1
|
Liang Y, Wang Z, Gao N, Qi X, Zeng J, Cui K, Lu W, Bai S. Variations and Interseasonal Changes in the Gut Microbial Communities of Seven Wild Fish Species in a Natural Lake with Limited Water Exchange during the Closed Fishing Season. Microorganisms 2024; 12:800. [PMID: 38674744 PMCID: PMC11052518 DOI: 10.3390/microorganisms12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The gut microbiota of fish is crucial for their growth, development, nutrient uptake, physiological balance, and disease resistance. Yet our knowledge of these microbial communities in wild fish populations in their natural ecosystems is insufficient. This study systematically examined the gut microbial communities of seven wild fish species in Chaohu Lake, a fishing-restricted area with minimal water turnover, across four seasons. We found significant variations in gut microbial community structures among species. Additionally, we observed significant seasonal and regional variations in the gut microbial communities. The Chaohu Lake fish gut microbial communities were predominantly composed of the phyla Firmicutes, Proteobacteria(Gamma), Proteobacteria(Alpha), Actinobacteriota, and Cyanobacteria. At the genus level, Aeromonas, Cetobacterium, Clostridium sensu stricto 1, Romboutsia, and Pseudomonas emerged as the most prevalent. A co-occurrence network analysis revealed that C. auratus, C. carpio, and C. brachygnathus possessed more complex and robust gut microbial networks than H. molitrix, C. alburnus, C. ectenes taihuensis, and A. nobilis. Certain microbial groups, such as Clostridium sensu stricto 1, Romboutsia, and Pseudomonas, were both dominant and keystone in the fish gut microbial network. Our study offers a new approach for studying the wild fish gut microbiota in natural, controlled environments. It offers an in-depth understanding of gut microbial communities in wild fish living in stable, limited water exchange natural environments.
Collapse
Affiliation(s)
- Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Zijia Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Xiaoxue Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
| | - Juntao Zeng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cui
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Wenxuan Lu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Shijie Bai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
| |
Collapse
|
2
|
Dosi A, Meziti A, Tounta E, Koemtzopoulos K, Komnenou A, Dendrinos P, Kormas K. Fecal and skin microbiota of two rescued Mediterranean monk seal pups during rehabilitation. Microbiol Spectr 2024; 12:e0280523. [PMID: 38084980 PMCID: PMC10783143 DOI: 10.1128/spectrum.02805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE This study showed that during the rehabilitation of two rescued Mediterranean monk seal pups (Monachus monachus), the skin and fecal bacterial communities showed similar succession patterns between the two individuals. This finding means that co-housed pups share their microbiomes, and this needs to be considered in cases of infection outbreaks and their treatment. The housing conditions, along with the feeding scheme and care protocols, including the admission of antibiotics as prophylaxis, probiotics, and essential food supplements, resulted in bacterial communities with no apparent pathogenic bacteria. This is the first contribution to the microbiome of the protected seal species of M. monachus and contributes to the animal's conservation practices through its microbiome.
Collapse
Affiliation(s)
- Aggeliki Dosi
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Eleni Tounta
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Kimon Koemtzopoulos
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Anastasia Komnenou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Dendrinos
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
3
|
Junsiri W, Islam SI, Thiptara A, Jeenpun A, Sangkhapaitoon P, Thongcham K, Phakphien R, Taweethavonsawat P. First report of Strongylidae nematode from pilot whale ( Globicephala macrorhynchus) by molecular analysis reveals the cosmopolitan distribution of the taxon. Front Vet Sci 2023; 10:1313783. [PMID: 38162478 PMCID: PMC10755461 DOI: 10.3389/fvets.2023.1313783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
This study investigates the identification, genetic composition, and placement in the evolutionary tree of a particular nematode species found in a short-finned pilot whale in the Gulf of Thailand. To accomplish this, we utilized various methods, including microscopic observations, molecular techniques, and comparative analyses to better understand the characteristics of this parasite. Initially, we concentrated on studying the 18s rDNA sequence through nested PCR, resulting in a 774-bp product. After conducting a BLASTn analysis, we discovered that there were only a few sequences in the GeneBank that shared similarities with our nematode, particularly with Cyathostomum catinatum, although the percent identity was relatively low. To confirm the uniqueness of our sequence, we constructed a phylogenetic tree that demonstrated a distinct branch for our nematode, suggesting significant genetic differentiation from C. catinatum. Additionally, we sequenced a 399-bp section of the ITS2 gene using PCR, and the resulting data showed a close association with the Strongylidae family, specifically with Cylicocyclus insigne. This was further confirmed by BLASTn and CD-HIT-est results, which indicated a 99 and ~94% sequence homology with C. insigne, respectively. The ITS2 phylogenetic tree also supported the position of our isolated sequence within the Strongylidae family, clustering closely with C.insigne. Our findings shed light on the genetic connections, taxonomy, and evolutionary trends within the Strongylidae family, with a particular focus on the widespread nature of the Cylicocyclus genus. This study emphasizes the importance of utilizing molecular techniques and interdisciplinary approaches to gain insight into nematode diversity, evolution, and ecological dynamics in marine environments.
Collapse
Affiliation(s)
- Witchuta Junsiri
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sk Injamamul Islam
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Auyarat Thiptara
- Epidemiology and Information Group, Veterinary Research and Development Center (Upper Southern Region), Nakhon Sri Thammarat, Thailand
| | - Autthaporn Jeenpun
- Epidemiology and Information Group, Veterinary Research and Development Center (Upper Southern Region), Nakhon Sri Thammarat, Thailand
| | - Piyanan Sangkhapaitoon
- Animal Diagnostic Group, Veterinary Research and Development Center (Upper Southern Region), Nakhon Sri Thammarat, Thailand
| | - Khunanont Thongcham
- Marine Endangered Species Unit, Marine and Coastal Resource Research Center, Lower Gulf of Thailand, Department of Marine and Coastal Resources, Thailand
| | - Rattanakorn Phakphien
- Marine Endangered Species Unit, Marine and Coastal Resource Research Center, Lower Gulf of Thailand, Department of Marine and Coastal Resources, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Biomarkers in Animal Parasitology Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Wan X, Li J, Ao M, McLaughlin RW, Fan F, Wang D, Zheng J. The intestinal microbiota of a Risso's dolphin (Grampus griseus): possible relationships with starvation raised by macro-plastic ingestion. Int Microbiol 2023; 26:1001-1007. [PMID: 37059916 PMCID: PMC10104690 DOI: 10.1007/s10123-023-00355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Ingesting marine plastics is increasingly common in cetaceans, but little is known about their potential effects. Here, by utilizing 16S rRNA gene sequencing, we profiled the intestinal bacterial communities of a stranded Risso's dolphin (Grampus griseus) which died because of the ingestion of rubber gloves. In this study, we explored the potential relationships between starvation raised by plastic ingestion with the dolphin gut microbiota. Our results showed significant differences in bacterial diversity and composition among the different anatomical areas along the intestinal tract, which may be related to the intestinal emptying process under starvation. In addition, the intestinal bacterial composition of the Risso's dolphin showed both similarity and divergence to that of other toothed whales, suggesting potential roles of both host phylogeny and habitat shaping of the cetacean intestinal microbiome. Perhaps, the microbiota is reflecting a potentially disordered intestinal microbial profile caused by the ingestion of macro-plastics which led to starvation. Moreover, two operational taxonomic units (0.17% of the total reads) affiliated with Actinobacillus and Acinetobacter lwoffii were detected along the intestinal tract. These bacterial species may cause infections in immunocompromised dolphins which are malnourished. This preliminary study profiles the intestinal microbiota of a Risso's dolphin, and provides an additional understanding of the potential relationships between starvation raised by ingesting macro-plastics with cetacean gut microbiota.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jia Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mengxue Ao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | - Fei Fan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Aquatic Biological Resource Center, Wuhan, 430072, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Aquatic Biological Resource Center, Wuhan, 430072, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- National Aquatic Biological Resource Center, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Hu R, Li S, Diao H, Huang C, Yan J, Wei X, Zhou M, He P, Wang T, Fu H, Zhong C, Mao C, Wang Y, Kuang S, Tang W. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Front Immunol 2023; 14:1095740. [PMID: 36865557 PMCID: PMC9972974 DOI: 10.3389/fimmu.2023.1095740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Intestinal health is closely associated with overall animal health and performance and, consequently, influences the production efficiency and profit in feed and animal production systems. The gastrointestinal tract (GIT) is the main site of the nutrient digestive process and the largest immune organ in the host, and the gut microbiota colonizing the GIT plays a key role in maintaining intestinal health. Dietary fiber (DF) is a key factor in maintaining normal intestinal function. The biological functioning of DF is mainly achieved by microbial fermentation, which occurs mainly in the distal small and large intestine. Short-chain fatty acids (SCFAs), the main class of microbial fermentation metabolites, are the main energy supply for intestinal cells. SCFAs help to maintain normal intestinal function, induce immunomodulatory effects to prevent inflammation and microbial infection, and are vital for the maintenance of homeostasis. Moreover, because of its distinct characteristics (e.g. solubility), DF is able to alter the composition of the gut microbiota. Therefore, understanding the role that DF plays in modulating gut microbiota, and how it influences intestinal health, is essential. This review gives an overview of DF and its microbial fermentation process, and investigates the effect of DF on the alteration of gut microbiota composition in pigs. The effects of interaction between DF and the gut microbiota, particularly as they relate to SCFA production, on intestinal health are also illustrated.
Collapse
Affiliation(s)
- Ruiqi Hu
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chongbo Huang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Jiayou Yan
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xiaolan Wei
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Mengjia Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Peng He
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Tianwei Wang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Hongsen Fu
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Chengbo Zhong
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Chi Mao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Wenjie Tang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wang Z, Zhang C, Li G, Yi X. The influence of species identity and geographic locations on gut microbiota of small rodents. Front Microbiol 2022; 13:983660. [PMID: 36532505 PMCID: PMC9751661 DOI: 10.3389/fmicb.2022.983660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
Although the correlation between gut microbiota, species identity and geographic locations has long attracted the interest of scientists, to what extent species identity and geographic locations influence the gut microbiota assemblages in granivorous rodents needs further investigation. In this study, we performed a survey of gut microbial communities of four rodent species (Apodemus agrarius, A. peninsulae, Tamias sibiricus and Clethrionomys rufocanus) distributed in two areas with great distance (> 600 km apart), to assess if species identity dominates over geographic locations in shaping gut microbial profiles using 16S rRNA gene sequencing. We found that gut microbiota composition varied significantly across host species and was closely correlated with host genetics. We identified strong species identity effects on gut microbial composition, with a comparatively weaker signal of geographic provenance on the intestinal microbiota. Specifically, microbiota of one species was on average more similar to that of conspecifics living in separate sites than to members of a closely related species living in the same location. Our study suggests that both host genetics and geographical variations influence gut microbial diversity of four rodent species, which merits further investigation to reveal the patterns of phylogenetic correlation of gut microbial community assembly in mammals across multiple habitats.
Collapse
Affiliation(s)
- Zhenyu Wang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Chao Zhang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
7
|
Suzuki A, Shirakata C, Anzai H, Sumiyama D, Suzuki M. Vitamin B 12 biosynthesis of Cetobacterium ceti isolated from the intestinal content of captive common bottlenose dolphins ( Tursiops truncatus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178719 DOI: 10.1099/mic.0.001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In comparison with terrestrial mammals, dolphins require a large amount of haemoglobin in blood and myoglobin in muscle to prolong their diving time underwater and increase the depth they can dive. The genus Cetobacterium is a common gastrointestinal bacterium in dolphins and includes two species: C. somerae and C. ceti. Whilst the former produces vitamin B12, which is essential for the biosynthesis of haem, a component of haemoglobin and myoglobin, but not produced by mammals, the production ability of the latter remains unknown. The present study aimed to isolate C. ceti from dolphins and reveal its ability to biosynthesize vitamin B12. Three strains of C. ceti, identified by phylogenetic analyses with 16S rRNA gene and genome-based taxonomy assignment and biochemical features, were isolated from faecal samples collected from two captive common bottlenose dolphins (Tursiops truncatus). A microbioassay using Lactobacillus leichmannii ATCC 7830 showed that the average concentration of vitamin B12 produced by the three strains was 11 (standard deviation: 2) pg ml-1. The biosynthesis pathway of vitamin B12, in particular, adenosylcobalamin, was detected in the draft genome of the three strains using blastKOALA. This is the first study to isolate C. ceti from common bottlenose dolphins and reveal its ability of vitamin B12 biosynthesis, and our findings emphasize the importance of C. ceti in supplying haemoglobin and myoglobin to dolphins.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506 Japan
| | - Chika Shirakata
- Enoshima Aquarium, Fujisawa, Kanagawa, 251-0035 Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-0054 Japan
| | - Hiroshi Anzai
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Daisuke Sumiyama
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Miwa Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
8
|
Li C, Xie H, Sun Y, Zeng Y, Tian Z, Chen X, Sanganyado E, Lin J, Yang L, Li P, Liang B, Liu W. Insights on Gut and Skin Wound Microbiome in Stranded Indo-Pacific Finless Porpoise (Neophocaena phocaenoides). Microorganisms 2022; 10:microorganisms10071295. [PMID: 35889014 PMCID: PMC9318903 DOI: 10.3390/microorganisms10071295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiome is a unique marker for cetaceans’ health status, and the microbiome composition of their skin wounds can indicate a potential infection from their habitat. Our study provides the first comparative analysis of the microbial communities from gut regions and skin wounds of an individual Indo-Pacific finless porpoise (Neophocaena phocaenoides). Microbial richness increased from the foregut to the hindgut with variation in the composition of microbes. Fusobacteria (67.51% ± 5.10%), Firmicutes (22.00% ± 2.60%), and Proteobacteria (10.47% ± 5.49%) were the dominant phyla in the gastrointestinal tract, while Proteobacteria (76.11% ± 0.54%), Firmicutes (22.00% ± 2.60%), and Bacteroidetes (10.13% ± 0.49%) were the dominant phyla in the skin wounds. The genera Photobacterium, Actinobacillus, Vibrio, Erysipelothrix, Tenacibaculum, and Psychrobacter, considered potential pathogens for mammals, were identified in the gut and skin wounds of the stranded Indo-Pacific finless porpoise. A comparison of the gut microbiome in the Indo-Pacific finless porpoise and other cetaceans revealed a possible species-specific gut microbiome in the Indo-Pacific finless porpoise. There was a significant difference between the skin wound microbiomes in terrestrial and marine mammals, probably due to habitat-specific differences. Our results show potential species specificity in the microbiome structure and a potential threat posed by environmental pathogens to cetaceans.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huiying Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaohan Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Jianqing Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Liangliang Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (B.L.); (W.L.)
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (C.L.); (H.X.); (Y.S.); (Y.Z.); (Z.T.); (X.C.); (J.L.); (L.Y.); (P.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (B.L.); (W.L.)
| |
Collapse
|
9
|
Yi X, Cha M. Gut Dysbiosis Has the Potential to Reduce the Sexual Attractiveness of Mouse Female. Front Microbiol 2022; 13:916766. [PMID: 35677910 PMCID: PMC9169628 DOI: 10.3389/fmicb.2022.916766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has shown that the gut microbiome has significant effects on mate preferences of insects; however, whether gut microbiota composition affects sexual attractiveness and mate preference in mammals remains largely unknown. Here, we showed that antibiotic treatment significantly restructured the gut microbiota composition of both mouse males and females. Males, regardless of antibiotic treatment, exhibited a higher propensity to interact with the control females than the antibiotic-treated females. The data clearly showed that gut microbiota dysbiosis reduced the sexual attractiveness of females to males, implying that commensal gut microbiota influences female attractiveness to males. The reduced sexual attractiveness of the antibiotic-treated females may be beneficial to discriminating males by avoiding disorders of immunity and sociability in offspring that acquire maternal gut microbiota via vertical transmission. We suggest further work should be oriented to increase our understanding of the interactions between gut microbiota dysbiosis, sexual selection, and mate choice of wild animals at the population level.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Muha Cha
- College of Life Sciences, Qufu Normal University, Qufu, China.,Academy of Agricultural Sciences, Chifeng University, Chifeng, China
| |
Collapse
|
10
|
Gut Microbial Characterization of Melon-Headed Whales (Peponocephala electra) Stranded in China. Microorganisms 2022; 10:microorganisms10030572. [PMID: 35336147 PMCID: PMC8950688 DOI: 10.3390/microorganisms10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/04/2022] Open
Abstract
Although gut microbes are regarded as a significant component of many mammals and play a very important role, there is a paucity of knowledge around marine mammal gut microbes, which may be due to sampling difficulties. Moreover, to date, there are very few, if any, reports on the gut microbes of melon-headed whales. In this study, we opportunistically collected fecal samples from eight stranded melon-headed whales (Peponocephala electra) in China. Using high-throughput sequencing technology of partial 16S rRNA gene sequences, we demonstrate that the main taxa of melon-headed whale gut microbes are Firmicutes, Fusobacteriota, Bacteroidota, and Proteobacteria (Gamma) at the phylum taxonomic level, and Cetobacterium, Bacteroides, Clostridium sensu stricto, and Enterococcus at the genus taxonomic level. Meanwhile, molecular ecological network analysis (MENA) shows that two modules (a set of nodes that have strong interactions) constitute the gut microbial community network of melon-headed whales. Module 1 is mainly composed of Bacteroides, while Module 2 comprises Cetobacterium and Enterococcus, and the network keystone genera are Corynebacterium, Alcaligenes, Acinetobacter, and Flavobacterium. Furthermore, by predicting the functions of the gut microbial community through PICRUSt2, we found that although there are differences in the composition of the gut microbial community in different individuals, the predicted functional profiles are similar. Our study gives a preliminary inside look into the composition of the gut microbiota of stranded melon-headed whales.
Collapse
|
11
|
Affiliation(s)
- Wenhua Xiong
- Executive Editor, Integrative Zoology.,Senior Engineer, Institute of Zoology, Chinese Academy of Sciences, China.,Executive Director, Office of the International Society of Zoological Sciences
| |
Collapse
|
12
|
Wu G, Tang X, Fan C, Wang L, Shen W, Ren S, Zhang L, Zhang Y. Gastrointestinal Tract and Dietary Fiber Driven Alterations of Gut Microbiota and Metabolites in Durco × Bamei Crossbred Pigs. Front Nutr 2022; 8:806646. [PMID: 35155525 PMCID: PMC8836464 DOI: 10.3389/fnut.2021.806646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tract and dietary fiber (DF) are known to influence gut microbiome composition. However, the combined effect of gut segment and long-term intake of a high fiber diet on pig gut microbiota and metabolite profiles is unclear. Here, we applied 16S rRNA gene sequencing and untargeted metabolomics to investigate the effect of broad bean silage on the composition and metabolites of the cecal and jejunal microbiome in Durco × Bamei crossbred pigs. Twenty-four pigs were allotted to four graded levels of DF chow, and the content of jejunum and cecum were collected. Our results demonstrated that cecum possessed higher α-diversity and abundance of Bacteroidetes, unidentified Ruminococcaceae compared to jejunum, while jejunum possessed higher abundance of Lactobacillus, Streptococcus. DF intake significantly altered diversity of the bacterial community. The abundance of Bacteroidetes and Turicibacter increased with the increase of DF in cecum and jejunum respectively. Higher concentrations of amino acids and conjugated bile acids were detected in the jejunum, whereas free bile acids and fatty acids were enriched in the cecum. The concentrations of fatty acids, carbohydrate metabolites, organic acids, 2-oxoadipic acid, and succinate in cecum were higher in the high DF groups. Overall, the results indicate that the composition of bacteria and the microbiota metabolites were distinct in different gut segments. DF had a significant influence on the bacterial composition and structure in the cecum and jejunum, and that the cecal metabolites may further affect host health, growth, and slaughter performance.
Collapse
Affiliation(s)
- Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Liangzhi Zhang
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- Yanming Zhang
| |
Collapse
|
13
|
Bai S, Zhang P, Zhang C, Du J, Du X, Zhu C, Liu J, Xie P, Li S. Comparative Study of the Gut Microbiota Among Four Different Marine Mammals in an Aquarium. Front Microbiol 2021; 12:769012. [PMID: 34745077 PMCID: PMC8567075 DOI: 10.3389/fmicb.2021.769012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite an increasing appreciation in the importance of host–microbe interactions in ecological and evolutionary processes, information on the gut microbial communities of some marine mammals is still lacking. Moreover, whether diet, environment, or host phylogeny has the greatest impact on microbial community structure is still unknown. To fill part of this knowledge gap, we exploited a natural experiment provided by an aquarium with belugas (Delphinapterus leucas) affiliated with family Monodontidae, Pacific white-sided dolphins (Lagenorhynchus obliquidens) and common bottlenose dolphin (Tursiops truncatus) affiliated with family Delphinidae, and Cape fur seals (Arctocephalus pusillus pusillus) affiliated with family Otariidae. Results show significant differences in microbial community composition of whales, dolphins, and fur seals and indicate that host phylogeny (family level) plays the most important role in shaping the microbial communities, rather than food and environment. In general, the gut microbial communities of dolphins had significantly lower diversity compared to that of whales and fur seals. Overall, the gut microbial communities were mainly composed of Firmicutes and Gammaproteobacteria, together with some from Bacteroidetes, Fusobacteria, and Epsilonbacteraeota. However, specific bacterial lineages were differentially distributed among the marine mammal groups. For instance, Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae were the dominant bacterial lineages in the gut of belugas, while for Cape fur seals, Moraxellaceae and Bacteroidaceae were the main bacterial lineages. Moreover, gut microbial communities in both Pacific white-sided dolphins and common bottlenose dolphins were dominated by a number of pathogenic bacteria, including Clostridium perfringens, Vibrio fluvialis, and Morganella morganii, reflecting the poor health condition of these animals. Although there is a growing recognition of the role microorganisms play in the gut of marine mammals, current knowledge about these microbial communities is still severely lacking. Large-scale research studies should be undertaken to reveal the roles played by the gut microbiota of different marine mammal species.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | | | - Jiang Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | | | - Chengwei Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jun Liu
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xie
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|