1
|
Touayar M, Zayani R, Messaoud C, Salman H. Influence of droplet size on the antibacterial efficacy of citral and citronella oil nanoemulsions in polysaccharide coated fresh-cut apples. Sci Rep 2023; 13:10460. [PMID: 37380709 DOI: 10.1038/s41598-023-37528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Fresh-cut fruits are highly perishable and susceptible to bacterial contamination. Polysaccharides edible coating loaded with essential oils nanoemulsions have the potential to extend shelf life and improve quality of fruits. The effectiveness of this approach is dependent on the properties of the nanoemulsions, such as droplet size (DS) and stability. This study aimed to optimize the production of citral (CT) and citronella oil (CTO) nanoemulsions (CT-CTO-NEs) incorporated in edible coating film to be used as natural antimicrobial agent in fresh-cut apples. After testing different combinations of surfactant (tween 80) and cosurfactant (propylene glycol) to obtain stable oil-in-water (o/w) nanoemulsions, the results demonstrated that optimized CT-CTO-NEs with DS less than 500 nm have been successfully achieved with high stability for 3 weeks at 4 °C. In addition, CT-CTO-NEs were obtained by In situ formation under magnetic stirring without applying complex high shear homogenization processes. Desired stability of CT-CTO-NEs also has been achieved within semi-solid matrix (sodium alginate cross-linked film). The relationship between DS and antibacterial activity was observed, with the smallest DS (< 100 nm) showing the highest antibacterial efficacy against Listeria monocytogenes and Escherichia coli. These results emphasize the importance of DS in the effectiveness of CT-CTO-NEs as an antibacterial coating for fresh-cut fruits.
Collapse
Affiliation(s)
- Mounir Touayar
- Bionanoplus, Polígono, C. E, N°2, 2°B, 31194, Orikain, Navarra, Spain.
- Research Unit of Nanobiotechnology and Valorisation of Phytoressources Medicinal Plants UR17ES22, National Institute of Applied Science and Technology, University of Carthage, Centre Urbain Nord, BP 676, 1080, Charguia Cedex, Tunisia.
| | - Rania Zayani
- Research Unit of Nanobiotechnology and Valorisation of Phytoressources Medicinal Plants UR17ES22, National Institute of Applied Science and Technology, University of Carthage, Centre Urbain Nord, BP 676, 1080, Charguia Cedex, Tunisia
| | - Chokri Messaoud
- Research Unit of Nanobiotechnology and Valorisation of Phytoressources Medicinal Plants UR17ES22, National Institute of Applied Science and Technology, University of Carthage, Centre Urbain Nord, BP 676, 1080, Charguia Cedex, Tunisia
| | - Hesham Salman
- Bionanoplus, Polígono, C. E, N°2, 2°B, 31194, Orikain, Navarra, Spain
| |
Collapse
|
2
|
Madureira J, Melgar B, Alves VD, Moldão-Martins M, Margaça FMA, Santos-Buelga C, Barros L, Cabo Verde S. Effect of Olive Pomace Extract Application and Packaging Material on the Preservation of Fresh-Cut Royal Gala Apples. Foods 2023; 12:foods12091926. [PMID: 37174463 PMCID: PMC10178254 DOI: 10.3390/foods12091926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The efficiency of natural olive pomace extracts for enhancing the quality of fresh-cut apples was compared with commercial ascorbic acid and two different packaging films (biodegradable polylactic acid (PLA) and oriented polypropylene (OPP)) were tested. The composition of atmosphere inside the packages, the physicochemical parameters (firmness, weight loss and color), the microbial load, total phenolic content and antioxidant activity of fresh-cut apples were evaluated throughout 12 days of storage at 4 °C. After 12 days of refrigerated storage, a significant decrease in O2 was promoted in PLA films, and the weight loss of the whole packaging was higher in PLA films (5.4%) than in OPP films (0.2%). Natural olive pomace extracts reduced the load of mesophilic bacteria (3.4 ± 0.1 log CFU/g and 2.4 ± 0.1 log CFU/g for OPP and PLA films, respectively) and filamentous fungi (3.3 ± 0.1 log CFU/g and 2.44 ± 0.05 log CFU/g for OPP and PLA films, respectively) growth in fresh-cut apples after five days of storage at 4 °C, and no detection of coliforms was verified throughout the 12 days of storage. In general, the olive pomace extract preserved or improved the total phenolic index and antioxidant potential of the fruit, without significant changes in their firmness. Moreover, this extract seemed to be more effective when combined with the biodegradable PLA film packaging. This work can contribute to the availability of effective natural food additives, the sustainability of the olive oil industries and the reduction of environmental impact. It can also be useful in meeting the food industries requirements to develop new functional food products.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Loures, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Bruno Melgar
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vítor D Alves
- LEAF-Linking, Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Margarida Moldão-Martins
- LEAF-Linking, Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Loures, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Unidad de Excelencia Producción, Agrícola y Medioambiente (Agrienvironment), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Loures, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
3
|
Oliver-Simancas R, Labrador-Fernández L, Díaz-Maroto MC, Pérez-Coello MS, Alañón ME. Comprehensive research on mango by-products applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Olawuyi IF, Kim SR, Lee WY. Application of plant mucilage polysaccharides and their techno-functional properties' modification for fresh produce preservation. Carbohydr Polym 2021; 272:118371. [PMID: 34420702 DOI: 10.1016/j.carbpol.2021.118371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
The use of edible coating/film to improve fresh produce's quality and shelf life is an old but reliable and popular method of preservation. Recently, plant-derived mucilages have been extensively used to prepare edible packages (MEPs). This review focuses on recent studies that characterize mucilages from different plants, and examine their specific applications as edible packages in preserving fruits and vegetables. Structure-function relations and corresponding influence on film-forming properties are discussed. This review also surveys the additive-modifications of MEPs techno-functional properties. MEPs from a range of plant sources are effective in preventing quality loss and improving the storability of various fruits and vegetables. The preservative mechanisms and essential techno-functional properties of MEPs required for fruit and vegetable packaging were summarized. The key findings summarized in this study will help promote the utilization of mucilages and draw attention to other novel applications of this valuable polymer.
Collapse
Affiliation(s)
- Ibukunoluwa Fola Olawuyi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
|
6
|
Ren B, Wu W, Soladoye OP, Bak KH, Fu Y, Zhang Y. Application of biopreservatives in meat preservation: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Baojing Ren
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
- Westa College Southwest University Chongqing 400715 China
| | - Wei Wu
- College of Animal Science and Technology Southwest University Chongqing 400715 China
| | - Olugbenga P. Soladoye
- Agriculture and Agri‐Food Canada Government of Canada Lacombe Research and Development Centre 6000 C&E Trail Lacombe AB T4L 1W1 Canada
| | - Kathrine H. Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health University of Veterinary Medicine, Vienna Veterinärplatz 1 Vienna 1210 Austria
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| |
Collapse
|
7
|
Improving the shelf life of fresh cut kiwi using nanoemulsion coatings with antioxidant and antimicrobial agents. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, Walasek-Janusz M. A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers (Basel) 2021; 13:polym13071066. [PMID: 33800613 PMCID: PMC8037796 DOI: 10.3390/polym13071066] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Easily sourced mucus from various plant parts is an odorless, colorless and tasteless substance with emerging commercial potential in agriculture, food, cosmetics and pharmaceuticals due to its non-toxic and biodegradable properties. It has been found that plant-derived mucilage can be used as a natural thickener or emulsifier and an alternative to synthetic polymers and additives. Because it is an invisible barrier that separates the surface from the surrounding atmosphere, it is used as edible coatings to extend the shelf life of fresh vegetables and fruits as well as many food products. In addition to its functional properties, mucilage can also be used for the production of nanocarriers. In this review, we focus on mucus extraction methods and its use as a natural preservative for fresh produce. We detailed the key properties related to the extraction and preservation of food, the mechanism of the effect of mucus on the sensory properties of products, coating methods when using mucus and its recipe for preserving fruit and vegetables. Understanding the ecological, economic and scientific factors of production and the efficiency of mucus as a multi-directional agent will open up its practical application in many industries.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India;
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali, Punjab 140307, India;
| | - Ravinder Kaushik
- Department of Food Technology, School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India;
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India;
- Correspondence: (A.N.); (P.C.)
| | - Magdalena Walasek-Janusz
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-280 Lublin, Poland;
| |
Collapse
|
9
|
Extending Shelf-Life and Quality of Minimally Processed Golden Delicious Apples with Three Bioactive Coatings Combined with Cinnamon Essential Oil. Foods 2021; 10:foods10030597. [PMID: 33809024 PMCID: PMC7998788 DOI: 10.3390/foods10030597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
The application of coatings with essential oils for food preservation is an alternative way to keep minimally processed apple slices fresh, nutritious, safe, sensory palatable, and accessible for consumers. In the present study, the effect of three bioactive coatings on quality variables of minimally processed Golden Delicious apple slices for 25-days at 4 °C was evaluated. The coatings were CT1-chitosan-based, CT2-guar gum-based, and CT3-composite guar gum-starch-based; all three coatings contained cinnamon essential oil and were compared with UCT0-uncoated apple slices. The quality variables evaluated were weight-loss, firmness, browning index, total phenolic content, total soluble solids, titratable acidity, respiration rate, microbial analysis, and sensory evaluation. All coatings improved the preservation and sensorial quality variables of Golden Delicious apples; however, although the CT1-chitosan-based coating was capable of extending the shelf-life of minimally processed apple, it demonstrated less sensorially favorable scores for flavor, odor, and overall acceptance attributes.
Collapse
|
10
|
Effect of ascorbic acid and citric acid on the quality of salted Chinese cabbage during storage. Food Sci Biotechnol 2021; 30:227-234. [PMID: 33732513 DOI: 10.1007/s10068-020-00857-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Changes in color, browning indices, enzyme activity, and physical and chemical quality during the storage period were investigated to assess the effectiveness of storage period extension along with the addition of ascorbic acid (AA) and citric acid (CA) to salted Chinese cabbage. After 16 days of storage, the change in chromaticity value showed treatment with 0.5% CA showed the lowest change in the brown index during the storage period. The control showed the highest residual activity of polyphenol oxidase among control, AA, and CA-treated salted cabbage. AA and CA treatment effectively inhibited the initial populations of microorganisms including total aerobic bacteria, lactic acid bacteria, and yeast and molds in salted Chinese cabbage during storage. Further, the texture, i.e., hardness, chewability, and elasticity, tended to decrease with increasing storage. These results suggest that treatment with AA could help maintain the quality of salted Chinese cabbage during the storage period.
Collapse
|
11
|
Hasan MU, Riaz R, Malik AU, Khan AS, Anwar R, Rehman RNU, Ali S. Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. J Food Biochem 2021; 45:e13640. [PMID: 33533511 DOI: 10.1111/jfbc.13640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Aloe vera (ALV) with its unique nutritional profile is being used for food, health, and nutraceutical industries globally. Due to its organic nature, ALV gel coating has created lot of interest for exploring its potential in extending the shelf and storage life of fresh produce. ALV gel coating plays imperative role in delaying fruit ripening by lowering ethylene biosynthesis, respiration rate, and internal metabolic activities associated with fruit softening, color development, enzymatic browning, and decay. ALV gel coating reduces the microbial spoilage due to its antifungal properties and maintains visual appearance, firmness, sugar: acid ratio, total antioxidants, and phenolic contents with conserved eating quality. ALV coated fruits and vegetables showed reduced weight loss, superoxide ion ( O 2 - ∙ ), hydrogen peroxide (H2 O2 ), ion leakage, and soluble solids content and exhibited higher acidity, anthocyanins, ascorbic acid, catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) activities. It also delayed the enzymatic browning by inducing peroxidase (POD) activity during storage. Recent local studies also revealed that ALV gel coating markedly conserved higher consuming quality and extended storage period (>1.34-fold) of different fruits and vegetables. Overall, Aloe vera gel coating alone or in combination with other organic compounds has shown great potential as a food-safe and eco-friendly coating for maintaining the quality of fruits and vegetables over extended period and reducing postharvest losses in the supply chain. PRACTICAL APPLICATIONS: ALV gel is a plant-based natural coating of eco-friendly nature. The present review summarizes the updated information of ALV gel coating application, methods of extraction, combinations with other postharvest coatings, and its impact on quality of various fruits and vegetables. It also provides future insights for the development of commercially applicable ALV gel coating protocols through simulation studies. So, being a natural coating, ALV gel has tremendous potential to be used in fruit and vegetable industries around the globe.
Collapse
Affiliation(s)
- Mahmood Ul Hasan
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rehan Riaz
- CAB International (Central and West Asia), Rawalpindi, Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Sattar Khan
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Raheel Anwar
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rana Naveed Ur Rehman
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
12
|
Sarker A, Grift TE. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00802-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hosseinifarahi M, Jamshidi E, Amiri S, Kamyab F, Radi M. Quality, phenolic content, antioxidant activity, and the degradation kinetic of some quality parameters in strawberry fruit coated with salicylic acid and Aloe veragel. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehdi Hosseinifarahi
- Department of Horticultural Science Yasooj Branch Islamic Azad University Yasooj Iran
| | - Ehsan Jamshidi
- Department of Food Science Yasooj Branch Islamic Azad University Yasooj Iran
| | - Sedigheh Amiri
- Department of Food Science Yasooj Branch Islamic Azad University Yasooj Iran
| | - Freshteh Kamyab
- Department of Horticultural Science Rafsanjan Branch Islamic Azad University Rafsanjan Iran
| | - Mohsen Radi
- Department of Food Science Yasooj Branch Islamic Azad University Yasooj Iran
| |
Collapse
|
14
|
Effect of Packaging and Coating Technique on Postharvest Quality and Shelf Life of Raphanus sativus L. and Hibiscus sabdariffa L. Microgreens. Foods 2020; 9:foods9050653. [PMID: 32438663 PMCID: PMC7278862 DOI: 10.3390/foods9050653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/03/2022] Open
Abstract
Microgreens are highly respiring produce characterized by a relatively short shelf-life. In this study, the efficacy of two types of macro-perforated packaging, PET clamshell (PET–CS) and LDPE self-seal bag (LDPE–SSB), was assessed on the postharvest quality and shelf life of radish (RaS) and roselle (HbS) microgreens stored at 5 °C. Pre-harvest spray treatment (AGSC) was compared with postharvest dip coating (AGDC) using Aloe vera gel (AG) for the first time in microgreens for postharvest quality improvement. PET–CS had a lower physiological loss in weight (PLW), respiration rate (RR), electrolyte leakage (EL), microbial counts (MCs), and higher overall acceptability (OA) than LDPE–SSB. AG-coated microgreens had significantly (p ≤ 0.05) lesser deteriorative postharvest changes and higher ascorbic acid content than uncoated control. AGSC maintained better OA and postharvest quality than AGDC, especially at the end of the study period in terms of reducing EL, retaining greenness (−a*), and chroma value in HbS microgreens. In RaS microgreens, AGSC helped to maintain lower PLW, MC, and higher ascorbic acid levels. AGSC could be suggested as an eco-friendly ergonomic pre-harvest treatment along with PET–CS for enhancement of postharvest quality and shelf life in RaS and HbS microgreens, with a tremendous potential to be extended to other microgreens.
Collapse
|
15
|
Use of Aloe Vera Gel-Based Edible Coating with Natural Anti-Browning and Anti-Oxidant Additives to Improve Post-Harvest Quality of Fresh-Cut ‘Fuji’ Apple. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, there is increasing use of edible and biodegradable films and packaging that are both environmentally friendly and functional for storage and market distribution. Fresh-cut ‘Fuji’ apples, harvested in an organic farm, were treated, using a spraying technique, with three new edible coatings based on Aloe vera gel (AVG—40% v/w) and in combination with natural additives: lemon essential oil (LEO—1% v/w) and hydroxypropyl methylcellulose (HPMC—0.1% v/w) and compared with untreated sample (CTR), the physicochemical and sensory characteristics and the proximate compounds were evaluated. During cold storage, weight loss, soluble solids content, and color of uncoated slices were reduced, while softening, ripening, browning, and acidity were accelerated. In contrast, the AVG/HPMC treatment significantly delayed the above parameters related to post-harvest quality loss, while the AVG/LEO treatment delayed the browning processes, maintaining an excellent color during cold storage. Concerning proximate compounds, the treatments did not alter their concentration in the fruit tissues. Sensory analyses revealed no detrimental effect on taste, aroma, or flavor. Our data evidenced the positive effect of Aloe vera gel in combination with LEO and HPMC on fresh-cut apple quality as an innovative and sustainable technique to maintain fresh-cut apple quality.
Collapse
|
16
|
Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Edible coating gels developed from the Aloe vera plant have been used as a traditional medicine for about 3000 years. Aloe vera contains approximately 110 potentially active constituents from six different classes: chromone and its glycoside derivatives; anthraquinone and its glycoside derivatives; flavonoids; phenylpropanoids and coumarins; phenylpyrone and phenol derivatives; and phytosterols and others. Apart from medicinal uses, Aloe gels have an important role in food preservation as edible coatings. They provide an edible barrier for atmospheric gases and moisture and help to reduce the respiration and transpiration of fresh produce, which helps to preserve its postharvest quality. To date, numerous studies have been conducted on the postharvest use of Aloe vera gel. The present review article summarizes and discusses existing available information about the chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera.
Collapse
|
17
|
Rojas-Bravo M, Rojas-Zenteno EG, Hernández-Carranza P, Ávila-Sosa R, Aguilar-Sánchez R, Ruiz-López II, Ochoa-Velasco CE. A Potential Application of Mango (Mangifera indica L. cv Manila) Peel Powder to Increase the Total Phenolic Compounds and Antioxidant Capacity of Edible Films and Coatings. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02317-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Quality Control of Fresh-Cut Apples after Coating Application. Foods 2019; 8:foods8060189. [PMID: 31159394 PMCID: PMC6617086 DOI: 10.3390/foods8060189] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
The growing demand for ready-to-eat fresh fruits has led to set-up appropriate strategies for preserving fruit quality and freshness of such commodities. To slow down the deterioration events such as respiration, moisture loss and enzymatic activity, ready-to-eat products should be protected with an edible film. A suitable coating should combine hydrophilic and hydrophobic features to ensure good mechanical and gas barrier properties. Alginate/essential oil nanoformulations, one with low and the other with high oil content, here proposed to protect apple pieces during storage, were first characterized through dynamic light scattering and rheology. The effect of the application of the nanoformulations on the quality parameters of apples stored at 4 °C was considered by evaluating weight loss, pH and titratable acidity, total phenols content and the fruit appearance during storage. Mainly on the basis of pH and titratable acididty variation, the nanoformulation with low oil content resulted eligible for preserving the quality of fresh-cut apple pieces during storage.
Collapse
|
19
|
Shyu YS, Chen GW, Chiang SC, Sung WC. Effect of Chitosan and Fish Gelatin Coatings on Preventing the Deterioration and Preserving the Quality of Fresh-Cut Apples. Molecules 2019; 24:molecules24102008. [PMID: 31130642 PMCID: PMC6572066 DOI: 10.3390/molecules24102008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of fish gelatin and chitosan coatings on the physicochemical characteristics of fresh-cut apples (Malus pumila Mill.), stored at 5 °C and 22 °C, was investigated. Chitosan provided an effective control for microbial growth, maintained firmness during 4 days of storage at room temperature (22 °C), and 12 days at refrigerator (5 °C). The results indicated that chitosan coating caused a significant decrease (p < 0.05) in the L* value of cube color of cut apples. Fish gelatin-chitosan coatings mitigated the L* value and decrease in hue angle of the cut apple samples, at cold storage. Experimental results showed that fish gelatin-chitosan and chitosan coatings, can be used to mitigate the formation of vitamin C, due to respiration, microbial growth, and weight loss at cold storage. Fish gelatin-chitosan coating might be a better combination for maintaining appearance and extending shelf-life of cut apples, compared to only chitosan coatings.
Collapse
Affiliation(s)
- Yung-Shin Shyu
- Department of Baking Technology and Management, National Kaohsiung University of Hospitality and Tourism, No.1, Songhe Rd., Xiaogang Dist., Kaohsiung City 81271, Taiwan.
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.
| | - Shao-Ching Chiang
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.
| | - Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
20
|
Maleki G, Sedaghat N, Woltering EJ, Farhoodi M, Mohebbi M. Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9776-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.051] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Cakmak H, Kumcuoglu S, Tavman S. Production of edible coatings with twin-nozzle electrospraying equipment and the effects on shelf-life stability of fresh-cut apple slices. J FOOD PROCESS ENG 2017. [DOI: 10.1111/jfpe.12627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hulya Cakmak
- Department of Food Engineering, Graduate School of Natural and Applied Sciences; Ege University; Izmir 35100 Turkey
- Department of Food Engineering, Faculty of Engineering; Hitit University; Corum 19030 Turkey
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering; Ege University; Izmir 35100 Turkey
| | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering; Ege University; Izmir 35100 Turkey
| |
Collapse
|
23
|
Yang HJ, Lee JH, Lee KY, Bin Song K. Application of gelatin film and coating prepared from dried alaska pollock by-product in quality maintanance of grape berries. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hyun-Ju Yang
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Ji-Hyeon Lee
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Ka-Yeon Lee
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Kyung Bin Song
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
| |
Collapse
|
24
|
Effect of Gelatin-Based Edible Coatings Incorporated with Aloe vera and Black and Green Tea Extracts on the Shelf Life of Fresh-Cut Oranges. J FOOD QUALITY 2017. [DOI: 10.1155/2017/9764650] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the effect of gelatin coating incorporated with Aloe vera gel (50,100%) and green and black tea extracts (5,10%) on physicochemical, microbial, and sensorial properties of fresh-cut oranges at 4°C for 17 days. Significant differences in terms of quality parameters were observed between the control and coated fresh-cut oranges. The highest variation of quality parameters was observed in control, while the least variations were observed in coated slices with 100% Aloe vera and 10% green tea extract. The weight loss was increased with time, but the coating treatment especially with 100% Aloe vera had significant effect on the prevention of weight loss. Also, Aloe vera coated samples obtained the highest score in sensory evaluation. Coating with gelatin incorporated with Aloe vera and green tea extracts successfully retarded the microbial growth and therefore extended the shelf life of fresh-cut oranges during cold storage.
Collapse
|
25
|
Effects of fresh Aloe vera gel coating on browning alleviation of fresh cut wax apple (Syzygium samarangenese) fruit cv. Taaptimjaan. Journal of Food Science and Technology 2016; 53:2844-50. [PMID: 27478241 DOI: 10.1007/s13197-016-2262-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The effect of natural coating by using fresh Aloe vera (A. vera) gel alleviating browning of fresh-cut wax apple fruits cv. Taaptimjaan was investigated. The fresh-cut fruits were dipped in fresh A. vera gel at various concentrations of 0, 25, 75 or 100 % (v/v) for 2 min at 4 ± 1 °C for 6 days. Lightness (L*), whiteness index (WI), browning index (BI), total color difference (ΔE*), sensorial quality attributes, total phenolic (TP) content, antioxidant activity and polyphenol oxidase (PPO) and peroxidase (POD) activities were determined. During storage, L* and WI of the fresh-cut fruits surface decreased whilst their BI and ΔE* increased. A. vera coating maintained the L* and WI and delayed the increase in BI and ΔE*, especially at 75 % A. vera dip. The fresh-cut fruits dipped in 75 % A. vera had the lowest browning score, the highest acceptance score and delayed the increase in TP content and PPO activity. However POD activity was induced by A. vera coating. Antioxidant activity had no effect on browning incidence of the fresh-cut fruits. Consequently, A. vera gel coating could maintain quality and retarded browning of fresh-cut wax apple fruits during storage.
Collapse
|
26
|
Soltanizadeh N, Mousavinejad MS. The effects of Aloe vera (Aloe barbadensis) coating on the quality of shrimp during cold storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:6647-54. [PMID: 26396412 PMCID: PMC4573173 DOI: 10.1007/s13197-015-1747-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 11/24/2022]
Abstract
Green tiger shrimp (Penaeus semisulcatus) is an important aquaculture species worldwide. Its perishable nature, however, needs preservation methods to ensure its quality and shelf life. In this study, the effects of Aloe vera coating on the quality and shelf life of shrimps during cold storage were investigated. Shrimp samples were dipped in aqueous solutions containing 25%, 50%, 75%, and 100% Aloe vera gel before storage at 4 °C for 7 days. Drip loss, pH, TBA, TVB-N, and texture of both the control and treated shrimp samples were analyzed periodically. There were significant differences between coated shrimps and the control group in all parameters evaluated. Aloe vera at 75% and 100% concentrations was able to prevent lipid oxidation and drip loss properly; however, coatings containing 25% Aloe vera did not have the desired effects on these characteristics. Shrimps coated with higher concentrations of Aloe vera had better textural properties during cold storage. Results also indicated the positive effects of Aloe vera coating on the sensory quality of shrimp.
Collapse
Affiliation(s)
- Nafiseh Soltanizadeh
- />Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, IR 84156-83111 Iran
| | - Mohsen S. Mousavinejad
- />Department of Natural Resources, Isfahan University of Technology, Isfahan, IR 84156-83111 Iran
| |
Collapse
|
27
|
The Effects of Tocopherol Nanocapsules/Xanthan Gum Coatings on the Preservation of Fresh-Cut Apples: Evaluation of Phenol Metabolism. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1523-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.11.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|