1
|
Wang Y, Tian Y, Zhou D, Fang J, Cao J, Shi C, Lei Y, Fu K, Guo W, Jiang W. Expression and Functional Analysis of Two Cytochrome P450 Monooxygenase Genes and a UDP-Glycosyltransferase Gene Linked with Thiamethoxam Resistance in the Colorado Potato Beetle. INSECTS 2024; 15:559. [PMID: 39194764 DOI: 10.3390/insects15080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are involved in the evolution of insecticide resistance. Leptinotarsa decemlineata (Say), the Colorado potato beetle (CPB), is a notorious insect that has developed resistance to various insecticides including neonicotinoids. This study investigated whether the differentially expressed P450 genes CYP9Z140 and CYP9AY1 and UGT gene UGT321AP1, found in our transcriptome results, conferred resistance to thiamethoxam in L. decemlineata. Resistance monitoring showed that the sampled field populations of L. decemlineata adults collected from Urumqi City and Qapqal, Jimsar, and Mulei Counties of Xinjiang in 2021-2023 developed low levels of resistance to thiamethoxam with resistance ratios ranging from 6.66- to 9.52-fold. Expression analyses indicated that CYP9Z140, CYP9AY1, and UGT321AP1 were significantly upregulated in thiamethoxam-resistant populations compared with susceptible populations. The expression of all three genes also increased significantly after thiamethoxam treatment compared with the control. Spatiotemporal expression patterns showed that the highest expression of CYP9Z140 and CYP9AY1 occurred in pupae and the midgut, whereas UGT321AP1 was highly expressed in adults and Malpighian tubules. Knocking down all three genes individually or simultaneously using RNA interference increased the sensitivity of adult L. decemlineata to thiamethoxam. These results suggest that overexpression of CYP9Z140, CYP9AY1, and UGT321AP1 contributes to the development of thiamethoxam resistance in L. decemlineata and provides a scientific basis for improving new resistance management of CPB.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yitong Tian
- China State Farms Ecnomic Development Center/South Subtropical Crops Center Ministry of Agricultureand Rural Affairs of the People's Republic of China, Beijing 100122, China
| | - Dongdi Zhou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Jiayi Fang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Jingwei Cao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Chengcheng Shi
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yixuan Lei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Kaiyun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Weihua Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
2
|
Zhang K, Chen L, Chen J, Huang H, Liu K, Zhang Y, Yang J, Wu S. Mutation V65I in the β1 Subunit of the Nicotinic Acetylcholine Receptor Confers Neonicotinoid and Sulfoxaflor Resistance in Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5671-5681. [PMID: 38442746 DOI: 10.1021/acs.jafc.3c09456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Neonicotinoids have been widely used to control pests with remarkable effectiveness. Excessive insecticides have led to serious insect resistance. Mutations of the nicotinic acetylcholine receptor (nAChR) are one of the reasons for neonicotinoid resistance conferred in various agricultural pests. Two mutations, V65I and V104I, were found in the nAChR β1 subunit of two neonicotinoid-resistant aphid populations. However, the specific functions of the two mutations remain unclear. In this study, we cloned and identified four nAChR subunits (α1, α2, α8, and β1) of thrips and found them to be highly homologous to the nAChR subunits of other insects. Subsequently, we successfully expressed two subtypes nAChR (α1/α2/α8/β1 and α1/α8/β1) by coinjecting three cofactors for the first time in thrips, and α1/α8/β1 showed abundant current rapidly. Acetylcholine, neonicotinoids, and sulfoxaflor exhibited different activation capacities for the two subtypes of nAChRs. Finally, V65I was found to significantly reduce the binding ability of nAChR to neonicotinoids and sulfoxaflor through electrophysiology and computer simulations. V104I caused a decrease in agonist affinity (pEC50) but an increase in the efficacy (Imax) of nAChR against neonicotinoids and reduced the binding ability of nAChR to sulfoxaflor. This study provides theoretical and technical support for studying the molecular mechanisms of neonicotinoid resistance in pests.
Collapse
Affiliation(s)
- Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Longwei Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jianwen Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Huixiu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Yi Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| |
Collapse
|
3
|
Shi C, Tian Y, Wang Y, Guo W, Jiang W. The interaction of nicotinic acetylcholine receptor subunits Ldα3, Ldα8 and Ldβ1 with neonicotinoids in Colorado potato beetle, Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105558. [PMID: 37666594 DOI: 10.1016/j.pestbp.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an extremely destructive notifiable quarantine pest. Over the last two decades, neonicotinoid insecticides, particularly thiamethoxam and imidacloprid, have been used to control it in Xinjiang, and local field populations have developed different levels of resistance in consequence. However, the contributions of nicotinic acetylcholine receptors (nAChRs) to neonicotinoid resistance are currently poorly understood in CPB. Previous studies have shown that nAChRα1, α3, α8 and β1 are major target subunits for neonicotinoids in some model and important agricultural insects including nAChRα1 subunit of L. decemlineata (Ldα1). In this study, the expression levels of Ldα3, Ldα8 and Ldβ1 following 72 h of treatments with median lethal doses of thiamethoxam and imidacloprid were compared using real-time quantitative PCR. These genes were then individually and simultaneously knocked down with Ldα1 by RNA interference (RNAi) using a double-stranded RNA (dsRNA) feeding method for six days to explore their roles in CPB susceptibility to imidacloprid and thiamethoxam. The results showed that the expressions of Ldα3, Ldα8 and Ldβ1 were significantly decreased by 36.99-74.89% after thiamethoxam and imidacloprid treatments, compared with the control. The significant downregulation of the target genes resulting from RNAi significantly reduced the mortality of adults exposed to thiamethoxam and imidacloprid by 34.53% -56.44% and 28.78%-43.93%, respectively. Furthermore, the adult survival rates were not affected by every dsRNA-feeding treatment, while the body weight of the test adults significantly deceased after four and six days of individual gene RNAi. This study showed that Ldα3, Ldα8 and Ldβ1 are down-regulated by thiamethoxam and imidacloprid and play important roles in the tolerance of CPB to neonicotinoids.
Collapse
Affiliation(s)
- Chengcheng Shi
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yitong Tian
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yaqi Wang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry Agriculture P.R. China, Urumqi, China
| | - Weihua Jiang
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
4
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|