1
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
2
|
Ni H, Liu C, Kong L, Zhai L, Chen J, Liu Q, Chen Z, Wu M, Chen J, Guo Y, Bai W, Zhang D, Xia K, Huang G, Pan S, Liao B, Ma K, Zhang LK, Cheng J, Guan YQ. Preparation of injectable porcine skin-derived collagen and its application in delaying skin aging by promoting the adhesion and chemotaxis of skin fibroblasts. Int J Biol Macromol 2023; 253:126718. [PMID: 37673166 DOI: 10.1016/j.ijbiomac.2023.126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Collagen, as the main component of human skin, plays a vital role in maintaining dermal integrity. Its loss will lead to dermis destruction and collapse, resulting in skin aging. At present, injection of exogenous collagen is an important means to delay skin aging. In this study, high-purity collagen was extracted from porcine skin. Our research revealed that it can effectively promote the adhesion and chemotaxis of HSF cells. It can also reduce the expression of β-galactosidase, decrease ROS levels, and increase the expression of the collagen precursors, p53 and p16 in HSF cells during senescence. After local injection into the aging skin of rats, it was found that the number of cells and type I collagen fibers in the dermis increased significantly, and the arrangement of these fibers became more uniform and orderly. Moreover, the important thing is that it is biocompatible. To sum up, the porcine skin collagen we extracted is an anti-aging biomaterial with application potential.
Collapse
Affiliation(s)
- He Ni
- School of Life Science, South China Normal University, Guangzhou 510631, China; Chongqing Fanghe Biotechnology Co., LTD, Chongqing 400000, China
| | - Chao Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Lili Kong
- Chongqing Fanghe Biotechnology Co., LTD, Chongqing 400000, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingpeng Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Mengdie Wu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jie Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guowei Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Beining Liao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kuo Ma
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Jian Cheng
- Chongqing Fanghe Biotechnology Co., LTD, Chongqing 400000, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Nayak VV, Tovar N, Khan D, Pereira AC, Mijares DQ, Weck M, Durand A, Smay JE, Torroni A, Coelho PG, Witek L. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation. Gels 2023; 9:637. [PMID: 37623094 PMCID: PMC10454336 DOI: 10.3390/gels9080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
| | - Nick Tovar
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| | - Doha Khan
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Angel Cabrera Pereira
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Dindo Q. Mijares
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA;
| | - Alejandro Durand
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
| | - James E. Smay
- School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA;
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
4
|
Darvish DM. Collagen fibril formation in vitro: From origin to opportunities. Mater Today Bio 2022; 15:100322. [PMID: 35757034 PMCID: PMC9218154 DOI: 10.1016/j.mtbio.2022.100322] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sometimes, to move forward, it is necessary to look back. Collagen type I is one of the most commonly used biomaterials in tissue engineering and regenerative medicine. There are a variety of collagen scaffolds and biomedical products based on collagen have been made, and the development of new ones is still ongoing. Materials, where collagen is in the fibrillar form, have some advantages: they have superior mechanical properties, higher degradation time and, what is most important, mimic the structure of the native extracellular matrix. There are some standard protocols for the formation of collagen fibrils in vitro, but if we look more carefully at those methods, we can see some controversies. For example, why is the formation of collagen gel commonly carried out at 37 °C, when it was well investigated that the temperature higher than 35 °C results in a formation of not well-ordered fibrils? Biomimetic collagen materials can be obtained both using culture medium or neutralizing solution, but it requires a deep understanding of all of the crucial points. One of this point is collagen extraction method, since not every method retains the ability of collagen to reconstitute native banded fibrils. Collagen polymorphism is also often overlooked in spite of the appearance of different polymorphic forms during fibril formation is possible, especially when collagen blends are utilized. In this review, we will not only pay attention to these issues, but we will overview the most prominent works related to the formation of collagen fibrils in vitro starting from the first approaches and moving to the up-to-date recipes.
Collapse
Affiliation(s)
- Diana M Darvish
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prospekt, 4, Saint-Petersburg, 194064, Russia
| |
Collapse
|
5
|
Hoshi M, Sawada T, Hatakeyama W, Taira M, Hachinohe Y, Takafuji K, Kihara H, Takemoto S, Kondo H. Characterization of Five Collagenous Biomaterials by SEM Observations, TG-DTA, Collagenase Dissolution Tests and Subcutaneous Implantation Tests. MATERIALS 2022; 15:ma15031155. [PMID: 35161098 PMCID: PMC8839282 DOI: 10.3390/ma15031155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022]
Abstract
Collagenous biomaterials that are clinically applied in dentistry have dermis-type and membrane-type, both of which are materials for promoting bone and soft tissue formation. The properties of materials supplied with different types could affect their biodegradation periods. The purpose of this study was to characterize five of these products by four different methods: scanning electron microscopy (SEM) observation, thermogravimetry-differential thermal analysis (TG-DTA), 0.01 wt% collagenase dissolution test, and subcutaneous implantation test in vivo. SEM micrographs revealed that both dermis and membranous materials were fibrous and porous. The membranous materials had higher specific derivative thermal gravimetry (DTG) peak temperatures in TG-DTA at around 320 °C, longer collagenase dissolution time ranging from about 300 to 500 min, and more longevity in mice exceeding 9 weeks than the dermis materials. There existed a correlation between the peak temperature in TG-DTA and the collagenase dissolution time. It was considered that higher cross-link degree among collagen fibrils of the membrane-type collagenous materials might account for these phenomena. The experimental protocol and numerical results obtained could be helpful for selection and future development of fibrous collagenous biomaterials in clinical use.
Collapse
Affiliation(s)
- Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (M.H.); (W.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Iwate, Japan; (T.S.); (S.T.)
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (M.H.); (W.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Iwate, Japan; (T.S.); (S.T.)
- Correspondence: ; Tel.: +81-19-651-5110
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (M.H.); (W.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (M.H.); (W.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Hidemichi Kihara
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (M.H.); (W.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| | - Shinji Takemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Iwate, Japan; (T.S.); (S.T.)
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Iwate, Japan; (M.H.); (W.H.); (Y.H.); (K.T.); (H.K.); (H.K.)
| |
Collapse
|
6
|
Nishimura K, Higashiya K, Ueshima N, Kojima K, Takita T, Abe T, Takahashi T, Yasukawa K. Insight into the collagen-degrading activity of a serine protease in the latex of Ficus carica cultivar Masui Dauphine. Biosci Biotechnol Biochem 2021; 85:1147-1156. [PMID: 33580958 DOI: 10.1093/bbb/zbab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
Ficus carica produces, in addition to the cysteine protease ficin, a serine protease. Earlier study on a serine protease from F. carica cultivar Brown Turkey showed that it specifically degraded collagen. In this study, we characterized the collagenolytic activity of a serine protease in the latex of F. carica cultivar Masui Dauphine. The serine protease degraded denatured, but not undenatured, acid-solubilized type I collagen. It also degraded bovine serum albumin, while the collagenase from Clostridium histolyticum did not. These results indicated that the serine protease in Masui Dauphine is not collagen-specific. The protease was purified to homogeneity by two-dimensional gel electrophoresis, and its partial amino acid sequence was determined by liquid chromatography-tandem mass spectrometry. BLAST searches against the Viridiplantae (green plants) genome database revealed that the serine protease was a subtilisin-like protease. Our results contrast with the results of the earlier study stating that the serine protease from F. carica is collagen-specific.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Toyo Institute of Food Technology, Kawanishi, Hyogo, Japan
| | - Keisuke Higashiya
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Naoki Ueshima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tatsuya Abe
- Toyo Institute of Food Technology, Kawanishi, Hyogo, Japan
| | - Toru Takahashi
- Toyo Institute of Food Technology, Kawanishi, Hyogo, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
8
|
Nishimura K, Higashiya K, Ueshima N, Abe T, Yasukawa K. Characterization of proteases activities in Ficus carica cultivars. J Food Sci 2020; 85:535-544. [PMID: 32027028 DOI: 10.1111/1750-3841.15028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023]
Abstract
In this study, we characterized protease activities of 23 Ficus carica cultivars. Extracts of fruit, branch, and leaf of Masui Dauphine, one of the most representative F. carica cultivars in Japan, exhibited gelatin-hydrolyzing activity, both in the absence and presence of a cysteine protease-specific inhibitor, E-64, suggesting that not only ficin (classified as cysteine protease) but also collagenase (classified as serine protease) were involved in the digestion of gelatin. In the hydrolysis of (7-methoxycoumarin-4-yl)acetyl-l-Lys-l-Pro-l-Leu-Gly-l-Leu-[N3 -(2,4-dinitrophenyl)-l-2,3-diaminopropionyl]-l-Ala-l-Arg-NH2 , all branch extracts of 23 F. carica cultivars exhibited the activity both in the absence and presence of cysteine protease-specific inhibitor E-64, indicating that they contain ficin and collagenase. During digestion of acid-solubilized type I collagen by the branch extract of Masui Dauphine at 40-55 °C, collagen was completely digested in the absence of E-64, while it was partially digested in the presence of the inhibitor, indicating that the manner of digestion differed between ficin and collagenase contained in the extract. These results suggest that F. carica is attractive for industrial use to digest collagen. PRACTICAL APPLICATION: The industrial use of F. carica might be enhanced by efficiently utilizing these proteases and/or selecting the appropriate F. carica cultivar. Collagen is one of the targets to which our results might be applied. It is widely accepted today that collagen and its digestion products could be useful as functional food. F. carica is a potential candidate for use in not only complete but also partial digestion of collagen.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Div. of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto Univ., Sakyo-ku, Kyoto, 606-8502, Japan.,Toyo Inst. of Food Technology, 4-23-2, Minami-Hanayashiki, Kawanishi, Hyogo, 666-0026, Japan
| | - Keisuke Higashiya
- Div. of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto Univ., Sakyo-ku, Kyoto, 606-8502, Japan
| | - Naoki Ueshima
- Div. of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto Univ., Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Abe
- Toyo Inst. of Food Technology, 4-23-2, Minami-Hanayashiki, Kawanishi, Hyogo, 666-0026, Japan
| | - Kiyoshi Yasukawa
- Div. of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto Univ., Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol 2019; 138:854-865. [PMID: 31351963 DOI: 10.1016/j.ijbiomac.2019.07.155] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Skin wound dressings are commonly used to stimulate and enhance skin tissue repair. Even if wounds seem easy to repair for clinicians and to replicate in an in vitro set-up for scientists, chronic wounds remain currently an open challenge in skin tissue engineering for patients with complementary diseases. The seemingly simple process of skin healing hides a heterogenous sequence of events, specific timing, and high level of organization and coordination among the involved cell types. Taken together, all these aspects make wound healing a unique process, but we are not yet able to completely repair the chronic wounds or to reproduce them in vitro with high fidelity. This review highlights the main characteristics and properties of a natural polymer, which is widely used as biomaterial, namely collagen and of its denatured form, gelatin. Available wound dressings based on collagen/gelatin and proposed variants loaded with bioactive compounds derived from plants are presented. Applications of these composite biomaterials are discussed with emphasis on skin wound healing. A perspective on current issues is given in the light of future research. The emerging technologies support the development of innovative dressings based exclusively on natural constituents, either polymeric or bioactive compounds.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
10
|
Abstract
Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bands obtained corresponded to α1, α2 and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s - 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional (3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cell attachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillar collagen structure after incubation in culture media without using additional strategies as crosslinking.
Collapse
|
11
|
Hackethal J, Mühleder S, Hofer A, Schneider KH, Prüller J, Hennerbichler S, Redl H, Teuschl A. An Effective Method ofAtelocollagenType 1/3 Isolation from Human Placenta and ItsIn VitroCharacterization in Two-Dimensional and Three-Dimensional Cell Culture Applications. Tissue Eng Part C Methods 2017; 23:274-285. [DOI: 10.1089/ten.tec.2017.0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Johannes Hackethal
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Hofer
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Karl Heinrich Schneider
- Center of Biomedical Research, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Johanna Prüller
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Simone Hennerbichler
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| |
Collapse
|
12
|
Kornmuller A, Brown CFC, Yu C, Flynn LE. Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms. J Vis Exp 2017. [PMID: 28447989 PMCID: PMC5564502 DOI: 10.3791/55436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries. The approach involves mechanical processing and mild enzymatic digestion to yield an ECM suspension that is used to fabricate the three-dimensional foams or microcarriers through controlled freezing and lyophilization procedures. These pure ECM-derived scaffolds are highly porous, yet stable without the need for chemical crosslinking agents or other additives that may negatively impact cell function. The scaffold properties can be tuned to some extent by varying factors such as the ECM suspension concentration, mechanical processing methods, or synthesis conditions. In general, the scaffolds are robust and easy to handle, and can be processed as tissues for most standard biological assays, providing a versatile and user-friendly 3D cell culture platform that mimics the native ECM composition. Overall, these straightforward methods for fabricating customized ECM-derived foams and microcarriers may be of interest to both biologists and biomedical engineers as tissue-specific cell-instructive platforms for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Anna Kornmuller
- Biomedical Engineering Graduate Program, The University of Western Ontario
| | - Cody F C Brown
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario
| | - Claire Yu
- Department of Chemical Engineering, Queen's University
| | - Lauren E Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario; Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario;
| |
Collapse
|
13
|
Abstract
Type I collagen, or collagen I, is the most abundant protein in the human body and provides strength and resiliency to tissues such as bone, tendons, ligaments, and skin. Collagen I forms macromolecular networks in which resident mesenchymal cells are embedded. Cell-extracellular matrix interactions are critical not only for maintenance of tissue properties but also for guiding and orienting the phenotype of resident cells. Cues from the extracellular matrix have been shown to be critical in pathophysiologies such as fibrosis, aging, and cancer. Hence, the details of these interactions are being scrutinized to better understand the mechanisms of such diseases and conditions. Many in vitro assays, such as cell-embedded collagen lattices, preparation of hydrogels, adhesion assays, etc., have been developed to study various aspects of cell-extracellular matrix interactions. All these in vitro models rely on utilizing high-quality purified collagen I. Here, we provide state-of-the-art collagen I extraction protocol and useful tips to produce high-quality purified collagen I solutions. We also provide a detailed protocol for pepsin digestion of collagen I, for a highly reliable collagen concentration assay, and guidelines for conducting quality controls to validate purified collagen solutions. Collagen I prepared with these procedures is highly suitable for many in vitro applications.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Dermatology Therappeutic Area, GlaxoSmithKline, Collegeville, PA, USA.
| |
Collapse
|
14
|
Qian J, Ito S, Satoh J, Geng H, Tanaka K, Hattori S, Kojima K, Takita T, Yasukawa K. The cleavage site preference of the porcine pepsin on the N-terminal α1 chain of bovine type I collagen: a focal analysis with mass spectrometry. Biosci Biotechnol Biochem 2016; 81:514-522. [PMID: 27931164 DOI: 10.1080/09168451.2016.1263146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bovine type I collagen consists of two α1 and one α2 chains, containing the internal triple helical regions and the N- and C-terminal telopeptides. In industries, it is frequently digested with porcine pepsin to produce a triple helical collagen without the telopeptides. However, the digestion mechanism is not precisely understood. Here, we performed a mass spectrometric analysis of the pepsin digest of the N-terminal telopeptide pQLSYGYDEKSTGISVP (1-16) in the α1 chain. When purified collagen was digested, pQLSYGY (1-6) and pQLSYGYDEKSTG (1-12) were identified, while DEKSTG (7-12) was not. When the N-terminal telopeptide mimetic synthetic peptide pQLSK(MOCAc)GYDEKSTGISK(Dnp)P-NH2 was digested, pQLSK(MOCAc)GYDEKSTG (1-12) and ISK(Dnp)P-NH2 (13-16) were readily identified, pQLSK(MOCAc)GY (1-6) and DEKSTGISK(Dnp)P-NH2 (7-16) were weakly detected, and DEKSTG (7-12) was hardly identified. These results suggest that pepsin preferentially cleaves Tyr6-Asp7 and less preferentially Gly12-Ile13. They also suggest that the former cleavage requires native collagen structure, while the latter cleavage does not.
Collapse
Affiliation(s)
- Jun Qian
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Shinji Ito
- b Medical Research Support Center, Graduate School of Medicine , Kyoto University , Kyoto , Japan
| | - Junko Satoh
- b Medical Research Support Center, Graduate School of Medicine , Kyoto University , Kyoto , Japan
| | - Hongmin Geng
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Keisuke Tanaka
- c Nippi Research Institute of Biomatrix , Toride , Japan
| | - Shunji Hattori
- c Nippi Research Institute of Biomatrix , Toride , Japan
| | - Kenji Kojima
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Teisuke Takita
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Kiyoshi Yasukawa
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|