability to synthesize cellular sterol de novo, lipoprotein, lipophorin (Lp), has been thought to be the major cholesterol supply source; however, details of cholesterol behavior from Lp to the PG cells has not been analyzed till date. In this report, we developed Lp incorporation method using labeled cholesterols such as 22-NBD-cholesterol and cholesterol-25,26,26,26,27,27,27-d7 (cholesterol-d7), and analyzed the internalization and metabolism of cholesterol in PGs in vitro using the silkworm Bombyx mori. The internalization of cholesterol was visualized using 22-NBD-cholesterol. PGs showed an enriched cellular 22-NBD-cholesterol signal, which dissociated from the Lp localizing at the close area of cell membrane. The distribution pattern observed in the PGs was different from other tissues such as the brain, fat body, and Malpighian tubules, suggesting that the internalization of cholesterol in the PGs was distinct from other tissues. The metabolism of cholesterol was traced using LC-MS/MS methods to detect cholesterol-d7, 7-dehydrocholesterol-d7 (an expected intermediate metabolite), and the final product ecdysone-d6. 7-Dehydrocholesterol-d7 and ecdysone-d6 were detected in the PG culture incubated with labeled Lp, showing that the cholesterol of Lp was utilized for ecdysone synthesis in the PGs. Our results reveal the distinct behavior of cholesterol in the PGs, with the first direct evidence of biochemical fate of lipoprotein cholesterol in insect steroidogenic organ. This will aid in the understanding of the involvement of lipoprotein cholesterol in steroid hormone synthesis in insects.
Collapse
Affiliation(s)
- Fumihiko Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba-Pref. 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba-Pref. 277-8562, Japan
| | - Masatoshi Iga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba-Pref. 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba-Pref. 277-8562, Japan.
| |
Collapse
|