1
|
Chen L, Zhao Y, Shi Q, Du Y, Zeng Q, Liu H, Zhang Z, Zheng H, Wang JJ. Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: Insights into protein quality. Food Chem 2024; 444:138685. [PMID: 38341917 DOI: 10.1016/j.foodchem.2024.138685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
The preservation effects of a photodynamic inactivation (PDI)-mediated polylactic acid/5-aminolevulinic acid (PLA/ALA) film on the storage quality of salmon fillets were investigated. Results showed that the PDI-mediated PLA/ALA film could continuously generate reactive oxygen species by consuming oxygen to inactivate native pathogens and spoilage bacteria on salmon fillets. Meanwhile, the film maintained the content of muscle proteins and their secondary and tertiary structures, as well as the integrity of myosin by keeping the activity of Ca2+-ATPase, all of which protected the muscle proteins from degradation. Furthermore, the film retained the activity of total superoxide dismutase (T-SOD), suppressed the accumulation of lipid peroxides (e.g., MDA), which greatly inhibited four main types of protein oxidations. As a result, the content of flavor amino acids and essential amino acids in salmon fillets was preserved. Therefore, the PDI-mediated antimicrobial packaging film greatly preserves the storage quality of aquatic products by preserving the protein quality.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai 200136, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Huaming Zheng
- School of Material Sciences & Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
2
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
3
|
Zhang Z, Wu R, Xu W, Cocolin L, Liang H, Ji C, Zhang S, Chen Y, Lin X. Combined effects of lipase and Lactiplantibacillus plantarum 1-24-LJ on physicochemical property, microbial succession and volatile compounds formation in fermented fish product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2304-2312. [PMID: 36636889 DOI: 10.1002/jsfa.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Studies have shown that either the addition of starter culture or enzyme can improve fermentation in fish or other products. However, little research has been carried out on the effects of coupling starter cultures with lipase on the microbial community and product quality. Suanzhayu is a Chinese fermented fish product that mainly relies on spontaneous fermentation, resulting in an unstable flavor and quality. The present study investigated the impact of lipase and Lactiplantibacillus plantarum 1-24-LJ on the quality of Suanzhayu. RESULTS Inoculation decreased pH and 2-thiobarbituric acid reactive substances (TBARS) values, and also helped the dominance of the strain in the ecosystem, whereas lipase addition raised TBARS values and had little effect on pH, water activity (aw ) and microbiota. The addition of lipase and/or Lpb. plantarum increased the content of alcohols, aldehydes, ketones, esters and umami amino acids. The co-additions with the most significant effect and the total contents of volatile compounds (VCs) and free amino acids (FAAs) were 1801.92 g per 100 g and 21 357.05 mg per 100 g, respectively. Former-Lactobacillus was negatively correlated with pH, aw and Prevotella, but positively with VCs (ethyl ester of heptanoic acid, ethyl ester of octanoic acid) and FAAs (Tyr, Phe). Furthermore, adding Lpb. plantarum 1-24-LJ alone or in combination with lipase shortened the fermentation process. CONCLUSION The present study provides a recommended Suanzhayu process approach for improving product quality and flavor, as well as shortening fermentation time, by adding Lpb. plantarum 1-24-LJ with or without lipase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuoli Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ruohan Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and ministerial co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
4
|
Wu J, Mao H, Dai Z. Role of Microorganisms in the Development of Quality during the Fermentation of Salted White Herring ( Ilisha elongata). Foods 2023; 12:foods12020406. [PMID: 36673497 PMCID: PMC9857776 DOI: 10.3390/foods12020406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Salted white herring (Ilisha elongata) is a popular fish product in the coastal region of China. The complex endogenous enzymes and microbial action determine the quality of a traditionally salted herring. In order to investigate the role of microorganisms in the quality formation of salted herring, three groups for different salting processes were established: traditional salted (TS), non-starter salted (NS), and starter culture salted (SS). The predominant microorganism in each processing group was Staphylococcus spp., as inferred by next-generation sequencing data. Different physicochemical parameters were obtained in each of the three processing groups (TCA-soluble peptide (trichloroacetic acid-soluble peptide), TVB-N (Total volatile basic nitrogen), and TBA values (thiobarbituric acid-reactive substance)). The TS group had the maximum level of total biogenic amines, while the SS group had the lowest. A strong positive correlation was found between Staphylococcus and 14 aromatic compounds, of which 5 were odor-active compounds that created fishy, grassy, fatty, and fruity flavors. Shewanella may produce trimethylamine, which is responsible for the salted herrings’ fishy, salty, and deteriorating flavor. The findings demonstrated that autochthonous strains of Staphylococcus saprophyticus M90−61 were useful in improving product quality because they adapted quickly to the high osmotic environment.
Collapse
Affiliation(s)
- Jiajia Wu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-180-5818-2612
| | - Haiping Mao
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhiyuan Dai
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
5
|
Ryu B, Shin KH, Kim SK. Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Mar Drugs 2021; 19:md19070377. [PMID: 34210079 PMCID: PMC8304736 DOI: 10.3390/md19070377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Fish muscle, which accounts for 15%-25% of the total protein in fish, is a desirable protein source. Their hydrolysate is in high demand nutritionally as a functional food and thus has high potential added value. The hydrolysate contains physiologically active amino acids and various essential nutrients, the contents of which depend on the source of protein, protease, hydrolysis method, hydrolysis conditions, and degree of hydrolysis. Therefore, it can be utilized for various industrial applications including use in nutraceuticals and pharmaceuticals to help improve the health of humans. This review discusses muscle protein hydrolysates generated from the muscles of various fish species, as well as their amino acid composition, and highlights their functional properties and bioactivity. In addition, the role of the amino acid profile in regulating the biological and physiological activities, nutrition, and bitter taste of hydrolysates is discussed.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (S.-K.K.); Tel.: +82-64-754-3475 (B.R. & S.-K.K.)
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Erica, 55 Hanyangdae-ro, Ansan-si 11558, Gyeonggi-do, Korea;
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Erica, 55 Hanyangdae-ro, Ansan-si 11558, Gyeonggi-do, Korea;
- Correspondence: (B.R.); (S.-K.K.); Tel.: +82-64-754-3475 (B.R. & S.-K.K.)
| |
Collapse
|
6
|
Rodpai R, Sanpool O, Thanchomnang T, Wangwiwatsin A, Sadaow L, Phupiewkham W, Boonroumkaew P, Intapan PM, Maleewong W. Investigating the microbiota of fermented fish products (Pla-ra) from different communities of northeastern Thailand. PLoS One 2021; 16:e0245227. [PMID: 33444386 PMCID: PMC7808594 DOI: 10.1371/journal.pone.0245227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
DNA-sequencing was performed on the V3-V4 regions of 16S rRNA genes to investigate the microbial diversity of five samples of fermented freshwater fish (pla-ra) from three provinces in northeastern Thailand. The samples had salt concentrations ranging from 7 to 10%, pH values from 4.83 to 7.15, and D-/L-lactic acid concentrations of 90 to 450 mg/l. A total of 598 operational taxonomic units were annotated at various taxonomic ranks based on the SILVA Database. The lactic-acid and halophilic genera Tetragenococcus, Halanaerobium and Lactobacillus were among the dominant taxa of bacteria. The top 20 non-redundant taxa were considered in more detail. In two pla-ra samples, Tetragenococcus muriaticus was commonly identified. Halanaerobium fermentans was the most abundant species in a third sample and co-dominant in another sample. Lactobacillus rennini was dominant in the pla-ra sample from Roi Et Province. Additionally, other beneficial bacteria were detected including Staphylococcus nepalensis, Lactobacillus sakei, Lactobacillus pentosus, Weissella confusa, and Bifidobacterium bifidum. Differences between samples may be due to use of different raw materials, salt concentrations, recipes, processes and fermentation periods. The microbial communities in pla-ra provide a better understanding of the production outcomes of traditional products. Further optimization of the fermentation process, for example by using dominant bacterial taxa in starter cultures, may improve processes of food fermentation, food quality and flavor control, providing useful guidelines for industrial applications.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| | - Tongjit Thanchomnang
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakram University, Mahasarakram, Thailand
| | - Arporn Wangwiwatsin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| | - Weeraya Phupiewkham
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Faculty of Medicine, Khon Kaen, Thailand
| |
Collapse
|
7
|
Zhang Q, Chen X, Ding Y, Ke Z, Zhou X, Zhang J. Diversity and succession of the microbial community and its correlation with lipid oxidation in dry-cured black carp (Mylopharyngodon piceus) during storage. Food Microbiol 2020; 98:103686. [PMID: 33875196 DOI: 10.1016/j.fm.2020.103686] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023]
Abstract
This study aimed to achieve deeper insights into the microbiota composition and dynamic succession of the dry-cured black carp during storage using a high-throughput sequencing technique (HTS). The effect of lipid oxidation on microorganisms was also evaluated. Over 651 bacterial genera belonging to 37 phyla were identified. Firmicutes, Proteobacteria and Actinobacteria were the main bacterial phylum, some are highly associated with meat spoilage. Staphylococcus, Macrococcus and Acinetobacter were the most three microbial genera throughout the entire storage period (30 days). Between two different storage temperature, refrigeration at 4 °C could facilitate maintaining the microbial diversity, while 25 °C storage led to the formation of dominant microflora and the reduction of community diversity. Canonical correspondence analysis (CCA) showed that acid value (AV), malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE) contents were three key environmental factors (oxidation products) affecting the profile of the microbiota. Staphylococcus presented a positive correlation with HHE content, while Macrococcus and Acinetobacter were negatively correlated with HHE content. These results could expand our knowledge on the effect of lipid oxidation on change of microbial distribution, it could also present an guideline to develop advanced storage methods for the vacuum packed dry-cured fish products.
Collapse
Affiliation(s)
- Qi Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Xiaocao Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Zhigang Ke
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.
| |
Collapse
|
8
|
Yang Z, Liu S, Lv J, Sun Z, Xu W, Ji C, Liang H, Li S, Yu C, Lin X. Microbial succession and the changes of flavor and aroma in Chouguiyu, a traditional Chinese fermented fish. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Xu Y, Zang J, Regenstein JM, Xia W. Technological roles of microorganisms in fish fermentation: a review. Crit Rev Food Sci Nutr 2020; 61:1000-1012. [PMID: 32292041 DOI: 10.1080/10408398.2020.1750342] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fermentation is an important way to process and preserve fish. It not only gives the product a unique flavor and texture, but it also contributes to increased nutritional value and better functional properties. The production of fermented fish relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activity. This review focuses on the role of microorganisms on texture change, flavor formation, and biogenic amines accumulation in fermented fish. In addition, the production conditions and the major biochemical changes in fermented fish products are also introduced to help understand the factors influencing the quality of fermented fish. Moreover, prospects for further research of fermented fish are discussed.
Collapse
Affiliation(s)
- Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinhong Zang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Zhu Y, Wang P, Guo L, Wang J, Han R, Sun J, Yang Q. Effects of partial replacement of sodium nitrite with
Lactobacillus pentosus
inoculation on quality of fermented sausages. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yinglian Zhu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Peng Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Liping Guo
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Jun Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Rongwei Han
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Jingxin Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Qingli Yang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
11
|
Zang J, Xu Y, Xia W, Yu D, Gao P, Jiang Q, Yang F. Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Res Int 2018; 111:565-573. [PMID: 30007719 DOI: 10.1016/j.foodres.2018.05.076] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/10/2023]
Abstract
The main goal of this study was to investigate the dynamics, diversity and succession of microbial community present during the preparation of Suan yu (fermented fish), with and without starter cultures by high-throughput sequencing of 16S rRNA and ITS1 genes. Firmicutes and Ascomycota were the predominant phyla of bacteria and fungi, respectively, in all samples. At the genus level, Lactobacillus, Macrococcus and Staphylococcus were the predominating bacteria throughout the fermentation process, regardless of the inclusion of starter cultures. Saccharomyces was the predominating fungal genus in the early-fermentation stage of samples that inoculated starter cultures (MS), while the final product was dominated by Candida and Wickerhamomyces. Compared with naturally-fermented samples (NS; no starter cultures), Lactococcus, Leuconostoc, Enterococcus, Vibrio, Fusicolla and Torulaspora were inhibited and Aureobasidium emerged in samples inoculated with starter cultures (P < .05). Unweighted pair-group and principal component analyses of bacterial and fungal compositions revealed that microbiota structures differed between NS and MS samples. Redundancy analysis indicated that water content and pH might be important factors influencing the dominant bacterial and fungal community. Results indicated that microbial community were dynamic during fermentation process and the inoculation of mixed starter culture inhibited the growth of many organisms associated with food spoilage and contributed to the improvement of the quality of Suan yu products.
Collapse
Affiliation(s)
- Jinhong Zang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
12
|
Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl Microbiol Biotechnol 2016; 100:7223-38. [DOI: 10.1007/s00253-016-7592-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|