1
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Wang Y, Gao P, Qin W, Li H, Zheng J, Meng L, Li B. Gut microbiota variation across generations regarding the diet and life stage in Harmonia axyridis (Coleoptera: Coccinellidae). INSECT SCIENCE 2024; 31:1365-1377. [PMID: 38183402 DOI: 10.1111/1744-7917.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
We attempt to determine the effect of the dietary switch from a native to non-native prey on the gut microbiota in the predaceous ladybird Harmonia axyridis larvae and adults and examine how the dietary effect may vary across generations. We fed H. axyridis with different diets, native aphid Megoura japonica (Matsumura) versus non-native mealybug Phenacoccus solenopsis (Tinsley), for 5 generations and sequenced microbes in the gut of the 3rd instar larvae and adults of the 1st, 3rd, and 5th generations. In addition, we identified microbes in M. japonica and P. solenopsis. The 2 prey species differed in microbial community as measured by abundances of prevalent microbial genera and diversity. In H. axyridis, abundances of some prevalent microbial genera differed between the 2 diets in the 1st and 3rd generations, but the difference disappeared in the 5th generation; this tendency is more obvious in adults than in larvae. Overall, gut microbial assemblages became gradually cohesive over generations. Microbial diversity differed between diets in the 1st and 3rd generations but became similar in the 5th generation. Major prevalent gut microbial genera are predicted to be associated with metabolic functions of H. axyridis and associated genera are more abundant for consuming the mealybug than the aphid. Our findings from this study suggest that the gut microbiota in H. axyridis is flexible in response to the dietary switch, but tends toward homogeneity in microbial composition over generations.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenquan Qin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
4
|
Tomihara K, Llopart A, Yamamoto D. A chromosome-level genome assembly of Drosophila madeirensis, a fruit fly species endemic to the island of Madeira. G3 (BETHESDA, MD.) 2024; 14:jkae167. [PMID: 39031588 PMCID: PMC11373663 DOI: 10.1093/g3journal/jkae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/20/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Drosophila subobscura is distributed across Europe, the Near East, and the Americas, while its sister species, Drosophila madeirensis, is endemic to the island of Madeira in the Atlantic Ocean. D. subobscura is known for its strict light-dependence in mating and its unique courtship displays, including nuptial gift-giving. D. subobscura has also attracted the interest of researchers because of its abundant variations in chromosomal polymorphisms correlated to the latitude and season, which have been used as a tool to track global climate warming. Although D. madeirensis can be an important resource for understanding the evolutionary underpinning of these genetic characteristics of D. subobscura, little work has been done on the biology of this species. Here, we used a HiFi long-read sequencing data set to produce a de novo genome assembly for D. madeirensis. This assembly comprises a total of 111 contigs spanning 135.5 Mb and has an N50 of 24.2 Mb and a BUSCO completeness score of 98.6%. Each of the 6 chromosomes of D. madeirensis consisted of a single contig except for some centromeric regions. Breakpoints of the chromosomal inversions between D. subobscura and D. madeirensis were characterized using this genome assembly, updating some of the previously identified locations.
Collapse
Affiliation(s)
- Kenta Tomihara
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Ana Llopart
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Daisuke Yamamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
5
|
Qian L, Wang Y, Deng P, Zhang J, Qin Y, Li Z, Liao H, Chen F. Enterococcus casseliflavus regulates amino acid metabolism in edible insect Clanis bilineata tsingtauica: a functional metagenomics study. Front Microbiol 2024; 15:1343265. [PMID: 38591043 PMCID: PMC10999662 DOI: 10.3389/fmicb.2024.1343265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction The soybean hawkmoth, Clanis bilineata tsingtauica, is an edible insect that possesses high nutritional, medicinal and economic value. It has developed into a characteristic agricultural industry in China. Methods The dominant gut bacterium in diapause larvae of soybean hawkmoths was identified by metagenomics, and the effect of diapause time on gut microbiome composition, diversity and function was investigated. Results Enterococcus and Enterobacter were measured to be the dominant genera, with Enterococcus casseliflavus and Enterococcus pernyi being the dominant species. Compared to the controls, the relative abundance of E. casseliflavus and E. pernyi on day 14 was lower by 54.51 and 42.45%, respectively. However, the species richness (including the index of Chao and ACE) of gut microbiota increased on day 28 compared to controls. The gene function was mainly focused on carbohydrate and amino acid metabolism. Metabolic pathways annotated for amino acids on day 14 increased by 9.83% compared to controls. It is speculated that diapause soybean hawkmoths may up-regulate amino acid metabolism by reducing E. casseliflavus abundance to maintain their nutritional balance. Additionally, tetracycline, chloromycetin and ampicillin were screened as the top three antibiotics against E. casseliflavus. Discussion This study not only extends our knowledge of gut microbiome in soybean hawkmoths at the species level, but also provides an initial investigation of gene functionality in interaction with insect hosts.
Collapse
Affiliation(s)
- Lei Qian
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanhui Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pan Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jia Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yi Qin
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zongnan Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huaijian Liao
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fajun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|