1
|
Yang J, Chen Y, Yang Z, Dai L, Choi H, Meng Z. Unveiling the Nanoconfinement Effect on Crystallization of Semicrystalline Polymers Using Coarse-Grained Molecular Dynamics Simulations. Polymers (Basel) 2024; 16:1155. [PMID: 38675074 PMCID: PMC11053607 DOI: 10.3390/polym16081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully understood. In this study, we unveil such effects by using coarse-grained molecular dynamics simulations to study the crystallization process of a model semicrystalline polymer-polyvinyl alcohol (PVA)-under different levels of nanoconfinement induced by nanoparticles that are represented implicitly. We quantify in detail the evolution of the degree of crystallinity (XC) of PVA and examine distinct crystalline regions from simulation results. The results show that nanoconfinement can promote the crystallization process, especially at the early stage, and the interfaces between nanoparticles and polymer can function as crystallite nucleation sites. In general, the final XC of PVA increases with the levels of nanoconfinement. Further, nanoconfined cases show region-dependent XC with higher and earlier increase of XC in regions closer to the interfaces. By tracking region-dependent XC evolution, our results indicate that nanoconfinement can lead to a heterogenous crystallization process with a second-stage crystallite nucleation in regions further away from the interfaces. In addition, our results show that even under very high cooling rates, the nanoconfinement still promotes the crystallization of PVA. This study provides important insights into the underlying mechanisms for the intricate interplay between nanoconfinement and the crystallization behaviors of semicrystalline polymer, with the potential to guide the design and characterization of semicrystalline polymer-based nanocomposites.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29631, USA; (J.Y.); (Y.C.); (Z.Y.); (L.D.); (H.C.)
| |
Collapse
|
2
|
Roy S, Zhang W, Biswas D, Ramakrishnan R, Rhim JW. Grapefruit Seed Extract-Added Functional Films and Coating for Active Packaging Applications: A Review. Molecules 2023; 28:molecules28020730. [PMID: 36677788 PMCID: PMC9865371 DOI: 10.3390/molecules28020730] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Recently, consumers have been increasingly inclined towards natural antimicrobials and antioxidants in food processing and packaging. Several bioactive compounds have originated from natural sources, and among them, grapefruit seed extract (GSE) is widely accepted and generally safe to use in food. GSE is a very commonly used antimicrobial in food; lately, it has also been found very effective as a coating material or in edible packaging films. A lot of recent work reports the use of GSE in food packaging applications to ensure food quality and safety; therefore, this work intended to provide an up-to-date review of GSE-based packaging. This review discusses GSE, its extraction methods, and their use in manufacturing food packaging film/coatings. Various physical and functional properties of GSE-added film were also discussed. This review also provides the food preservation application of GSE-incorporated film and coating. Lastly, the opportunities, challenges, and perspectives in the GSE-added packaging film/coating are also debated.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
- Correspondence: (S.R.); (J.-W.R.)
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Rejish Ramakrishnan
- Department of Printing Technology, College of Engineering Guindy, Anna University, Chennai 600025, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Correspondence: (S.R.); (J.-W.R.)
| |
Collapse
|
3
|
Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23105444. [PMID: 35628254 PMCID: PMC9141772 DOI: 10.3390/ijms23105444] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Electrospun nanofibers are promising bone tissue scaffolds that support bone healing due to the body’s structural similarity to the extracellular matrix (ECM). However, the insufficient mechanical properties often limit their potential in bone tissue regeneration. Cross-linking agents that chemically interconnect as-spun electrospun nanofibers are a simple but effective strategy for improving electrospun nanofibers’ mechanical, biological, and degradation properties. To improve the mechanical characteristic of the nanofibrous bone scaffolds, two of the most common types of cross-linking agents are used to chemically crosslink electrospun nanofibers: synthetic and natural. Glutaraldehyde (GTA) is a typical synthetic agent for electrospun nanofibers, while genipin (GP) is a natural cross-linking agent isolated from gardenia fruit extracts. GP has gradually gained attention since GP has superior biocompatibility to synthetic ones. In recent studies, much more progress has been made in utilizing crosslinking strategies, including citric acid (CA), a natural cross-linking agent. This review summarizes both cross-linking agents commonly used to improve electrospun-based scaffolds in bone tissue engineering, explains recent progress, and attempts to expand the potential of this straightforward method for electrospinning-based bone tissue engineering.
Collapse
|
4
|
Starch-Polyvinyl Alcohol-Based Films Reinforced with Chitosan Nanoparticles: Physical, Mechanical, Structural, Thermal and Antimicrobial Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main purpose of the current study was to propose innovative composite films based on a corn starch/polyvinyl alcohol (PVA) blend (starch:PVA 40:60) and loaded with 3 different levels of chitosan nanoparticles (CNPs) (1, 3, and 5% w/v) to strengthen its physical, mechanical, structural, thermal and antimicrobial attributes. The synthesized CNPs were spherical with a particle size of ca. 100 nm as demonstrated by scanning electron microscopy (SEM) micrographs and dynamic light scattering tests. The results showed that the CNPs incorporation within the starch-PVA 40:60 films promoted a uniform surface without any considerable pores. These films were characterized by a homogeneous CNP distribution within the polymer matrix, causing a significant decrease in water vapor permeability (WVP) (e.g., from 0.41 for the control film to 0.28 g·mm/kPa·h·m2 for the composite film loaded with 5% CNPs). The film solubility, transparency, glass transition and melting temperatures, and elongation at break were also reduced by increasing the CNP content from 1% to 5%, while total color and tensile strength parameters increased. The antibacterial effects of CNPs were more effective against Gram-positive bacteria (Staphylococcus aureus) than Gram-negative bacteria (Escherichia coli and Salmonella typhimurium). It can be concluded that the addition of CNPs to the starch-PVA matrix could improve its functional and technological attributes for food packaging applications.
Collapse
|
5
|
Bascón-Villegas I, Sánchez-Gutiérrez M, Pérez-Rodríguez F, Espinosa E, Rodríguez A. Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging. Foods 2021; 10:foods10123043. [PMID: 34945594 PMCID: PMC8700978 DOI: 10.3390/foods10123043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Films formulated with polyvinyl alcohol (PVA) (synthetic biopolymer) were reinforced with lignocellulose nanofibres (LCNF) from residues of vegetable production (natural biopolymer). The LCNF were obtained by mechanical and chemical pre-treatment by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and added to the polyvinyl alcohol (polymer matrix) with the aim of improving the properties of the film for use in food packaging. The mechanical properties, crystallinity, thermal resistance, chemical structure, antioxidant activity, water barrier properties and optical properties (transparency and UV barrier), were evaluated. In general, with the addition of LCNF, an improvement in the studied properties of the films was observed. In terms of mechanical properties, the films reinforced with 7% LCNF TEMPO showed the best results for tensile strength, Young’s modulus and elongation at break. At the same LCNF proportion, the thermal stability (Tmax) increased between 5.5% and 10.8%, and the antioxidant activity increased between 90.9% and 191.8%, depending on the raw material and the pre-treatment used to obtain the different LCNF. Finally, a large increase in UV blocking was also observed with the addition of 7% LCNF. In particular, the films with 7% of eggplant LCNF showed higher performance for Young’s modulus, elongation at break, thermal stability and UV barrier. Overall, results demonstrated that the use of LCNF generated from agricultural residues represents a suitable bioeconomy approach able to enhance film properties for its application in the development of more sustainable and eco-friendly food packaging systems.
Collapse
Affiliation(s)
- Isabel Bascón-Villegas
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain; (I.B.-V.); (M.S.-G.)
- BioPrEn Group (RNM940), Inorganic Chemistry and Chemical Engineering Department, Faculty of Science, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Mónica Sánchez-Gutiérrez
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain; (I.B.-V.); (M.S.-G.)
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain; (I.B.-V.); (M.S.-G.)
- Correspondence:
| | - Eduardo Espinosa
- BioPrEn Group (RNM940), Inorganic Chemistry and Chemical Engineering Department, Faculty of Science, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Alejandro Rodríguez
- BioPrEn Group (RNM940), Inorganic Chemistry and Chemical Engineering Department, Faculty of Science, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain; (E.E.); (A.R.)
| |
Collapse
|
6
|
Batra R, Bansal P, Yadav R, Purwar R, Kulanthaivel S, Mishra P. Enhancement of functional properties by blending cocoon extracted
Antheraea mylitta
silk fibroin with polyvinyl alcohol for applications in biomedical field. J Appl Polym Sci 2021. [DOI: 10.1002/app.51913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Radhika Batra
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Priya Bansal
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Reetu Yadav
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Senthilguru Kulanthaivel
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi India
| |
Collapse
|
7
|
Lingamdinne LP, Koduru JR, Chang YY, Naushad M, Yang JK. Polyvinyl Alcohol Polymer Functionalized Graphene Oxide Decorated with Gadolinium Oxide for Sequestration of Radionuclides from Aqueous Medium: Characterization, Mechanism, and Environmental Feasibility Studies. Polymers (Basel) 2021; 13:3835. [PMID: 34771391 PMCID: PMC8587516 DOI: 10.3390/polym13213835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO-Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO-Gd were examined. The PGO-Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g-1 at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo-second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO-Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO-Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.
Collapse
Affiliation(s)
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| |
Collapse
|
8
|
Pham BTT, Duong THT, Nguyen TT, Van Nguyen D, Trinh CD, Bach LG. Development of polyvinyl (alcohol)/D-glucose/agar/silver nanoparticles nanocomposite film as potential food packaging material. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Bui QTP, Nguyen TT, Nguyen LTT, Kim SH, Nguyen HN. Development of ecofriendly active food packaging materials based on blends of cross‐linked poly (vinyl alcohol) and
Piper betle
Linn. leaf extract. J Appl Polym Sci 2021. [DOI: 10.1002/app.50974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quynh Thi Phuong Bui
- Faculty of Chemical Engineering Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Thuong Thi Nguyen
- Faculty of Chemistry Ho Chi Minh City University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Institute of Environmental Sciences Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Lam Thi Truc Nguyen
- Center for German‐Vietnamese Technology Academy Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Sang Hoon Kim
- Materials Architecturing Research Center Korea Institute of Science and Technology Seoul Republic of Korea
- Division of Nano & Information Technology in KIST School University of Science and Technology Daejeon Republic of Korea
| | - Hoa Ngoc Nguyen
- Center for German‐Vietnamese Technology Academy Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Iritani K, Nakanishi A, Ota A, Yamashita T. Fabrication of Novel Functional Cell-Plastic Using Polyvinyl Alcohol: Effects of Cross-Linking Structure and Mixing Ratio of Components on the Mechanical and Thermal Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100026. [PMID: 34377533 PMCID: PMC8335826 DOI: 10.1002/gch2.202100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/03/2021] [Indexed: 05/11/2023]
Abstract
The current system of disposal of plastic materials fabricated from petroleum-based resources causes serious environmental pollution. To solve the problem, a bioplastic called "cell-plastic" is developed, in which unicellular green algal cells serve as a fundamental resource. This approach converts CO2 in the atmosphere directly into plastic products by exploiting the photosynthetic-driven proliferation of algal cells. Herein, cell-plastic films are fabricated using biodegradable and water-soluble polyvinyl alcohol (PVA) as a matrix, in which the effects of a cell-to-matrix mixing ratio and the chemical structure of the matrix on the mechanical and thermal properties are investigated. As a method of the chemical structural change, a cross-linking structure is introduced to the matrix by connecting hydroxy groups of PVA using aldehyde. The tensile tests reveal that the PVA-cell-plastic film maintains the mechanical properties of PVA film. Moreover, a cross-linked cell-plastic film exhibits high water absorption, making it suitable as a functional cell-plastic material.
Collapse
Affiliation(s)
- Kohei Iritani
- Department of Applied ChemistrySchool of EngineeringTokyo University of TechnologyTokyo192‐0982Japan
| | - Akihito Nakanishi
- School of Bioscience and BiotechnologyTokyo University of TechnologyTokyo192‐0982Japan
- Graduate School of BionicsTokyo University of TechnologyTokyo192‐0982Japan
| | - Ayami Ota
- Department of Applied ChemistrySchool of EngineeringTokyo University of TechnologyTokyo192‐0982Japan
| | - Takashi Yamashita
- Department of Applied ChemistrySchool of EngineeringTokyo University of TechnologyTokyo192‐0982Japan
| |
Collapse
|
12
|
PVA Films with Mixed Silver Nanoparticles and Gold Nanostars for Intrinsic and Photothermal Antibacterial Action. NANOMATERIALS 2021; 11:nano11061387. [PMID: 34070273 PMCID: PMC8225135 DOI: 10.3390/nano11061387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
PVA films with embedded either silver nanoparticles (AgNP), NIR-absorbing photothermal gold nanostars (GNS), or mixed AgNP+GNS were prepared in this research. The optimal conditions to obtain stable AgNP+GNS films with intact, long lasting photothermal GNS were obtained. These require coating of GNS with a thiolated polyethylene glycol (PEG) terminated with a carboxylic acid function, acting as reticulant in the film formation. In the mixed AgNP+GNS films, the total noble metal content is <0.15% w/w and in the Ag films < 0.025% w/w. The slow but prolonged Ag+ release from film-embedded AgNP (8–11% of total Ag released after 24 h, in the mixed films) results in a very strong microbicidal effect against planktonic Escherichia coli and Staphylococcus aureus bacterial strains (the release of Au from films is instead negligible). Beside this intrinsic effect, the mixed films also exert an on-demand, fast hyperthermal bactericidal action, switched on by NIR laser irradiation (800 nm, i.e., inside the biotransparent window) of the localized surface plasmon resonance (LSPR) absorption bands of GNS. Temperature increases of 30 °C are obtained using irradiances as low as 0.27 W/cm2. Moreover, 80–90% death on both strains was observed in bacteria in contact with the GNS-containing films, after 30 min of irradiation. Finally, the biocompatibility of all films was verified on human fibroblasts, finding negligible viability decrease in all cases.
Collapse
|
13
|
Narayanan KB, Park GT, Han SS. Biocompatible, antibacterial, polymeric hydrogels active against multidrug-resistant Staphylococcus aureus strains for food packaging applications. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Xiang A, Yin D, He Y, Li Y, Tian H. Multifunctional nucleating agents with simultaneous plasticizing, solubilizing, nucleating and their effect on polyvinyl alcohol foams. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Eskalen H, Çeşme M, Kerli S, Özğan Ş. Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820953823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blue fluorescent carbon dots are synthesized via a one-step hydrothermal method using rosemary leaves as a carbon source. The obtained carbon dots are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis, FTIR, and fluorescence spectrometry. The results show that carbon dots gave a maximum emission peak at 422 nm when excited at 332 nm. The average particle diameter of the synthesized spherical carbon dots is found to be 16.13 nm with a 4.6-nm standard deviation. The diameters of the produced carbon dots vary, as is evident from standard deviation heights, resulting in multicolor emission spectra. The fruit storage experiment is carried out by investigating the qualitative antioxidant ability of the produced carbon dots. The results obtained for polyvinyl alcohol–carbon dot–coated samples differ remarkably compared to polyvinyl alcohol–coated samples only. The polyvinyl alcohol–carbon dot composition is used in latent fingerprint detection applications. In analyses made on a glass surface, fingerprints cannot be monitored on the glass surface with the polyvinyl alcohol layer under ultraviolet light, while they are observed on the surface covered with the polyvinyl alcohol–carbon dot composition. Moreover, biological activity against Gram-positive, Gram-negative, and yeast strains are investigated.
Collapse
Affiliation(s)
- Hasan Eskalen
- Vocational School of Health Services, Department of Medical Services and Techniques, Opticianry Program, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
- Department of Physics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Süleyman Kerli
- Department of Energy Systems Engineering, Kahramanmaraş İstiklal University, Kahramanmaraş, Turkey
| | - Şükrü Özğan
- Department of Physics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
16
|
Corder RD, Adhikari P, Burroughs MC, Rojas OJ, Khan SA. Cellulose nanocrystals for gelation and percolation-induced reinforcement of a photocurable poly(vinyl alcohol) derivative. SOFT MATTER 2020; 16:8602-8611. [PMID: 32845269 DOI: 10.1039/d0sm01376e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomaterials are regularly added to crosslinkable polymers to enhance mechanical properties; however, important effects related to gelation behavior and crosslinking kinetics are often overlooked. In this study, we combine cellulose nanocrystals (CNCs) with a photoactive poly(vinyl alcohol) derivative, PVA-SbQ, to form photocrosslinked nanocomposite hydrogels. We investigate the rheology of PVA-SbQ with and without CNCs to decipher the role of each component in final property development and identify a critical CNC concentration (1.5 wt%) above which several changes in rheological behavior are observed. Neat PVA-SbQ solutions exhibit Newtonian flow behavior across all concentrations, while CNC dispersions are shear-thinning <6 wt% and gel at high concentrations. Combining semi-dilute entangled PVA-SbQ (6 wt%) with >1.5 wt% CNCs forms a percolated microstructure. In situ photocrosslinking experiments reveal how CNCs affect both the gelation kinetics and storage modulus (G') of the resulting hydrogels. The modulus crossover time increases after addition of up to 1.5 wt% CNCs, while no modulus crossover is observed >1.5 wt% CNCs. A sharp increase in G' is observed >1.5 wt% CNCs for fully-crosslinked networks due to favorable PVA-SbQ/CNC interactions. A percolation model is fitted to the G' data to confirm that mechanical percolation is maintained after photocrosslinking. A ∼120% increase in G' for 2.5 wt% CNCs (relative to neat PVA-SbQ) confirms that CNCs provide a reinforcing effect through the percolated microstructure formed from PVA-SbQ/CNC interactions. The results are testament to the ability of CNCs to significantly alter the storage moduli of crosslinked polymer gels at low loading fractions through percolation-induced reinforcement.
Collapse
Affiliation(s)
- Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Prajesh Adhikari
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael C Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA. and Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, FI-00076, Finland and Bioproducts Institute, Department of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, Vancouver BC V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
17
|
Development of thermal insulation packaging film based on poly(vinyl alcohol) incorporated with silica aerogel for food packaging application. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Modification of chlorosulfonated polystyrene substrates for bioanalytical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110912. [DOI: 10.1016/j.msec.2020.110912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
|
19
|
Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication. NANOMATERIALS 2020; 10:nano10040786. [PMID: 32325935 PMCID: PMC7221876 DOI: 10.3390/nano10040786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Currently there is a strong demand for novel protective materials with efficient antibacterial properties. Nanocomposite materials loaded with photo-thermally active nanoparticles can offer promising opportunities due to the local increase of temperature upon near-infrared (NIR) light exposure capable of eradicating bacteria. In this work, we fabricated antibacterial films obtained by spraying on glass slides aqueous solutions of polymers, containing highly photo-thermally active gold nanostars (GNS) or Prussian Blue (PB) nanoparticles. Under NIR light irradiation with low intensities (0.35 W/cm2) these films demonstrated a pronounced photo-thermal effect: ΔTmax up to 26.4 °C for the GNS-containing films and ΔTmax up to 45.8 °C for the PB-containing films. In the latter case, such a local temperature increase demonstrated a remarkable effect on a Gram-negative strain (P. aeruginosa) killing (84% of dead bacteria), and a promising effect on a Gram-positive strain (S. aureus) eradication (69% of dead bacteria). The fabricated films are promising prototypes for further development of lightweight surfaces with efficient antibacterial action that can be remotely activated on demand.
Collapse
|
20
|
Sabzi M, Afshari MJ, Babaahmadi M, Shafagh N. pH-dependent swelling and antibiotic release from citric acid crosslinked poly(vinyl alcohol) (PVA)/nano silver hydrogels. Colloids Surf B Biointerfaces 2020; 188:110757. [DOI: 10.1016/j.colsurfb.2019.110757] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
|
21
|
Jebril S, Ben Doudou B, Zghal S, Dridi C. Non-isothermal crystallization kinetics of hybrid carbon nanotube - silica/ polyvinyl alcohol Nanocomposites. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Borzenkov M, D'Alfonso L, Polissi A, Sperandeo P, Collini M, Dacarro G, Taglietti A, Chirico G, Pallavicini P. Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. NANOTECHNOLOGY 2019; 30:295702. [PMID: 31025630 DOI: 10.1088/1361-6528/ab15f9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antibacterial treatment is an essential issue in many diverse fields, from medical device treatments (for example prostheses coating) to food preservation. However, there is a need of novel and light-weight materials with high antibacterial efficiency (preferably due to the physical activation). Utilization of photo-thermally active nanoparticles can lead to novel and re-usable materials that can be remotely activated on-demand to thermally eradicate bacteria and mitigate biofilm formation, therefore meeting the above challenge. In this study polyvinyl alcohol (PVA) hydrogel films containing non-toxic and highly photo-thermally active Prussian blue (PB) nanoparticles were fabricated. The confocal microscopy studies indicated a uniform nanoparticle distribution and a low degree of aggregation. Upon near-infrared (NIR; 700 and 800 nm) light irradiation of PVA-PB films, the local temperature increases rapidly and reaches a plateau (up to ΔT ≅ 78 °C), within ≈6-10 s under relatively low laser intensities, I ≅ 0.3 W cm-2. The high and localized increase of temperature on the fabricated films resulted in an efficient antibacterial effect on Pseudomonas aeruginosa (P. aeruginosa) bacteria. In addition, the localized photo-thermal effect was also sufficient to substantially mitigate biofilms growth.
Collapse
Affiliation(s)
- Mykola Borzenkov
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, Piazza dell' Ateneo Nuovo, I-20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen C, Li C, Yang S, Zhang Q, Yang F, Tang Z, Xie J. Development of New Multilayer Active Packaging Films with Controlled Release Property Based on Polypropylene/Poly(Vinyl Alcohol)/Polypropylene Incorporated with Tea Polyphenols. J Food Sci 2019; 84:1836-1843. [PMID: 31206691 DOI: 10.1111/1750-3841.14681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 11/27/2022]
Abstract
The polypropylene/poly(vinyl alcohol)/polypropylene (PP/PVA/PP) multilayer active films with controlled release property were developed, of which the intermediate PVA layer was incorporated with 4% (w/w) tea polyphenols (TP) and the microporous PP films with different pore size were used as the internal controlled release layer. The SEM results showed that each layer of these films was agglutinated tightly. With increasing pore size from 171.05 to 684.03 µm, there were little effect on the films' color and opacity, the tensile strength (TS) and elongation at break (EAB) decreased slightly, the gas barrier (O2 and water vapor) property of the film reduced faintly, the time of achieving the release equilibrium in 50% ethanol decreased from 75 hours to 30 hours. The diffusion coefficient for the films increased with the increase of pore size, from 2.06 × 10-11 cm2 /s to 8.06 × 10-11 cm2 /s, suggesting that the release rate of TP increased as the pore size increased. The results were indicated that its release rate could be controlled by adjusting the size of pore. The films also exhibited different antioxidant activities due to their different release profiles of TP. It showed promise for developing the controlled release active packaging film based on this concept. PRACTICAL APPLICATION: Controlled release packaging is propitious to extension of food shelf life. The microporous polypropylene films with different pore size used as the internal layer of polypropylene/poly(vinyl alcohol)/polypropylene (PP/PVA/PP) multilayer active films was proved that the release rate of tea polyphenols in the intermediate PVA layer released from the films into the food simulant can be controlled by adjusting the size of pore in this study. It showed a good prospect for using microporous or perforation-mediated film as the internal layer of multilayer film to develop the controlled release active packaging film for food packaging.
Collapse
Affiliation(s)
- Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Chenxi Li
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China
| | - Shaohua Yang
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China
| | - Qinjun Zhang
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China
| | - Fuxin Yang
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Zhipeng Tang
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean Univ., Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| |
Collapse
|
24
|
Marrez DA, Abdelhamid AE, Darwesh OM. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100302] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Mathew S, S S, Mathew J, E.K. R. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2018.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Cobos M, Fernández MJ, Fernández MD. Graphene Based Poly(Vinyl Alcohol) Nanocomposites Prepared by In Situ Green Reduction of Graphene Oxide by Ascorbic Acid: Influence of Graphene Content and Glycerol Plasticizer on Properties. NANOMATERIALS 2018; 8:nano8121013. [PMID: 30563225 PMCID: PMC6316035 DOI: 10.3390/nano8121013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
The enhanced properties of polymer nanocomposites as compared with pure polymers are only achieved in the presence of well-dispersed nanofillers and strong interfacial adhesion. In this study, we report the preparation of nanocomposite films based on poly(vinyl alcohol) (PVA) filled with well dispersed graphene sheets (GS) by in situ reduction of graphene oxide (GO) dispersed in PVA solution using ascorbic acid (L-AA) as environmentally friendly reductant. The combined effect of GS content and glycerol as plasticizer on the structure, thermal, mechanical, water absorption, and water barrier properties of PVA/GS nanocomposite films is studied for the first time. Higher glass transition temperature, lower crystallinity, melting, and crystallization temperature, higher mechanical properties, and remarkable improvement in the thermal stability compared to neat PVA are obtained as a result of strong interfacial interactions between GS and PVA by hydrogen bonding. PVA/GS composite film prepared by ex situ process is more brittle than its in situ prepared counterpart. The presence of GS improves the water barrier and water resistance properties of nanocomposite films by decreasing water vapor permeability and water absorption of PVA. This work demonstrates that the tailoring of PVA/GS nanocomposite properties is enabled by controlling GS and glycerol content. The new developed materials, particularly those containing plasticizer, could be potential carriers for transdermal drug delivery.
Collapse
Affiliation(s)
- Mónica Cobos
- Department of Polymer Science and Technology. Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.
| | - M Jesús Fernández
- Department of Polymer Science and Technology. Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.
| | - M Dolores Fernández
- Department of Polymer Science and Technology. Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.
| |
Collapse
|
27
|
Bellelli M, Licciardello F, Pulvirenti A, Fava P. Properties of poly(vinyl alcohol) films as determined by thermal curing and addition of polyfunctional organic acids. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Chen C, Xu Z, Ma Y, Liu J, Zhang Q, Tang Z, Fu K, Yang F, Xie J. Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Thomas D, Zhuravlev E, Wurm A, Schick C, Cebe P. Fundamental thermal properties of polyvinyl alcohol by fast scanning calorimetry. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Borzenkov M, Moros M, Tortiglione C, Bertoldi S, Contessi N, Faré S, Taglietti A, D’Agostino A, Pallavicini P, Collini M, Chirico G. Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2040-2048. [PMID: 30116694 PMCID: PMC6071708 DOI: 10.3762/bjnano.9.193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/11/2018] [Indexed: 05/02/2023]
Abstract
The unique photothermal properties of non-spherical gold nanoparticles under near-infrared (NIR) irradiation find broad application in nanotechnology and nanomedicine. The combination of their plasmonic features with widely used biocompatible poly(vinyl alcohol) (PVA) films can lead to novel hybrid polymeric materials with tunable photothermal properties and a wide range of applications. In this study, thin PVA films containing highly photothermally efficient gold nanostars (GNSs) were fabricated and their properties were studied. The resulting films displayed good mechanical properties and a pronounced photothermal effect under NIR irradiation. The local photothermal effect triggered by NIR irradiation of the PVA-GNS films is highly efficient at killing bacteria, therefore providing an opportunity to develop new types of protective antibacterial films and coatings.
Collapse
Affiliation(s)
- Mykola Borzenkov
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Maria Moros
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Via Campi-Flegrei 34, 80078, Pozzuoli, Italy
| | - Claudia Tortiglione
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Via Campi-Flegrei 34, 80078, Pozzuoli, Italy
| | - Serena Bertoldi
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Local Unit Politecnico di Milano, INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali, Milan, Italy
| | - Nicola Contessi
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Local Unit Politecnico di Milano, INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali, Milan, Italy
| | - Silvia Faré
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Local Unit Politecnico di Milano, INSTM, Consorzio Nazionale di Scienza e Tecnologia dei Materiali, Milan, Italy
| | - Angelo Taglietti
- Department of Chemistry and Centre for Health Technology, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Agnese D’Agostino
- Department of Chemistry and Centre for Health Technology, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Piersandro Pallavicini
- Department of Chemistry and Centre for Health Technology, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Maddalena Collini
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 20126, Milan, Italy
- Department of Physics “G. Occhialini”, University of Milano-Bicocca, Piazza dell’AteneoNuovo, 20126, Milan, Italy
| | - Giuseppe Chirico
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 20126, Milan, Italy
- Department of Physics “G. Occhialini”, University of Milano-Bicocca, Piazza dell’AteneoNuovo, 20126, Milan, Italy
| |
Collapse
|
31
|
Tian H, Liu D, Yao Y, Ma S, Zhang X, Xiang A. Effect of Sorbitol Plasticizer on the Structure and Properties of Melt Processed Polyvinyl Alcohol Films. J Food Sci 2017; 82:2926-2932. [PMID: 29165805 DOI: 10.1111/1750-3841.13950] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 01/23/2023]
Abstract
Poly (vinyl alcohol) (PVA) possesses wide applications as food packaging materials, but is difficult to melt process for its strong inter/intra hydrogen bonding. In this work, flexible PVA films with different content of sorbitol plasticizers were prepared by melt processing with the assistance of water. And the influence of sorbitol plasticizer content on the crystallinity, optical transparency, water-retaining capability, mechanical properties, thermal stability and oxygen and water permeability were investigated. The results indicated that sorbitol dramatically improved the melt processing ability of PVA. Sorbitol could interact with PVA to form strong hydrogen bonding interactions, which would decrease the original hydrogen bonding of the matrix, resulting in the decrease of crystallinity degrees. The glass transition, melting and crystallization peak temperatures decreased with the increase of sorbitol. All the films exhibited fine optical transparency. The water retaining capability were improved with the increase of sorbitol. Especially, an increase in elongation at break and decrease in Young's modulus and tensile strength were observed indicating good plasticizing effect of sorbitol on PVA films. In addition, the PVA films prepared in this work exhibited fine barrier properties against oxygen and water, suggesting wide application potential as packaging materials.
Collapse
Affiliation(s)
- Huafeng Tian
- School of Material and Mechanical Engineering, Beijing Technology and Business Univ., Beijing, 100048, China.,State Key Lab. for Modification of Chemical Fibers and Polymer Materials, Donghua Univ., Shanghai, China
| | - Di Liu
- School of Material and Mechanical Engineering, Beijing Technology and Business Univ., Beijing, 100048, China
| | - Yuanyuan Yao
- School of Material and Mechanical Engineering, Beijing Technology and Business Univ., Beijing, 100048, China
| | - Songbai Ma
- School of Material and Mechanical Engineering, Beijing Technology and Business Univ., Beijing, 100048, China
| | - Xing Zhang
- School of Material and Mechanical Engineering, Beijing Technology and Business Univ., Beijing, 100048, China
| | - Aimin Xiang
- School of Material and Mechanical Engineering, Beijing Technology and Business Univ., Beijing, 100048, China
| |
Collapse
|
32
|
Wang FS, Wang TF, Lu HH, Ao-Ieong WS, Wang J, Chen HL, Peng CH. Highly Stretchable Free-Standing Poly(acrylic acid)-block-poly(vinyl alcohol) Films Obtained from Cobalt-Mediated Radical Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu-Sheng Wang
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Tzu-Fang Wang
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Hung-Hsun Lu
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Wai-Sam Ao-Ieong
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Jane Wang
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Hsin-Lung Chen
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Chi-How Peng
- Department
of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters and ‡Department of Chemical Engineering, National Tsing Hua University 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| |
Collapse
|
33
|
Cui J, Wang H, Xin L, Zhao S, Yan Y, Liu G. High-Performance Poly(vinyl alcohol) Nanocomposites Filled with Individual Montmorillonite Nanolayers. J MACROMOL SCI B 2016. [DOI: 10.1080/00222348.2016.1187057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Birck C, Degoutin S, Maton M, Neut C, Bria M, Moreau M, Fricoteaux F, Miri V, Bacquet M. Antimicrobial citric acid/poly(vinyl alcohol) crosslinked films: Effect of cyclodextrin and sodium benzoate on the antimicrobial activity. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Zhao LZ, Zhou CH, Wang J, Tong DS, Yu WH, Wang H. Recent advances in clay mineral-containing nanocomposite hydrogels. SOFT MATTER 2015; 11:9229-9246. [PMID: 26435008 DOI: 10.1039/c5sm01277e] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.
Collapse
Affiliation(s)
- Li Zhi Zhao
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. and Key Laboratory of Clay Minerals of Ministry of Land and Resources of The People's Republic of China, Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resource, Hangzhou 310007, China
| | - Jing Wang
- Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Dong Shen Tong
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Wei Hua Yu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Institute of Advanced Catalytic Materials, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Hao Wang
- Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| |
Collapse
|
36
|
Wang E, Batra S, Cakmak M. A real time study on drying and the mechano-optical behavior of polyvinyl alcohol films in solid and swollen state. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|