1
|
Souchet J, Josserand A, Darnet E, Le Chevalier H, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Guillaume O, Mossoll-Torres M, Pottier G, Philippe H, Aubret F, Gangloff EJ. Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1102-1115. [PMID: 37723946 DOI: 10.1002/jez.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Alicia Josserand
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique (UMR CNRS 5174), Université de Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
2
|
Gatto CR, Reina RD. A review of the effects of incubation conditions on hatchling phenotypes in non-squamate reptiles. J Comp Physiol B 2022; 192:207-233. [PMID: 35142902 PMCID: PMC8894305 DOI: 10.1007/s00360-021-01415-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 11/28/2022]
Abstract
Developing embryos of oviparous reptiles show substantial plasticity in their responses to environmental conditions during incubation, which can include altered sex ratios, morphology, locomotor performance and hatching success. While recent research and reviews have focused on temperature during incubation, emerging evidence suggests other environmental variables are also important in determining hatchling phenotypes. Understanding how the external environment influences development is important for species management and requires identifying how environmental variables exert their effects individually, and how they interact to affect developing embryos. To address this knowledge gap, we review the literature on phenotypic responses in oviparous non-squamate (i.e., turtles, crocodilians and tuataras) reptile hatchlings to temperature, moisture, oxygen concentration and salinity. We examine how these variables influence one another and consider how changes in each variable alters incubation conditions and thus, hatchling phenotypes. We explore how incubation conditions drive variation in hatchling phenotypes and influence adult populations. Finally, we highlight knowledge gaps and suggest future research directions.
Collapse
Affiliation(s)
- Christopher R Gatto
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia.
| | - Richard D Reina
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Souchet J, Bossu C, Darnet E, Le Chevalier H, Poignet M, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Mossoll-Torres M, Guillaume O, Clobert J, Barthe L, Pottier G, Philippe H, Gangloff EJ, Aubret F. High temperatures limit developmental resilience to high-elevation hypoxia in the snake Natrix maura (Squamata: Colubridae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Climate change is generating range shifts in many organisms, notably along the altitudinal gradient. However, moving up in altitude exposes organisms to lower oxygen availability, which may negatively affect development and fitness, especially at high temperatures. To test this possibility in a potentially upward-colonizing species, we artificially incubated developing embryos of the viperine snake Natrix maura Linnaeus 1758, using a split-clutch design, in conditions of extreme high elevation or low elevation at two ecologically-relevant incubation temperatures (24 and 32 °C). Embryos at low and extreme high elevations incubated at cool temperatures did not differ in development time, hatchling phenotype or locomotor performance. However, at the warmer incubation temperature and at extreme high elevation, hatching success was reduced. Further, embryonic heart rates were lower, incubation duration longer and juveniles born smaller. Nonetheless, snakes in this treatment were faster swimmers than siblings in other treatment groups, suggesting a developmental trade-off between size and performance. Constraints on development may be offset by the maintenance of important performance metrics, thus suggesting that early life-history stages will not prevent the successful colonization of high-elevation habitat even under the dual limitations of reduced oxygen and increased temperature.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Coralie Bossu
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Elodie Darnet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Hugo Le Chevalier
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Manon Poignet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR 5174 Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Olivier Calvez
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | | | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, 10 Torre Caldea 7º, Les Escaldes, Andorra
- Pirenalia, c/ de la rectoria, 2 Casa Cintet, Encamp, Andorra
| | - Olivier Guillaume
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Laurent Barthe
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
- Nature En Occitanie, 14 rue de Tivoli, Toulouse, France
| | | | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, QC, Canada
| | - Eric J Gangloff
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Department of Zoology, Ohio Wesleyan University, 61 Sandusky Street, Delaware, Ohio, USA
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA, Australia
| |
Collapse
|
4
|
Souchet J, Gangloff EJ, Micheli G, Bossu C, Trochet A, Bertrand R, Clobert J, Calvez O, Martinez-Silvestre A, Darnet E, LE Chevalier H, Guillaume O, Mossoll-Torres M, Barthe L, Pottier G, Philippe H, Aubret F. High-elevation hypoxia impacts perinatal physiology and performance in a potential montane colonizer. Integr Zool 2020; 15:544-557. [PMID: 32649806 PMCID: PMC7689776 DOI: 10.1111/1749-4877.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Climate change is generating range shifts in many organisms, notably along the elevational gradient in mountainous environments. However, moving up in elevation exposes organisms to lower oxygen availability, which may reduce the successful reproduction and development of oviparous organisms. To test this possibility in an upward‐colonizing species, we artificially incubated developing embryos of the viperine snake (Natrix maura) using a split‐clutch design, in conditions of extreme high elevation (hypoxia at 2877 m above sea level; 72% sea‐level equivalent O2 availability) or low elevation (control group; i.e. normoxia at 436 m above sea level). Hatching success did not differ between the two treatments. Embryos developing at extreme high elevation had higher heart rates and hatched earlier, resulting in hatchlings that were smaller in body size and slower swimmers compared to their siblings incubated at lower elevation. Furthermore, post‐hatching reciprocal transplant of juveniles showed that snakes which developed at extreme high elevation, when transferred back to low elevation, did not recover full performance compared to their siblings from the low elevation incubation treatment. These results suggest that incubation at extreme high elevation, including the effects of hypoxia, will not prevent oviparous ectotherms from producing viable young, but may pose significant physiological challenges on developing offspring in ovo. These early‐life performance limitations imposed by extreme high elevation could have negative consequences on adult phenotypes, including on fitness‐related traits.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France.,Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Gaëlle Micheli
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Coralie Bossu
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Audrey Trochet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Romain Bertrand
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | | | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Hugo LE Chevalier
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, Les Escaldes, Andorra.,Pirenalia, Encamp, Andorra
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Canada
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| |
Collapse
|
5
|
Developmental differences between two marine turtle species and potential consequences for their survival at hatching. ZOOLOGY 2019; 136:125708. [PMID: 31541925 DOI: 10.1016/j.zool.2019.125708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Anatomical variation is a major source for natural selection. Marine turtles are endangered and survival predictions are of important biological, ecological, social, and political value. Here, we perform a preliminary study illustrating how comparative embryology permits understanding of ontogenetic variation as a contributor for evolutionary fitness. To that end, we studied samples of Chelonia mydas and Caretta caretta embryos relative to a standardized staging system from the literature. We examined external anatomy using discrete characters in order to document interspecific variation during development of these species. We employed the 'Standard Event System to Study Vertebrate Embryos' to examine fitness-relevant structures. These include the limb paddles and elbows of Ch. mydas, which differentiate relatively late in ontogeny. We detected interspecific variation in the timing of trait differentiation - such as the egg tooth, closure of skull vault, carapace formation, and scale covering - and propose that these differences might be functionally and ecologically relevant for marine turtles.
Collapse
|
6
|
Mitchell TS, Janzen FJ. Substrate Influences Turtle Nest Temperature, Incubation Period, and Offspring Sex Ratio in the Field. HERPETOLOGICA 2019. [DOI: 10.1655/d-18-00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Timothy S. Mitchell
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Kouyoumdjian L, Gangloff EJ, Souchet J, Cordero GA, Dupoué A, Aubret F. Transplanting gravid lizards to high elevation alters maternal and embryonic oxygen physiology, but not reproductive success or hatchling phenotype. J Exp Biol 2019; 222:jeb.206839. [DOI: 10.1242/jeb.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
Increased global temperatures have opened previously inhospitable habitats, such as at higher elevations. However, the reduction of oxygen partial pressure with increase in elevation represents an important physiological constraint that may limit colonization of such habitats, even if the thermal niche is appropriate. To test the mechanisms underlying the response to ecologically-relevant levels of hypoxia, we performed a translocation experiment with the common wall lizard (Podarcis muralis), a widespread European lizard amenable to establishing populations outside its natural range. We investigated the impacts of hypoxia on the oxygen physiology and reproductive output of gravid common wall lizards and the subsequent development and morphology of their offspring. Lowland females transplanted to high elevations increased their haematocrit and haemoglobin concentration within days and maintained routine metabolism compared to lizards kept at native elevations. However, transplanted lizards suffered from increased reactive oxygen metabolite production near the oviposition date, suggesting a cost of reproduction at high elevation. Transplanted females and females native to different elevations did not differ in reproductive output (clutch size, egg mass, relative clutch mass, or embryonic stage at oviposition) or in post-oviposition body condition. Developing embryos reduced heart rates and prolonged incubation times at high elevations within the native range and at extreme high elevations beyond the current range, but this reduced oxygen availability did not affect metabolic rate, hatching success, or hatchling size. These results suggest that this opportunistic colonizer is capable of successfully responding to novel environmental constraints in these important life-history stages.
Collapse
Affiliation(s)
- Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Eric J. Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Gerardo A. Cordero
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andréaz Dupoué
- CNRS UPMC, UMR 7618, iEES Paris, Université Pierre et Marie Curie, Paris, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
- School of Molecular and Life Sciences, Curtin University, 6102 WA, Australia
| |
Collapse
|
8
|
Cordero GA, Andersson BA, Souchet J, Micheli G, Noble DW, Gangloff EJ, Uller T, Aubret F. Physiological plasticity in lizard embryos exposed to high-altitude hypoxia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:423-432. [DOI: 10.1002/jez.2115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Jeremie Souchet
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
| | - Gaëlle Micheli
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
| | - Daniel W.A. Noble
- Ecology & Evolution Research Centre; School of Biological; Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - Eric J. Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
- Department of Ecology; Evolution, and Organismal Biology; Iowa State University; Ames Iowa USA
| | - Tobias Uller
- Department of Biology; Lund University; Lund Sweden
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis; Moulis France
| |
Collapse
|
9
|
Zimm R, Bentley BP, Wyneken J, Moustakas-Verho JE. Environmental Causation of Turtle Scute Anomalies in ovo and in silico. Integr Comp Biol 2017; 57:1303-1311. [DOI: 10.1093/icb/icx066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
10
|
Tang W, Zhao B, Chen Y, DU W. Reduced egg shell permeability affects embryonic development and hatchling traits in Lycodon rufozonatum and Pelodiscus sinensis. Integr Zool 2017; 13:58-69. [PMID: 28504478 DOI: 10.1111/1749-4877.12269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The response of embryos to unpredictable hypoxia is critical for successful embryonic development, yet there remain significant gaps in our understanding of such responses in reptiles with different types of egg shell. We experimentally generated external regional hypoxia by sealing either the upper half or bottom half of the surface area of eggs in 2 species of reptiles (snake [Lycodon rufozonatum] with parchment egg shell and Chinese soft-shelled turtle [Pelodiscus sinensis] with rigid egg shell), then monitored the growth pattern of the opaque white patch in turtle eggs (a membrane that attaches the embryo to the egg shell and plays an important role in gas exchange), the embryonic heart rate, the developmental rate and the hatchling traits in turtle and snake eggs in response to external regional hypoxia. The snake embryos from the hypoxia treatments facultatively increased their heart rate during incubation, and turtle embryos from the upper-half hypoxia treatment enhanced their growth of the opaque white patch. Furthermore, the incubation period and hatching success of embryos were not affected by the hypoxia treatment in these 2 species. External regional hypoxia significantly affected embryonic yolk utilization and offspring size in the snake and turtle. Compared to sham controls, embryos from the upper-half hypoxia treatment used less energy from yolk and, therefore, developed into smaller hatchlings, but embryos from the bottom-half hypoxia treatment did not.
Collapse
Affiliation(s)
- Wenqi Tang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- Hangzhou Key Laboratory for Animal Evolution and Adaptation, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ye Chen
- Hangzhou Key Laboratory for Animal Evolution and Adaptation, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Weiguo DU
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|