1
|
Battaglia D, Mang SM, Caccavo V, Fanti P, Forlano P. The Belowground-Aboveground Interactions of Zucchini: The Effects of Trichoderma afroharzianum Strain T22 on the Population and Behavior of the Aphid Aphis gossypii Glover and Its Endoparasitoid Aphidius colemani Viereck. INSECTS 2024; 15:690. [PMID: 39336658 PMCID: PMC11431884 DOI: 10.3390/insects15090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Fungi belonging to the genus Trichoderma have received high consideration in agriculture due to their beneficial effects on crops from their plant promotion effects and protection from disease. A role of Trichoderma fungi in triggering plant defense mechanisms against insect pests, either directly or by natural enemy attraction, has been proposed, even if the results in different studies are controversial. In this present study, using zucchini plants as a model species, we investigated the effects of Trichoderma afroharzianum strain T22 plant inoculation on the cotton aphid Aphis gossypii and its endoparasitoid Aphidius colemani. Our results showed that the inoculation with T. afroharzianum T22 promotes A. gossypii population growth and makes zucchini more attractive to the aphid. The higher abundance of aphids on Trichoderma-inoculated zucchini was compensated for by a higher presence of the mummies of Aphidius colemani. In this present study, we recorded a higher zucchini biomass, thereby confirming that Trichoderma can act as a plant growth inducer.
Collapse
Affiliation(s)
- Donatella Battaglia
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Stefania Mirela Mang
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Vittoria Caccavo
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Paolo Fanti
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Pierluigi Forlano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Van Hee S, Alınç T, Weldegergis BT, Dicke M, Colazza S, Peri E, Jacquemyn H, Cusumano A, Lievens B. Differential effects of plant-beneficial fungi on the attraction of the egg parasitoid Trissolcus basalis in response to Nezara viridula egg deposition. PLoS One 2024; 19:e0304220. [PMID: 38771894 PMCID: PMC11108215 DOI: 10.1371/journal.pone.0304220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.
Collapse
Affiliation(s)
- Sara Van Hee
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Tuğcan Alınç
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Huang PC, Yuan P, Grunseich JM, Taylor J, Tiénébo EO, Pierson EA, Bernal JS, Kenerley CM, Kolomiets MV. Trichoderma virens and Pseudomonas chlororaphis Differentially Regulate Maize Resistance to Anthracnose Leaf Blight and Insect Herbivores When Grown in Sterile versus Non-Sterile Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1240. [PMID: 38732455 PMCID: PMC11085588 DOI: 10.3390/plants13091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we showed that root colonization by T. virens triggered induced systemic resistance (ISR) to the leaf-infecting hemibiotrophic fungal pathogens Colletotrichum graminicola. Whether T. virens induces ISR to insect pests has not been tested before. In this study, we investigated whether T. virens affects jasmonic acid (JA) biosynthesis and defense against fall armyworm (FAW) and western corn rootworm (WCR). Unexpectedly, the results showed that T. virens colonization of maize seedlings grown in autoclaved soil suppressed wound-induced production of JA, resulting in reduced resistance to FAW. Similarly, the bacterial endophyte Pseudomonas chlororaphis 30-84 was found to suppress systemic resistance to FAW due to reduced JA. Further comparative analyses of the systemic effects of these endophytes when applied in sterile or non-sterile field soil showed that both T. virens and P. chlororaphis 30-84 triggered ISR against C. graminicola in both soil conditions, but only suppressed JA production and resistance to FAW in sterile soil, while no significant impact was observed when applied in non-sterile soil. In contrast to the effect on FAW defense, T. virens colonization of maize roots suppressed WCR larvae survival and weight gain. This is the first report suggesting the potential role of T. virens as a biocontrol agent against WCR.
Collapse
Affiliation(s)
- Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; (J.M.G.); (J.S.B.)
| | - James Taylor
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Eric-Olivier Tiénébo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
- Agronomic Sciences and Transformation Processes Joint Research and Innovation Unit, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro P.O. Box 1093, Côte d’Ivoire
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; (J.M.G.); (J.S.B.)
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| |
Collapse
|
4
|
Meesters C, Weldegergis BT, Dicke M, Jacquemyn H, Lievens B. Limited effects of plant-beneficial fungi on plant volatile composition and host-choice behavior of Nesidiocoris tenuis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322719. [PMID: 38235197 PMCID: PMC10791865 DOI: 10.3389/fpls.2023.1322719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Biological control using plant-beneficial fungi has gained considerable interest as a sustainable method for pest management, by priming the plant for enhanced defense against pathogens and insect herbivores. However, despite promising outcomes, little is known about how different fungal strains mediate these beneficial effects. In this study, we evaluated whether inoculation of tomato seeds with the plant-beneficial fungi Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and Trichoderma harzianum T22 affected the plant's volatile organic compound (VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an emerging pest species in NW-European tomato cultivation, and the related zoophytophagous biocontrol agent Macrolophus pygmaeus. Results indicated that fungal inoculation did not significantly alter the VOC composition of tomato plants. However, in a two-choice cage assay where female insects were given the option to select between control plants and fungus-inoculated plants, N. tenuis preferred control plants over M. brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested chose the control treatment. In all other combinations tested, no significant differences were found for none of the insects. We conclude that inoculation of tomato with plant-beneficial fungi had limited effects on plant volatile composition and host-choice behavior of insects. However, the observation that N. tenuis was deterred from the crop when inoculated with M. brunneum and attracted to non-inoculated plants may provide new opportunities for future biocontrol based on a push-pull strategy.
Collapse
Affiliation(s)
- Caroline Meesters
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Giehl A, dos Santos AA, Cadamuro RD, Tadioto V, Guterres IZ, Prá Zuchi ID, Minussi GDA, Fongaro G, Silva IT, Alves SL. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2688. [PMID: 37514302 PMCID: PMC10385130 DOI: 10.3390/plants12142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.
Collapse
Affiliation(s)
- Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Angela Alves dos Santos
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Isabella Dai Prá Zuchi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gabriel do Amaral Minussi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Izabella Thais Silva
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| |
Collapse
|
6
|
Liu D, Smagghe G, Liu TX. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. J Fungi (Basel) 2023; 9:jof9050575. [PMID: 37233286 DOI: 10.3390/jof9050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Concerns regarding the ecological and health risks posed by synthetic insecticides have instigated the exploration of alternative methods for controlling insects, such as entomopathogenic fungi (EPF) as biocontrol agents. Therefore, this review discusses their use as a potential alternative to chemical insecticides and especially focuses on the two major ones, Beauveria bassiana and Metarhizium anisopliae, as examples. First, this review exemplifies how B. bassiana- and M. anisopliae-based biopesticides are used in the world. Then, we discuss the mechanism of action by which EPF interacts with insects, focusing on the penetration of the cuticle and the subsequent death of the host. The interactions between EPF and the insect microbiome, as well as the enhancement of the insect immune response, are also summarized. Finally, this review presents recent research that N-glycans may play a role in eliciting an immune response in insects, resulting in the increased expression of immune-related genes and smaller peritrophic matrix pores, reducing insect midgut permeability. Overall, this paper provides an overview of the EPF in insect control and highlights the latest developments relating to the interaction between fungi and insect immunity.
Collapse
Affiliation(s)
- Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030432. [PMID: 36771517 PMCID: PMC9921048 DOI: 10.3390/plants12030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 06/02/2023]
Abstract
Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Ajay Kumar
- Department of Postharvest Science, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregón 85000, Mexico
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
8
|
Papantoniou D, Chang D, Martínez-Medina A, van Dam NM, Weinhold A. Root symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing predator attraction. Front Physiol 2022; 13:1003746. [PMID: 36338467 PMCID: PMC9634184 DOI: 10.3389/fphys.2022.1003746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 03/28/2024] Open
Abstract
Beneficial root microbes are among the most frequently used biocontrol agents in cropping systems, since they have been shown to promote plant growth and crop yield. Moreover, they are able to enhance protection against pathogens and insect herbivores by activating plant resistance mechanisms. Plant defense responses against herbivorous insects include the induction of metabolic pathways involved in the synthesis of defense-related metabolites. These metabolites include volatile organic compounds (VOCs), which attract natural enemies of the herbivores as a form of indirect resistance. Considering that beneficial root microbes may affect direct herbivore resistance, we hypothesized that also indirect resistance may be affected. We tested this hypothesis in a study system composed of tomato, the arbuscular mycorrhizal fungus Rhizophagus irregularis, the growth-promoting fungus Trichoderma harzianum, the generalist chewing herbivore Spodoptera exigua and the omnivorous predator Macrolophus pygmaeus. Using a Y-tube olfactometer we found that M. pygmaeus preferred plants with S. exigua herbivory, but microbe-inoculated plants more than non-inoculated ones. We used a targeted GC-MS approach to assess the impact of beneficial microbes on the emission of volatiles 24 h after herbivory to explain the choice of M. pygmaeus. We observed that the volatile composition of the herbivore-infested plants differed from that of the non-infested plants, which was driven by the higher emission of green leaf volatile compounds, methyl salicylate, and several monoterpenes and sesquiterpenes. Inoculation with microbes had only a marginal effect on the emission of some terpenoids in our experiment. Gene expression analysis showed that the marker genes involved in the jasmonic and salicylic acid pathways were differentially expressed in the microbe-inoculated plants after herbivory. Our results pinpoint the role of root symbionts in determining plant-microbe-insect interactions up to the third trophic level, and elucidates their potential to be used in plant protection.
Collapse
Affiliation(s)
- Dimitra Papantoniou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Dongik Chang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca, Salamanca, Spain
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Jena, Germany
| |
Collapse
|
9
|
Caccavo V, Forlano P, Mang SM, Fanti P, Nuzzaci M, Battaglia D, Trotta V. Effects of Trichoderma harzianum Strain T22 on the Arthropod Community Associated with Tomato Plants and on the Crop Performance in an Experimental Field. INSECTS 2022; 13:418. [PMID: 35621754 PMCID: PMC9147967 DOI: 10.3390/insects13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Fungi belonging to the genus Trichoderma have received much attention in recent years due to their beneficial effects on crop health and their use as pest control agents. Trichoderma activates direct plant defenses against phytophagous arthropods and reinforces indirect plant defense through the attraction of predators. Although the plant defenses against insect herbivores were demonstrated in laboratory experiments, little attention has been paid to the use of Trichoderma spp. in open field conditions. In the present study, we investigated the effects of the inoculation of the commercial Trichoderma harzianum strain T22 on the arthropod community associated with tomato plants and on the crop performance in an experimental field located in South Italy. Our results showed that inoculation with T. harzianum could alter the arthropod community and reduce the abundance of specific pests under field conditions with respect to the sampling period. The present study also confirmed the beneficial effect of T. harzianum against plant pathogens and on tomato fruit. The complex tomato-arthropod-microorganism interactions that occurred in the field are discussed to enrich our current information on the possibilities of using Trichoderma as a green alternative agent in agriculture.
Collapse
Affiliation(s)
- Vittoria Caccavo
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Pierluigi Forlano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Paolo Fanti
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Donatella Battaglia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Vincenzo Trotta
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| |
Collapse
|
10
|
Luo K, Zhao H, Wang X, Kang Z. Prevalent Pest Management Strategies for Grain Aphids: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 12:790919. [PMID: 35082813 PMCID: PMC8784848 DOI: 10.3389/fpls.2021.790919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Cereal plants in natural ecological systems are often either sequentially or simultaneously attacked by different species of aphids, which significantly decreases the quality and quantity of harvested grain. The severity of the damage is potentially aggravated by microbes associated with the aphids or the coexistence of other fungal pathogens. Although chemical control and the use of cultivars with single-gene-based antibiosis resistance could effectively suppress grain aphid populations, this method has accelerated the development of insecticide resistance and resulted in pest resurgence. Therefore, it is important that effective and environmentally friendly pest management measures to control the damage done by grain aphids to cereals in agricultural ecosystems be developed and promoted. In recent decades, extensive studies have typically focused on further understanding the relationship between crops and aphids, which has greatly contributed to the establishment of sustainable pest management approaches. This review discusses recent advances and challenges related to the control of grain aphids in agricultural production. Current knowledge and ongoing research show that the integration of the large-scale cultivation of aphid-resistant wheat cultivars with agricultural and/or other management practices will be the most prevalent and economically important management strategy for wheat aphid control.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Nicoletti R, Becchimanzi A. Ecological and Molecular Interactions between Insects and Fungi. Microorganisms 2022; 10:microorganisms10010096. [PMID: 35056545 PMCID: PMC8779020 DOI: 10.3390/microorganisms10010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insects and fungi represent two of the most widespread groupings of organisms in nature, occurring in every kind of ecological context and impacting agriculture and other human activities in various ways. Moreover, they can be observed to reciprocally interact, establishing a wide range of symbiotic relationships, from mutualism to antagonism. The outcome of these relationships can in turn affect the extent at which species of both organisms can exert their noxious effects, as well as the management practices which are to be adopted to counter them. In conjunction with the launch of a Special Issue of Microorganisms with the same title, this article offers a general overview of the manifold aspects related to such interactions from the perspective of implementing our capacity to regulate them in a direction more favorable for the environment, crop production and human health.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence:
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
12
|
Contreras-Cornejo HA, Macías-Rodríguez L, Larsen J. The Role of Secondary Metabolites in Rhizosphere Competence of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Minchev Z, Kostenko O, Soler R, Pozo MJ. Microbial Consortia for Effective Biocontrol of Root and Foliar Diseases in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:756368. [PMID: 34804094 PMCID: PMC8602810 DOI: 10.3389/fpls.2021.756368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 05/26/2023]
Abstract
The use of beneficial microorganisms for the biological control of plant diseases and pests has emerged as a viable alternative to chemical pesticides in agriculture. Traditionally, microbe-based biocontrol strategies for crop protection relied on the application of single microorganisms. However, the design of microbial consortia for improving the reliability of current biological control practices is now a major trend in biotechnology, and it is already being exploited commercially in the context of sustainable agriculture. In the present study, exploiting the microbial library of the biocontrol company Koppert Biological Systems, we designed microbial consortia composed of carefully selected, well-characterized beneficial bacteria and fungi displaying diverse biocontrol modes of action. We compared their ability to control shoot and root pathogens when applied separately or in combination as microbial consortia, and across different application strategies that imply direct microbial antagonism or induced systemic plant resistance. We hypothesized that consortia will be more versatile than the single strains, displaying an extended functionality, as they will be able to control a wider range of plant diseases through diverse mechanisms and application methods. Our results confirmed our hypothesis, revealing that while different individual microorganisms were the most effective in controlling the root pathogen Fusarium oxysporum or the foliar pathogen Botrytis cinerea in tomato, the consortia showed an extended functionality, effectively controlling both pathogens under any of the application schemes, always reaching the same protection levels as the best performing single strains. Our findings illustrate the potential of microbial consortia, composed of carefully selected and compatible beneficial microorganisms, including bacteria and fungi, for the development of stable and versatile biological control products for plant protection against a wider range of diseases.
Collapse
Affiliation(s)
- Zhivko Minchev
- Business Unit Microbiology, Agronomical Development Department, Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Olga Kostenko
- Business Unit Microbiology, Agronomical Development Department, Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Roxina Soler
- Business Unit Microbiology, Agronomical Development Department, Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
14
|
Contreras-Cornejo HA, Macías-Rodríguez L, Real-Santillán RO, López-Carmona D, García-Gómez G, Galicia-Gallardo AP, Alfaro-Cuevas R, González-Esquivel CE, Najera-Rincón MB, Adame-Garnica SG, Rebollar-Alviter A, Álvarez-Navarrete M, Larsen J. In a belowground multitrophic interaction, Trichoderma harzianum induces maize root herbivore tolerance against Phyllophaga vetula. PEST MANAGEMENT SCIENCE 2021; 77:3952-3963. [PMID: 33851514 DOI: 10.1002/ps.6415] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trichoderma spp. are soil fungi that interact with plant roots and associated biota such as other microorganisms and soil fauna. However, information about their interactions with root-feeding insects is limited. Here, interactions between Trichoderma harzianum and the root-feeding insect Phyllophaga vetula, a common insect pest in maize agroecosystems, were examined. RESULTS Applications of T. harzianum and P. vetula to the root system increased and decreased maize growth, respectively. Induced tolerance against herbivore attack was provided by T. harzianum maintaining a robust and functional root system as evidenced by the increased uptake of Cu, Ca, Mg, Na and K. Herbivore tolerance also coincided with changes in the emission of root volatile terpenes known to induce indirect defense responses and attract natural enemies of the herbivore. More importantly, T. harzianum induced de novo emission of several sesquiterpenes such as β-caryophyllene and δ-cadinene. In addition, single and combined applications of T. harzianum and P. vetula altered the sucrose content of the roots. Finally, T. harzianum produced 6-pentyl-2H-pyran-2-one (6-PP) a volatile compound that may act as an antifeedant-signaling compound mitigating root herbivory by P. vetula. CONCLUSION Our results provide novel information about belowground multitrophic plant-microbe-arthropod interactions between T. harzianum and P. vetula in the maize rhizosphere resulting in alterations in maize phenotypic plant responses, inducing root herbivore tolerance.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Raúl Omar Real-Santillán
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Dante López-Carmona
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Griselda García-Gómez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ana Paola Galicia-Gallardo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Ruth Alfaro-Cuevas
- Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos E González-Esquivel
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Miguel Bernardo Najera-Rincón
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarías, Campo Experimental Uruapan, Uruapan, Mexico
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Angel Rebollar-Alviter
- Universidad Autónoma Chapingo, Centro Regional Universitario Centro Occidente, Morelia, Mexico
| | | | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| |
Collapse
|
15
|
Di Lelio I, Coppola M, Comite E, Molisso D, Lorito M, Woo SL, Pennacchio F, Rao R, Digilio MC. Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests. FRONTIERS IN PLANT SCIENCE 2021; 12:678830. [PMID: 34177994 PMCID: PMC8221184 DOI: 10.3389/fpls.2021.678830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 05/31/2023]
Abstract
Species of the ecological opportunistic, avirulent fungus, Trichoderma are widely used in agriculture for their ability to protect crops from the attack of pathogenic fungi and for plant growth promotion activity. Recently, it has been shown that they may also have complementary properties that enhance plant defense barriers against insects. However, the use of these fungi is somewhat undermined by their variable level of biocontrol activity, which is influenced by environmental conditions. Understanding the source of this variability is essential for its profitable and wide use in plant protection. Here, we focus on the impact of temperature on Trichoderma afroharzianum T22, Trichoderma atroviride P1, and the defense response induced in tomato by insects. The in vitro development of these two strains was differentially influenced by temperature, and the observed pattern was consistent with temperature-dependent levels of resistance induced by them in tomato plants against the aphid, Macrosiphum euphorbiae, and the noctuid moth, Spodoptera littoralis. Tomato plants treated with T. afroharzianum T22 exhibited enhanced resistance toward both insect pests at 25°C, while T. atroviride P1 proved to be more effective at 20°C. The comparison of plant transcriptomic profiles generated by the two Trichoderma species allowed the identification of specific defense genes involved in the observed response, and a selected group was used to assess, by real-time quantitative reverse transcription PCR (qRT-PCR), the differential gene expression in Trichoderma-treated tomato plants subjected to the two temperature regimens that significantly affected fungal biological performance. These results will help pave the way toward a rational selection of the most suitable Trichoderma isolates for field applications, in order to best face the challenges imposed by local environmental conditions and by extreme climatic shifts due to global warming.
Collapse
Affiliation(s)
- Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Maria Cristina Digilio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Ferreira FV, Musumeci MA. Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Microbiol Biotechnol 2021; 37:90. [PMID: 33899136 DOI: 10.1007/s11274-021-03058-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
A major current challenge is to increase the food production while preserving natural resources. Agricultural practices that enhance the productivity and progressively improve the soil quality are relevant to face this challenge. Trichoderma species are widely used in agriculture to stimulate the plant growth and to control different pathogens affecting crops, representing useful tools for sustainable food production. This mini-review summarizes applications of Trichoderma strains in agriculture to control fungal pathogens, nematodes and insects, the involved biocontrol mechanisms, efficacy and inoculation forms in greenhouse, field and post-harvest conditions. Aspects of Trichoderma handling that influence on biocontrol efficacy such as preventive treatments, frequency of applications and delivery methods are discussed. Strategies useful to improve the antagonistic performance such as the use of native strains, protoplast fusion, formulation, growth on pathogen cell wall medium and combination with other antagonists in integrated treatments are discussed. This mini-review provides practical knowledge to design safe and optimal biocontrol strategies based on Trichoderma and pose challenges to expand its antagonist performance.
Collapse
Affiliation(s)
- Flavia V Ferreira
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones y Transferencia de Entre Ríos (CITER), Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Matías A Musumeci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones y Transferencia de Entre Ríos (CITER), Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina. .,Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina.
| |
Collapse
|
17
|
Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites 2021; 11:metabo11040213. [PMID: 33807300 PMCID: PMC8066342 DOI: 10.3390/metabo11040213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma fungi act as biocontrol agents of phytopathogens and plant growth promoters. Moreover, they can stimulate plant defense mechanisms against insect pests. This study evaluated VOCs’ emission by olive trees (Olea europaea L.) when selected Trichoderma fungi or metabolites were used as soil treatments. Trichoderma harzianum strains M10, T22, and TH1, T. asperellum strain KV906, T. virens strain GV41, and their secondary metabolites harzianic acid (HA), and 6-pentyl-α-pyrone (6PP) were applied to olive trees. Charcoal cartridges were employed to adsorb olive VOCs, and gas chromatography mass spectrometry (GC-MS) analysis allowed their identification and quantification. A total of 45 volatile compounds were detected, and among these, twenty-five represented environmental pollutants and nineteen compounds were related to olive plant emission. Trichoderma strains and metabolites differentially enhanced VOCs production, affecting three biosynthetic pathways: methylerythritol 1-phosphate (MEP), lipid-signaling, and shikimate pathways. Multivariate analysis models showed a characteristic fingerprint of each plant-fungus/metabolite relationship, reflecting a different emission of VOCs by the treated plants. Specifically, strain M10 and the metabolites 6PP and HA enhanced the monoterpene syntheses by controlling the MEP pathway. Strains GV41, KV906, and the metabolite HA stimulated the hydrocarbon aldehyde formation (nonanal) by regulating the lipid-signaling pathway. Finally, Trichoderma strains GV41, M10, T22, TH1, and the metabolites HA and 6PP improve aromatic syntheses at different steps of the shikimate pathway.
Collapse
|
18
|
Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. J Fungi (Basel) 2021; 7:jof7010061. [PMID: 33477406 PMCID: PMC7830842 DOI: 10.3390/jof7010061] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions mainly relies on their ability to engage in inter- and cross-kingdom interactions. Although Trichoderma is by far the most extensively studied fungal biocontrol agent (BCA), with a few species already having been commercialized as bio-pesticides or bio-fertilizers, their wide application has been hampered by an unpredictable efficacy under field conditions. Deciphering the dialogues within and across Trichoderma ecological interactions by identification of involved effectors and their underlying effect is of great value in order to be able to eventually harness Trichoderma’s full potential for plant growth promotion and protection. In this review, we focus on the nature of Trichoderma interactions with plants and pathogens. Better understanding how Trichoderma interacts with plants, other microorganisms, and the environment is essential for developing and deploying Trichoderma-based strategies that increase crop production and protection.
Collapse
|
19
|
Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci Rep 2020; 10:22195. [PMID: 33335143 PMCID: PMC7746743 DOI: 10.1038/s41598-020-78898-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Endophytic fungi live within plant tissues without causing any harm to the host, promote its growth, and induce systemic resistance against pests and diseases. To mitigate the challenging concealed feeding behavior of immature stages of Tuta absoluta in both tomato (Solanum lycopersicum) and nightshade (Solanum scabrum) host plants, 15 fungal isolates were assessed for their endophytic and insecticidal properties. Twelve isolates were endophytic to both host plants with varied colonization rates. Host plants endophytically-colonized by Trichoderma asperellum M2RT4, Beauveria bassiana ICIPE 706 and Hypocrea lixii F3ST1 outperformed all the other isolates in reducing significantly the number of eggs laid, mines developed, pupae formed and adults emerged. Furthermore, the survival of exposed adults and F1 progeny was significantly reduced by Trichoderma sp. F2L41 and B. bassiana isolates ICIPE 35(4) and ICIPE 35(15) compared to other isolates. The results indicate that T. asperellum M2RT4, B. bassiana ICIPE 706 and H. lixii F3ST1 have high potential to be developed as endophytic-fungal-based biopesticide for the management of T. absoluta.
Collapse
|
20
|
Zogli P, Pingault L, Grover S, Louis J. Ento(o)mics: the intersection of 'omic' approaches to decipher plant defense against sap-sucking insect pests. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:153-161. [PMID: 32721874 DOI: 10.1016/j.pbi.2020.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 05/27/2023]
Abstract
Plants are constantly challenged by insect pests that can dramatically decrease yields. Insects with piercing-sucking mouthparts, for example, aphids, whiteflies, and leaf hoppers, seemingly cause less physical damage to tissues, however, they feed on the plant's sap by piercing plant tissue and extracting plant fluids, thereby transmitting several plant-pathogenic viruses as well. As a counter-defense, plants activate an array of dynamic defense machineries against insect pests including the rapid reprogramming of the host cell processes. For a holistic understanding of plant-sap-sucking insect interactions, there is a need to call for techniques with the capacity to concomitantly capture these dynamic changes. Recent progress with various 'omic' technologies possess this capacity. In this review, we will provide a concise summary of application of 'omic' technologies and their utilization in plant and sap-sucking insect interaction studies. Finally, we will provide a perspective on the integration of 'omics' data in uncovering novel plant defense mechanisms against sap-sucking insect pests.
Collapse
Affiliation(s)
- Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
21
|
Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res 2020; 240:126552. [PMID: 32659716 DOI: 10.1016/j.micres.2020.126552] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Trichoderma spp. are universal saprotrophic fungi in terrestrial ecosystems, and as rhizosphere inhabitants, they mediate interactions with other soil microorganisms, plants, and arthropods at multiple trophic levels. In the rhizosphere, Trichoderma can reduce the abundance of phytopathogenic microorganisms, which involves the action of potent inhibitory molecules, such as gliovirin and siderophores, whereas endophytic associations between Trichoderma and the seeds and roots of host plants can result in enhanced plant growth and crop productivity, as well as the alleviation of abiotic stress. Such beneficial effects are mediated via the activation of endogenous mechanisms controlled by phytohormones such as auxins and abscisic acid, as well as by alterations in host plant metabolism. During either root colonization or in the absence of physical contact, Trichoderma can trigger early defense responses mediated by Ca2+ and reactive oxygen species, and subsequently stimulate plant immunity by enhancing resistance mechanisms regulated by the phytohormones salicylic acid, jasmonic acid, and ethylene. In addition, Trichoderma release volatile organic compounds and nitrogen or oxygen heterocyclic compounds that serve as signaling molecules, which have effects on plant growth, phytopathogen levels, herbivorous insects, and at the third trophic level, play roles in attracting the natural enemies (predators and parasitoids) of herbivores. In this paper, we review some of the most recent advances in our understanding of the environmental influences of Trichoderma spp., with particular emphasis on their multiple interactions at different trophic levels.
Collapse
Affiliation(s)
- Lourdes Macías-Rodríguez
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| | - Hexon Angel Contreras-Cornejo
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico; Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico.
| | - Sandra Goretti Adame-Garnica
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Ek Del-Val
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| | - John Larsen
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| |
Collapse
|
22
|
Differential Response of Tomato Plants to the Application of Three Trichoderma Species When Evaluating the Control of Pseudomonas syringae Populations. PLANTS 2020; 9:plants9050626. [PMID: 32422955 PMCID: PMC7285377 DOI: 10.3390/plants9050626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022]
Abstract
Trichoderma species are well known biocontrol agents that are able to induce responses in the host plants against an array of abiotic and biotic stresses. Here, we investigate, when applied to tomato seeds, the potential of Trichoderma strains belonging to three different species, T. parareesei T6, T. asperellum T25, and T. harzianum T34, to control the fully pathogenic strain Pseudomonas syringae pv. tomato (Pst) DC3000, able to produce the coronatine (COR) toxin, and the COR-deficient strain Pst DC3118 in tomato plants, and the molecular mechanisms by which the plant can modulate its systemic defense. Four-week old tomato plants, seed-inoculated, or not, with a Trichoderma strain, were infected, or not, with a Pst strain, and the changes in the expression of nine marker genes representative of salicylic acid (SA) (ICS1 and PAL5) and jasmonic acid (JA) (TomLoxC) biosynthesis, SA- (PR1b1), JA- (PINII and MYC2) and JA/Ethylene (ET)-dependent (ERF-A2) defense pathways, as well as the abscisic acid (ABA)-responsive gene AREB2 and the respiratory burst oxidase gene LERBOH1, were analyzed at 72 hours post-inoculation (hpi) with the bacteria. The significant increase obtained for bacterial population sizes in the leaves, disease index, and the upregulation of tomato genes related to SA, JA, ET and ABA in plants inoculated with Pst DC3000 compared with those obtained with Pst DC3118, confirmed the COR role as a virulence factor, and showed that both Pst and COR synergistically activate the JA- and SA-signaling defense responses, at least at 72 hpi. The three Trichoderma strains tested reduced the DC3118 levels to different extents and were able to control disease symptoms at the same rate. However, a minor protection (9.4%) against DC3000 was only achieved with T. asperellum T25. The gene deregulation detected in Trichoderma-treated plus Pst-inoculated tomato plants illustrates the complex system of a phytohormone-mediated signaling network that is affected by the pathogen and Trichoderma applications but also by their interaction. The expression changes for all nine genes analyzed, excepting LERBOH1, as well as the bacterial populations in the leaves were significantly affected by the interaction. Our results show that Trichoderma spp. are not adequate to control the disease caused by fully pathogenic Pst strains in tomato plants.
Collapse
|
23
|
|
24
|
Parrilli M, Sommaggio D, Tassini C, Di Marco S, Osti F, Ferrari R, Metruccio E, Masetti A, Burgio G. The role of Trichoderma spp. and silica gel in plant defence mechanisms and insect response in vineyard. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:771-780. [PMID: 31097045 DOI: 10.1017/s0007485319000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Several elicitors, stimulating induced resistance mechanisms, have potential in preventing or mitigating pathogen infections. Some of these compounds, triggering the production of jasmonic acid (JA), a precursor of herbivore-induced plant volatiles, could also play a central role in indirect resistance to pest species, by improving beneficial arthropod performance, and necrotrophic pathogens. In the current work, Trichoderma gamsii/T. asperellum and silica gel treatments - alone and in combination - were studied to evaluate the plant defence mechanism on grapevines (Vitis vinifera L.) by laboratory and field trials. JA production level was measured before and after Plasmopara viticola infection on potted vines. JA production induced by silica gel was higher than that caused by Trichoderma before infection. In Trichoderma-treated plants, JA production increased after P. viticola inoculation. In vineyard field trials, Mymaridae (Hymenoptera: Chalcidoidea) showed higher captures in transparent sticky traps on silica gel-treated plants, in comparison with control. On the other hand, no significant attraction was detected for Ichneumonoidea and other Chalcidoidea in silica gel and T. gamsii/T. asperellum-treated plants. The potential effects of elicitors are discussed, in the frame of attract and reward strategy.
Collapse
Affiliation(s)
- M Parrilli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - D Sommaggio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - C Tassini
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - S Di Marco
- C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
| | - F Osti
- C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
| | - R Ferrari
- C.A.A. (Centro Agricoltura Ambiente G. Nicoli), Via Argini Nord 3351, 40014, Località Castello dei Ronchi, Crevalcore, BO, Italy
| | - E Metruccio
- C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
| | - A Masetti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| | - G Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
| |
Collapse
|
25
|
Coppola M, Cascone P, Lelio ID, Woo SL, Lorito M, Rao R, Pennacchio F, Guerrieri E, Digilio MC. Trichoderma atroviride P1 Colonization of Tomato Plants Enhances Both Direct and Indirect Defense Barriers Against Insects. Front Physiol 2019; 10:813. [PMID: 31333483 PMCID: PMC6624734 DOI: 10.3389/fphys.2019.00813] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023] Open
Abstract
Numerous microbial root symbionts are known to induce different levels of enhanced plant protection against a variety of pathogens. However, more recent studies have demonstrated that beneficial microbes are able to induce plant systemic resistance that confers some degree of protection against insects. Here, we report how treatments with the fungal biocontrol agent Trichoderma atroviride strain P1 in tomato plants induce responses that affect pest insects with different feeding habits: the noctuid moth Spodoptera littoralis (Boisduval) and the aphid Macrosiphum euphorbiae (Thomas). We observed that the tomato plant-Trichoderma P1 interaction had a negative impact on the development of moth larvae and on aphid longevity. These effects were attributed to a plant response induced by Trichoderma that was associated with transcriptional changes of a wide array of defense-related genes. While the impact on aphids could be related to the up-regulation of genes involved in the oxidative burst reaction, which occur early in the defense reaction, the negative performance of moth larvae was associated with the enhanced expression of genes encoding for protective enzymes (i.e., Proteinase inhibitor I (PI), Threonine deaminase, Leucine aminopeptidase A1, Arginase 2, and Polyphenol oxidase) that are activated downstream in the defense cascade. In addition, Trichoderma P1 produced alterations in plant metabolic pathways leading to the production and release of volatile organic compounds (VOCs) that are involved in the attraction of the aphid parasitoid Aphidius ervi, thus reinforcing the indirect plant defense barriers. Our findings, along with the evidence available in the literature, indicate that the outcome of the tripartite interaction among plant, Trichoderma, and pests is highly specific and only a comprehensive approach, integrating both insect phenotypic changes and plant transcriptomic alterations, can allow a reliable prediction of its potential for plant protection.
Collapse
Affiliation(s)
- Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- CNR–IPSP, Portici, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- CNR–IPSP, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Maria Cristina Digilio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Coppola M, Diretto G, Digilio MC, Woo SL, Giuliano G, Molisso D, Pennacchio F, Lorito M, Rao R. Transcriptome and Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. Front Physiol 2019; 10:745. [PMID: 31293434 PMCID: PMC6599157 DOI: 10.3389/fphys.2019.00745] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 12/02/2022] Open
Abstract
Beneficial fungi in the genus Trichoderma are among the most widespread biocontrol agents of plant pathogens. Their role in triggering plant defenses against pathogens has been intensely investigated, while, in contrast, very limited information is available on induced barriers active against insects. The growing experimental evidence on this latter topic looks promising, and paves the way toward the development of Trichoderma strains and/or consortia active against multiple targets. However, the predictability and reproducibility of the effects that these beneficial fungi is still somewhat limited by the lack of an in-depth understanding of the molecular mechanisms underlying the specificity of their interaction with different crop varieties, and on how the environmental factors modulate this interaction. To fill this research gap, here we studied the transcriptome changes in tomato plants (cultivar "Dwarf San Marzano") induced by Trichoderma harzianum (strain T22) colonization and subsequent infestation by the aphid Macrosiphum euphorbiae. A wide transcriptome reprogramming, related to metabolic processes, regulation of gene expression and defense responses, was induced both by separate experimental treatments, which showed a synergistic interaction when concurrently applied. The most evident expression changes of defense genes were associated with the multitrophic interaction Trichoderma-tomato-aphid. Early and late genes involved in direct defense against insects were induced (i.e., peroxidase, GST, kinases and polyphenol oxidase, miraculin, chitinase), along with indirect defense genes, such as sesquiterpene synthase and geranylgeranyl phosphate synthase. Targeted and untargeted semi-polar metabolome analysis revealed a wide metabolome alteration showing an increased accumulation of isoprenoids in Trichoderma treated plants. The wide array of transcriptomic and metabolomics changes nicely fit with the higher mortality of aphids when feeding on Trichoderma treated plants, herein reported, and with the previously observed attractiveness of these latter toward the aphid parasitoid Aphidius ervi. Moreover, Trichoderma treated plants showed the over-expression of transcripts coding for several families of defense-related transcription factors (bZIP, MYB, NAC, AP2-ERF, WRKY), suggesting that the fungus contributes to the priming of plant responses against pest insects. Collectively, our data indicate that Trichoderma treatment of tomato plants induces transcriptomic and metabolomic changes, which underpin both direct and indirect defense responses.
Collapse
Affiliation(s)
| | | | - Maria Cristina Digilio
- Department of Agricultural Sciences, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
| | | | | | - Francesco Pennacchio
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Chen D, Shao M, Sun S, Liu T, Zhang H, Qin N, Zeng R, Song Y. Enhancement of Jasmonate-Mediated Antiherbivore Defense Responses in Tomato by Acetic Acid, a Potent Inducer for Plant Protection. FRONTIERS IN PLANT SCIENCE 2019; 10:764. [PMID: 31231416 PMCID: PMC6566139 DOI: 10.3389/fpls.2019.00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/24/2019] [Indexed: 05/13/2023]
Abstract
Acetic acid (AA) has been proved as a chemical that could prime the jasmonic acid (JA) signaling pathway for plant drought tolerance. In this study, the capability of AA for priming of tomato defense against a chewing caterpillar Spodoptera litura and its underlying molecular mechanism were evaluated. AA pretreatment significantly increased tomato resistance against S. litura larvae. Upon larval attack, tomato plants pretreated with AA exhibited increased transcript levels of defense-related genes and elevated activities of polyphenol oxidase (PPO) and peroxidase (POD), and accumulation of protease inhibitor. Moreover, AA pretreatment resulted in upregulated transcription of JA biosynthesis genes and elevated JA accumulation in tomato seedlings upon insect attack. Furthermore, an apparent loss of AA-induced resistance was observed in a JA pathway-impaired mutant suppressor of prosystemin-mediated responses8 (spr8). These results indicate that AA enhances jasmonate-mediated antiherbivore defense responses in tomato. This raises the possibility of use of AA, a basic and simple biochemical compound, as a promising inducer for management of agricultural pests.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaozhi Sun
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Liu
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuanyuan Song,
| |
Collapse
|
28
|
Zhou D, Huang X, Guo J, dos‐Santos ML, Vivanco JM. Trichoderma gamsii affected herbivore feeding behaviour on Arabidopsis thaliana by modifying the leaf metabolome and phytohormones. Microb Biotechnol 2018; 11:1195-1206. [PMID: 30221488 PMCID: PMC6196387 DOI: 10.1111/1751-7915.13310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022] Open
Abstract
Plants can re-programme their transcriptome, proteome and metabolome to deal with environmental and biotic stress. It has been shown that the rhizosphere microbiome has influence on the plant metabolome and on herbivore behaviour. In the present study, Trichoderma gamsii was isolated from Arabidopsis thaliana rhizosphere soil. The inoculation of roots of Arabidopsis thaliana with T. gamsii significantly inhibited the feeding behaviour of Trichoplusia ni and affected the metabolome as well as the content of phytohormones in Arabidopsis leaves. T. gamsii-treated plant leaves had higher levels of amino acids and lower concentrations of sugars. In addition, T. gamsii-treated plant leaves had more abscisic acid (ABA) and lower levels of salicylic acid (SA) and indole-3-acetic acid (IAA) in comparison with the untreated plants. Furthermore, the inoculation with T. gamsii on different signalling mutants showed that the induction of defences were SA-dependent. These findings indicate that T. gamsii has potential as a new type of biocontrol agent to promote plant repellence to insect attacks.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xing‐Feng Huang
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
- Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsCO80523USA
| | - Jianhua Guo
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Marcia L. dos‐Santos
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
- Plant Molecular Biology LaboratoryDepartment of Genetics – “Luiz de Queiroz” College of Agriculture – ESALQUniversity of Sao PauloPiracicabaSP13418‐900Brazil
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
| |
Collapse
|
29
|
Xiong H, Xue K, Qin W, Chen X, Wang H, Shi X, Ma T, Sun Z, Chen W, Tian X, Lin W, Wen X, Wang C. Does Soil Treated with Conidial Formulations of Trichoderma spp. Attract or Repel Subterranean Termites? JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:808-816. [PMID: 29471445 DOI: 10.1093/jee/toy021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Previous studies showed that many wood-rotting fungi were attractive to termites; however, little attention has been paid to the relationship between termites and soil fungus. In the present study, different designs of two-choice tests were conducted to investigate the behaviors of two subterranean termites, Coptotermes formosanus Shiraki (wood-feeding lower termites) and Odontotermes formosanus (Shiraki) (fungus-growing higher termites), in response to soil (or sand) treated with the commercial conidial formulations of Trichoderma harzianum Rifai (BioWorks) and Trichoderma viride Pers. ex Fries (Shuiguxin). The short-term (1 d) choice tests showed no significant difference in termite aggregation (C. formosanus and O. formosanus) between treated and untreated soil, regardless of Trichoderma species and concentrations. However, in the long-term choice tests, C. formosanus consumed significantly more wood in the chambers containing soil treated with the conidial formulation of T. viride (1 × 108 conidia/g) than that containing untreated soil. The tunneling choice tests showed that sand treated with T. viride (1 × 106 or 1 × 108 conidia/g) or T. harzianum (1 × 106 conidia/g) significantly increased the tunneling activities of C. formosanus. However, sand treated with T. viride (1 × 106 or 1 × 108 conidia/g) had a repellent effect on O. formosanus. Our study showed that the two subterranean termites behaved differently when responding to the conidial formulations of Trichoderma.
Collapse
Affiliation(s)
- Hongpeng Xiong
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Kena Xue
- Foshan Institute of Forestry, Foshan, China
| | - Wenquan Qin
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xuan Chen
- College of Coast and Environment, Louisiana State University, Baton Rouge, LA
| | - Huifang Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianhui Shi
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhaohui Sun
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | | | | | - Wei Lin
- Foshan Institute of Forestry, Foshan, China
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
|
31
|
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses Against Spider Mites to the Benefit of the Plant. FRONTIERS IN PLANT SCIENCE 2018; 9:1603. [PMID: 30459791 PMCID: PMC6232530 DOI: 10.3389/fpls.2018.01603] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 05/23/2023]
Abstract
Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.
Collapse
Affiliation(s)
- Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Maria L. Pappas,
| | - Maria Liapoura
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Dimitra Papantoniou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Marianna Avramidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nektarios Kavroulakis
- Laboratory of Phytopathology, Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization – DEMETER, Chania, Greece
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|