1
|
Feng HY, Zhao YQ, Yang T, Zhou YY, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, Zhang F, Smagghe G, He M, He P. Female contact sex pheromone recognition in the German cockroach (Blattella germanica) is mediated by two male antennae-enriched sensory neuron membrane proteins. PEST MANAGEMENT SCIENCE 2025; 81:572-584. [PMID: 39506909 DOI: 10.1002/ps.8530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The German cockroach Blattella germanica is a notorious urban health pest that has developed resistance to multiple pesticides. Thus, novel non-lethal pest control agents are urgently needed. Olfaction interference via disruption of sex pheromone recognition-related genes offers a promising approach. The German cockroach has a unique courtship behavior in which female adults emit contact sex pheromones (CSPs) in response to antennal touching, which subsequently triggers distinctive male sex behavioral responses. Due to the limited volatility of CSPs, the molecular mechanisms underlying their recognition and the specific olfactory pathways activated remain poorly defined. Although the odorant receptor coreceptor (Orco) is critical for most insect olfaction, sensory neuron membrane proteins (SNMPs), in particular SNMP1, also play crucial roles in sex pheromone recognition in moths and flies. While multiple SNMP1 homologs have been identified in multiple insect species, they have yet to be fully functionally characterized in cockroaches. RESULTS In this study, RNA-interference (RNAi)-mediated knockdown of BgerOrco reduced both the electrophysiology responses and courtship behaviors of males, indicating CSP perception proceeds via an olfaction pathway. Similar RNAi knockdown of BgerSNMP1e and BgerSNMP1d, which are predominantly expressed in male antennae, revealed critical roles in perceiving the major component of the Blattella germanica CSP blend. Unlike BgerSNMP1e, BgerSNMP1d was also found to function in the perception of the minor CSP component. Molecular docking analyses revealed no differences in the binding affinities of BgerSNMP1d for the major and minor CSP components, whereas the binding affinities of BgerSNMP1e displayed clear selectivity for the major component. CONCLUSION Our results show that the olfactory pathway is critical for CSP recognition and that two male-enriched SNMP genes, BgerSNMP1e and BgerSNMP1d, are crucial factors mediating the male response to CSP stimulation in German cockroaches. This study lays a foundation for studying the mechanisms of CSP recognition and provides novel molecular targets with potential to be exploited as disruptors of courtship behavior. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Yan Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Ya-Qin Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Tao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yang-Yuntao Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Fan Zhang
- College of Life Science, Shandong Normal University, Jinan, P. R. China
| | - Guy Smagghe
- Institute Entomology, Guizhou University, Guiyang, P. R. China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ming He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| |
Collapse
|
2
|
Yang H, Liu L, Chen L, Yang C, Huang Q, Wang N, Hu H. Screening, validation and functional characterization of genes encoding proteins that interact with sensory neuron membrane protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Int J Biol Macromol 2025; 284:138113. [PMID: 39608529 DOI: 10.1016/j.ijbiomac.2024.138113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Sensory neuron membrane proteins (SNMPs) play critical roles in insect olfactory system. However, functional studies outside of Drosophila remain limited, especially in Coleoptera species. In our previous study, a SNMP1 (CbuqSNMP1b) was identified from Cyrtotrachelus buqueti (Coleoptera: Curculionidae), an insect pest that seriously influence the development of the bamboo industry. Here in a membrane protein yeast two-hybrid system, protein interactions between CbuqSNMP1b as a bait protein and a cDNA library of antenna of male C. buqueti adults as prey protein were assessed. Of 29 proteins identified as putative interactors, the Minus-C odorant-binding protein (CbuqOBP1) was selected for further analysis. The interaction between CbuqSNMP1b and CbuqOBP1 was further confirmed by both the in vivo yeast spotting analysis and the in vitro glutathione-S-transferase pull-down assay. Fluorescence binding assays indicated that the interaction between CbuqSNMP1b and CbuqOBP1 could enhance the binding abilities of CbuqOBP1 to four adult C. buqueti biologically active volatiles. The knockdown of CbuqSNMP1b + CbuqOBP1 expression by RNA interference significantly reduced the behavior responses of male adults to ethyl hexanoate and trans,trans-2,4-Nonadienal. These results increase our understanding of insect SNMP1 and will aid in exploring the underlying mechanisms of CbuqSNMP1b functions in the future.
Collapse
Affiliation(s)
- Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunlin Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Nanxi Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Tao YX, Shan S, Dewer Y, Wang SN, Khashaveh A, Li RJ, Zhang YJ. n-octyl acrylate is a candidate sex pheromone component involved in courtship in parasitoid wasp Microplitis mediator. INSECT SCIENCE 2024; 31:1200-1210. [PMID: 37969037 DOI: 10.1111/1744-7917.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Sex pheromones are considered to play critical roles in partner communication of most parasitic Hymenoptera. However, the identification of sex pheromone components remains limited to a few families of parasitoid wasps. In this study, we functionally characterized a candidate sex pheromone component in Microplitis mediator (Hymenoptera: Braconidae), a solitary parasitoid of Noctuidae insects. We found that the body surface extract from female wasps could significantly stimulate courtship behavior of males. Gas chromatography-electroantennographic detection (GC-EAD) analysis revealed that a candidate semiochemical from extract triggered significant electrophysiological response of antennae of males. By performing gas chromatography-mass spectrometer (GC-MS) measurement, GC-EAD active compound was identified as n-octyl acrylate, a candidate sex pheromone component in female M. mediator. In electroantennogram (EAG) tests, antennae of male wasps showed significantly higher electrophysiological responses to n-octyl acrylate than those of females. Y-tube olfactometer assays indicated that male wasps significantly chose n-octyl acrylate compared with the control. Furthermore, male wasps showed a remarkable preference for n-octyl acrylate in a simulated field condition behavioral trial; simultaneously, n-octyl acrylate standard could also trigger significant courtship behavior in males. We propose that n-octyl acrylate, as a candidate vital sex pheromone component, could be utilized to design behavioral regulators of M. mediator to implement the protection and utilization of natural enemies.
Collapse
Affiliation(s)
- Yu-Xiao Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria, Egypt
| | - Shan-Ning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Johny J, Nihad M, Alharbi HA, AlSaleh MA, Antony B. Silencing sensory neuron membrane protein RferSNMPu1 impairs pheromone detection in the invasive Asian Palm Weevil. Sci Rep 2024; 14:16541. [PMID: 39019908 PMCID: PMC11254914 DOI: 10.1038/s41598-024-67309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.
Collapse
Affiliation(s)
- Jibin Johny
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Mohammad Nihad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hattan A Alharbi
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed Ali AlSaleh
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Binu Antony
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Jiang J, Xue J, Yu M, Jiang X, Cheng Y, Wang H, Liu Y, Dou W, Fan J, Chen J. Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis. Int J Mol Sci 2024; 25:6392. [PMID: 38928098 PMCID: PMC11204085 DOI: 10.3390/ijms25126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Aphidius gifuensis is the dominant parasitic natural enemy of aphids. Elucidating the molecular mechanism of host recognition of A. gifuensis would improve its biological control effect. Chemosensory proteins (CSPs) play a crucial role in insect olfactory systems and are mainly involved in host localization. In this study, a total of nine CSPs of A. gifuensis with complete open reading frames were identified based on antennal transcriptome data. Phylogenetic analysis revealed that AgifCSPs were mainly clustered into three subgroups (AgifCSP1/2/7/8, AgifCSP3/9, and AgifCSP4/5/6). AgifCSP2/5 showed high expression in the antennae of both sexes. Moreover, AgifCSP5 was found to be specifically expressed in the antennae. In addition, fluorescent binding assays revealed that AifCSP5 had greater affinities for 7 of 32 volatile odor molecules from various sources. Molecular docking and site-directed mutagenesis results revealed that the residue at which AgifCSP5 binds to these seven plant volatiles is Tyr75. Behavior tests further confirmed that trans-2-nonenal, one of the seven active volatiles in the ligand binding test, significantly attracted female adults at a relatively low concentration of 10 mg/mL. In conclusion, AgifCSP5 may be involved in locating aphid-infested crops from long distances by detecting and binding trans-2-nonenal. These findings provide a theoretical foundation for further understanding the olfactory recognition mechanisms and indirect aphid localization behavior of A. gifuensis from long distances by first identifying the host plant of aphids.
Collapse
Affiliation(s)
- Jun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
| | - Jiayi Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Miaomiao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Xin Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Huijuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Yanxia Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| |
Collapse
|
6
|
Yang H, Liu L, Wang F, Yang W, Huang Q, Wang N, Hu H. The Molecular and Functional Characterization of Sensory Neuron Membrane Protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). INSECTS 2024; 15:111. [PMID: 38392530 PMCID: PMC10889769 DOI: 10.3390/insects15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Sensory neuron membrane proteins (SNMPs) play important roles in insect chemoreception and SNMP1s have been reported to be essential in detecting sex pheromones in Drosophila and some lepidopteran species. However, SNMPs for Cyrtotrachelus buqueti (Coleoptera: Curculionidae), a major insect pest of bamboo plantations, remain uncharacterized. In this study, a novel SNMP gene, CbuqSNMP1b, from C. buqueti was functionally characterized. The expression of CbuqSNMP1b was significantly higher in antennae than in other tissues of both sexes and the expression level was significantly male-biased. Additionally, CbuqSNMP1b showed significantly higher transcription levels in the adult stage and very low transcription levels in other stages, suggesting that CbuqSNMP1b is involved in the process of olfaction. Fluorescence binding assays indicated that CbuqSNMP1b displayed the strongest binding affinity to dibutyl phthalate (Ki = 9.03 μM) followed by benzothiazole (Ki = 11.59 μM) and phenol (Ki = 20.95 μM) among fourteen C. buqueti volatiles. Furthermore, molecular docking revealed key residues in CbuqSNMP1b that interact with dibutyl phthalate, benzothiazole, and phenol. In conclusion, these findings will lay a foundation to further understand the olfactory mechanisms of C. buqueti and promote the development of novel methods for controlling this pest.
Collapse
Affiliation(s)
- Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Nanxi Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Li R, Shan S, Song X, Khashaveh A, Wang S, Yin Z, Lu Z, Dhiloo KH, Zhang Y. Plant volatile ligands for male-biased MmedOBP14 stimulate orientation behavior of the parasitoid wasp Microplitis mediator. Int J Biol Macromol 2022; 223:1521-1529. [PMID: 36400212 DOI: 10.1016/j.ijbiomac.2022.11.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
As an important class of chemosensory-associated proteins, odorant binding proteins (OBPs) play a key role in the perception of olfactory signals for insects. Parasitoid wasp Microplitis mediator relies on its sensitive olfactory system to locate host larvae of Noctuidae and Geometridae. In the present study, MmedOBP14, a male-biased OBP in M. mediator, was functionally investigated. In fluorescence competitive binding assays, the recombinant MmedOBP14 showed strong binding abilities to five plant volatiles: β-ionone, 3,4-dimethylacetophenone, 4-ethylacetophenone, acetophenone and ocimene. Homology modeling and molecular docking results indicated that the binding sites of all five ligands were similar and concentrated in the binding pocket of MmedOBP14. Except acetophenone, the remaining four ligands at 1, 10 and 100 μg/μL caused strong antennal electrophysiological responses in adults M. mediator, and males showed more obvious EAG responses to most ligands than females. In behavioral trials, males were attracted by low concentrations of MmedOBP14 ligands, whereas high doses of β-ionone and acetophenone had a repellent effect on males. Moreover, 1 μg/μL of 3,4-dimethylacetophenone showed the strongest attractiveness to female wasps. These findings suggest that MmedOBP14 may play a more important role in the perception of plant volatiles for male wasps to locate habitat, supplement nutrition and search partners.
Collapse
Affiliation(s)
- Ruijun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuan Song
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zixuan Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China..
| |
Collapse
|
8
|
Zhu X, Yu Q, Gan X, Song L, Zhang K, Zuo T, Zhang J, Hu Y, Chen Q, Ren B. Transcriptome Analysis and Identification of Chemosensory Genes in Baryscapus dioryctriae (Hymenoptera: Eulophidae). INSECTS 2022; 13:1098. [PMID: 36555008 PMCID: PMC9780838 DOI: 10.3390/insects13121098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Baryscapus dioryctriae is a pupal endoparasitoid of many Pyralidae pests and has been used as a biocontrol agent against insect pests that heavily damage the cone and seed of the Korean pine. The olfactory system of wasps plays an essential role in sensing the chemical signals during their foraging, mating, host location, etc., and the chemosensory genes are involved in detecting and transducing these signals. Many chemosensory genes have been identified from the antennae of Hymenoptera; however, there are few reports on the chemosensory genes of Eulophidae wasps. In this study, the transcriptome databases based on ten different tissues of B. dioryctriae were first constructed, and 274 putative chemosensory genes, consisting of 27 OBPs, 9 CSPs, 3 NPC2s, 155 ORs, 49 GRs, 23 IRs and 8 SNMPs genes, were identified based on the transcriptomes and manual annotation. Phylogenetic trees of the chemosensory genes were constructed to investigate the orthologs between B. dioryctriae and other insect species. Additionally, twenty-eight chemosensory genes showed female antennae- and ovipositor-biased expression, which was validated by RT-qPCR. These findings not only built a molecular basis for further research on the processes of chemosensory perception in B. dioryctriae, but also enriched the identification of chemosensory genes from various tissues of Eulophidae wasps.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Qiling Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Xingyu Gan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Kaipeng Zhang
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Tongtong Zuo
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Ying Hu
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130118, China
| |
Collapse
|
9
|
Khashaveh A, An X, Shan S, Pang X, Li Y, Fu X, Zhang Y. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022; 114:110447. [PMID: 35963492 DOI: 10.1016/j.ygeno.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and contribute to numerous physiological processes. However, little is known about the functions of miRNAs in insect chemosensation. In this study, nine small RNA libraries were constructed and sequenced from the antennae of nymphs, adult males, and adult females of Apolygus lucorum. In total, 399 (275 known and 124 novel) miRNAs were identified. miR-7-5p_1 was the most abundant miRNA. Altogether, 69,708 target genes related to biogenesis, membrane, and binding activities were predicted. In particular, 15 miRNAs targeted 16 olfactory genes. Comparing the antennae of nymphs and adult males and females, 94 miRNAs were differentially expressed. Alternatively, a subset of differentially expressed miRNAs was verified by qPCR, supporting the reliability of the sequencing results. This study provides a global miRNA transcriptome for the antennae of A. lucorum and valuable information for further investigations of the functions of miRNAs in the regulation of chemosensation.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqian Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Fu
- School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Cassau S, Sander D, Karcher T, Laue M, Hause G, Breer H, Krieger J. The Sensilla-Specific Expression and Subcellular Localization of SNMP1 and SNMP2 Reveal Novel Insights into Their Roles in the Antenna of the Desert Locust Schistocerca gregaria. INSECTS 2022; 13:insects13070579. [PMID: 35886755 PMCID: PMC9317141 DOI: 10.3390/insects13070579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The desert locust, Schistocerca gregaria, can form gigantic swarms of millions of individuals that devastate the vegetation of invaded landscapes. Locust food search, reproduction, and aggregation behaviors are triggered and controlled by complex olfactory signals. Insects detect odorants through different types of olfactory sensilla on the antenna that house olfactory sensory neurons and associated support cells, both of which express the proteins required for olfactory signaling. Among these proteins, two members of the CD36 lipid transporter/receptor family, named sensory neuron membrane proteins 1 and 2 (SNMP1 and SNMP2), are indicated to be of vital importance. Towards a better understanding of the role of the two SNMPs in the olfactory system of S. gregaria, we have analysed their antennal topography and subcellular localization using specific antibodies. The results indicate sensilla type- and cell type-specific distribution patterns of the SNMP proteins. SNMP1 was located in the receptive dendrites of subpopulations of olfactory sensory neurons as well as in the microvilli of associated support cells, suggesting a dual function of this protein, both in olfactory signal detection and in sensillum lymph maintenance, respectively. In contrast, SNMP2 was found solely in support cells and their microvilli membranes, suggesting a role limited to sensillum lymph recovery processes. Abstract Insect olfactory sensilla house olfactory sensory neurons (OSNs) and supports cells (SCs). The olfactory sensory processes require, besides the odorant receptors (ORs), insect-specific members of the CD36 family, named sensory neuron membrane proteins (SNMPs). While SNMP1 is considered to act as a coreceptor in the OR-mediated detection of pheromones, SNMP2 was found to be expressed in SCs; however, its function is unknown. For the desert locust, Schistocerca gregaria, we previously visualized mRNA for SNMP1 in OSNs and SNMP2 mRNA in cells associated with OSN clusters. Towards an understanding of their functional implication, it is imperative to explore the cellular and the subcellular localization the SNMP proteins. Therefore, we have generated polyclonal antibodies against SNMP1 and SNMP2 and used fluorescence immunohistochemistry (FIHC) to visualize the SNMP proteins. We found SNMP1 in the somata and respective dendrites of all OSNs in trichoid sensilla and in subsets of OSNs in basiconic sensilla. Notably, SNMP1 was also detected in SCs of these sensilla types. In contrast, SNMP2 protein was only visualized in SCs of basiconic and coeloconic sensilla, but not of trichoid sensilla. Exploring the subcellular localization by electron microscopy using anti-SNMP1-ab and anti-SNMP2-ab revealed an immunogold labelling of SC microvilli bordering the sensillum lymph. Together our findings suggest a dual role of SNMP1 in the antenna of S. gregaria, in some OSN subpopulations in odor detection as well as in functions of some SCs, whereas the role of SNMP2 is limited to the functions of support cells.
Collapse
Affiliation(s)
- Sina Cassau
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- Correspondence: (S.C.); (J.K.)
| | - Doreen Sander
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
| | - Thomas Karcher
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- BMG Labtech GmbH, 77799 Ortenberg, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Gerd Hause
- Microscopy Unit, Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- Correspondence: (S.C.); (J.K.)
| |
Collapse
|
11
|
Wu G, Su R, Ouyang H, Zheng X, Lu W, Wang X. Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). INSECTS 2022; 13:insects13060553. [PMID: 35735890 PMCID: PMC9224838 DOI: 10.3390/insects13060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary In this study, we conducted antennal transcriptome analysis in Glenea cantor (Cerambycidae: Lamiinae) and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level. Abstract Glenea cantor Fabricius (Cerambycidae: Lamiinae) is a pest that devastates urban landscapes and causes ecological loss in southern China and Southeast Asian countries where its main host kapok trees are planted. The olfactory system plays a vital role in mating, foraging, and spawning in G. cantor as an ideal target for pest control. However, the olfactory mechanism of G. cantor is poorly understood at the molecular level. In this study, we first established the antennal transcriptome of G. cantor and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). Furthermore, the phylogenetic trees of olfactory genes were constructed to study the homology with other species of insects. We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level.
Collapse
|
12
|
Shan S, Song X, Khashaveh A, Wang SN, Lu ZY, Hussain Dhiloo K, Li RJ, Zhang YJ. A female-biased odorant receptor tuned to the lepidopteran sex pheromone in parasitoid Microplitis mediator guiding habitat of host insects. J Adv Res 2022; 43:1-12. [PMID: 36585100 PMCID: PMC9811332 DOI: 10.1016/j.jare.2022.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The parasitoid wasp Microplitis mediator is an important natural enemy of the turnip moth Agrotis segetum and other Noctuidae pests. In our field observation, it was fortuitously discovered that sex pheromone traps used for A. segetum also attract female wasps, verified by a simulated field condition dual-choice laboratory assay. Therefore, it was hypothesized that olfactory recognition could be crucial in this process. In this regard, a female-biased odorant receptor of the wasp, MmedOR49, attracted our attention. OBJECTIVES To unravel the significance of the female-biased MmedOR49 regulating host pheromone recognition. METHODS Expression analysis (fluorescence in situ hybridization; quantitative realtime PCR), in vitro (two-electrode voltage-clamp recordings) and in vivo (RNAi combined with behavioral assessments) functional studies, and bioinformatics (structural modeling and molecular docking) were carried out to investigate the characteristics of MmedOR49. RESULTS MmedOR49 expression was detected in the antennae of females by FISH. Quantification indicated that the expression level of MmedOR49 increased significantly after adult emergence. In vitro functional study revealed that MmedOR49 was specifically tuned to cis-5-decenyl acetate (Z5-10:Ac), the major sex pheromone component of A. segetum. Molecular docking showed that Z5-10:Ac strongly bound to the key amino acid residues His 80, Ile 81, and Arg 84 of MmedOR49 through hydrogen bonding. Behavioral assays indicated that female wasps were significantly attracted by Z5-10:Ac in a three-cage olfactometer. RNAi targeting further confirmed that MmedOR49 was necessary to recognize Z5-10:Ac, as female wasps lost their original behavioral responses to Z5-10:Ac after down-regulation of the MmedOR49 transcript. CONCLUSION Although M. mediator is a larval endoparasitoid, female wasps have a behavioral preference for a sex pheromone component of lepidopteran hosts. In this behavior, for female M. mediator, MmedOR49 plays an important role in guiding the habitat of host insects. These data provide a potential target for enhancing natural enemy utilization and pest control.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuan Song
- College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China,College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shan-Ning Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China,Corresponding author.
| |
Collapse
|
13
|
Xie J, Liu T, Yi C, Liu X, Tang H, Sun Y, Shi W, Khashaveh A, Zhang Y. Antenna-Biased Odorant Receptor HvarOR25 in Hippodamia variegata Tuned to Allelochemicals from Hosts and Habitat Involved in Perceiving Preys. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1090-1100. [PMID: 35072468 DOI: 10.1021/acs.jafc.1c05593] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Odorant receptors (ORs) of ladybird Hippodamia variegata play vital chemosensory roles in searching and locating preys. In the current study, 37 ORs were initially identified from the antennal transcriptome of H. variegata. The quantitative polymerase chain reaction demonstrated that several HvarORs including HvarOR25 were specific or enriched in ladybird antennae. In two-electrode voltage clamp recordings, recombinant HvarOR25 was narrowly tuned to six chemical ligands including aphid-induced, aphid-derived, and plant-derived volatiles. In electroantennogram assays, all six volatiles elicited electrophysiological responses. Among the six volatiles, cis-3-hexenyl acetate, hexyl butyrate, hexyl hexanoate, and 3-methyl-3-buten-1-ol were attractive for both sexes of H. variegata. Additionally, molecular docking indicated that HvarOR25 was bound to all ligands with high binding affinities. Taken together, HvarOR25 facilitates perception of preys by recognizing relevant allelochemicals from hosts and habitat. Our findings provide valuable insights into understanding biological functions of HvarORs and help to develop a novel biocontrol strategy based on olfactory-active compounds.
Collapse
Affiliation(s)
- Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
15
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2021; 28:1033-1048. [PMID: 32496619 DOI: 10.1111/1744-7917.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Huang ZY, Wang XY, Lu W, Zheng XL. Sensory gene identification in the transcriptome of the ectoparasitoid Quadrastichus mendeli. Sci Rep 2021; 11:9726. [PMID: 33958688 PMCID: PMC8102506 DOI: 10.1038/s41598-021-89253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall-inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall-making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor-like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli-L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall-making pests. In this study, we present the transcriptome of Q. mendeli using high-throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identified, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identified in Q. mendeli by bioinformatics analysis. Our report is the first to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall-making pests.
Collapse
Affiliation(s)
- Zong-You Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004 China
| |
Collapse
|
17
|
Abstract
The sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.
Collapse
Affiliation(s)
- Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
18
|
Liu S, Chang H, Liu W, Cui W, Liu Y, Wang Y, Ren B, Wang G. Essential role for SNMP1 in detection of sex pheromones in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103485. [PMID: 33049282 DOI: 10.1016/j.ibmb.2020.103485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The sensory neuron membrane protein, SNMP1, was initially discovered in moths and is associated with sex pheromone sensitive neurons, suggesting a role in the detection of these semiochemicals. Although DrosophilaSNMP1 has been reported to be involved in detecting of the sex pheromone cis-vaccenyl acetate (cVA), the role of this protein in moths in vivo is still largely unexplored. In this study we developed a SNMP1-/- homozygous mutant line of Helicoverpa armigera using CRISPR/Cas9. Wind-tunnel behavioral experiments showed that HarmSNMP1-/- males could not be attracted by sex pheromones (Z11-16:Ald/Z9-16:Ald = 97/3), while mating behavior obvervations revealed that the SNMP1 mutant males didn't react much to calling females and the rate of copulation was significantly decreased. The electrophysiological results indicated that HarmSNMP1 contributes to the detection of 16-carbon liner sex pheromones, (Z)-11-hexadecenal (Z11-16:Ald), (Z)-9-hexadecenal (Z9-16:Ald), (Z)-11-hexadecanol (Z11-16:OH) and 16-carbon acetate (Z)-11-hexadecenyl acetate (Z11-16:OAc), but is not required for detecting the 14-carbon sex pheromone component (Z)-9-tetradecenal (Z9-14:Ald) an analogue of Z11-16:Ald, (Z)-9-tetradecen-1-yl formate (Z9-14:OFor), which can activate the Z11-16:Ald-responsive neuron. Taken together, our studies indicated that HarmSNMP1 has an important role in the detection of long-chain sex pheromones, but is not essential for detecting shorter chain sex pheromone in vivo.
Collapse
Affiliation(s)
- Shuai Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hetan Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weichan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
19
|
Li Z, Zhang Y, An X, Wang Q, Khashaveh A, Gu S, Liu S, Zhang Y. Identification of Leg Chemosensory Genes and Sensilla in the Apolygus lucorum. Front Physiol 2020; 11:276. [PMID: 32351398 PMCID: PMC7174674 DOI: 10.3389/fphys.2020.00276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Apolygus lucorum (Hemiptera: Miridae), one of the main insect pests, causes severe damage in cotton and many other economic crops. As is well-known, legs play important roles in the chemoreception of insects. In this study, the putative chemosensory proteins in legs of A. lucorum involved in close or contact chemical communication of adult bugs were investigated using RNA transcriptome sequencing and qPCR methods. Transcriptome data of forelegs, middle legs and hind legs of adult bugs demonstrated that 20 odorant binding protein (OBP) genes, eight chemosensory protein (CSP) genes, one odorant receptor (OR) gene, one ionotropic receptor (IR) gene and one sensory neuron membrane protein (SNMP) gene were identified in legs of A. lucorum. Compared to the previous antennae transcriptome data, five CSPs, IR21a and SNMP2a were newly identified in legs. Results of qPCR analysis indicated that all these putative chemosensory genes were ubiquitously expressed in forelegs, middle legs and hind legs of bugs. Furthermore, four types of sensilla on legs of A. lucorum including sensilla trichodea (subtypes: long straight sensilla trichodea, Str1; long curved sensilla trichodea, Str2), sensilla chaetica (subtypes: sensilla chaetica 1, Sch1; sensilla chaetica 2, Sch2; and sensilla chaetica 3, Sch3), sensilla basiconca (subtypes: medium-long sensilla basiconca, Sba1; short sensilla basiconca, Sba2) and Böhm bristles (BB) were found using scanning electron microscopy. Additionally, the largest number of sensilla was observed on hind legs, while the forelegs had the smallest number of sensilla. Our data provide valuable insights into understanding the chemoreception of legs in A. lucorum.
Collapse
Affiliation(s)
- Zibo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoyao Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Shun Liu
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|