1
|
Cao Z, Zhao C, Mo S, Gao BH, Liu M. The impact of tangeretin combined with whey protein on exercise-induced bronchoconstriction in professional athletes: a placebo-controlled trial. J Int Soc Sports Nutr 2024; 21:2414870. [PMID: 39422600 PMCID: PMC11492410 DOI: 10.1080/15502783.2024.2414870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) is highly prevalent in athletes. The objective of this study was to assess the therapeutic efficacy of daily tangeretin combined with whey protein supplementation over a period of 4 weeks in professional athletes with EIB. METHODS Using a placebo-controlled, double-blind, paired, randomized trial design, a cohort of 30 professional athletes with EIB, consisting of 14 females and 16 males, was divided into two groups: the tangeretin combined with whey protein intervention group (TIG), and the placebo control group (PCG). Both the TIG and PCG underwent exercise challenge tests (ECT) and VO2max tests before (ECT1, V1) and after (ECT2, V2) the intervention. Blood (eosinophils, neutrophils, and basophils) and serum (interleukin-5, IL-5; interleukin-8, IL-8; Clara cell secretory protein-16, CC16; immunoglobulin E, IgE) levels were measured early in the morning of ECT1 and ECT2, respectively. Lung function was assessed immediately before and post-ECT immediately. RESULTS Tangeretin combined with whey protein use for 4 weeks attenuated the decrease in forced expiratory volume in 1 s (FEV1) post trials (∆FEV1(ECT1-ECT2): mean (SD) TIG -7.51(6.9)% vs. PCG -2.33(11.49)%, p = 0.013). Tangeretin also substantially attenuated IL-5 concentration (∆IL-5(T1-T5): Tangeretin -19.4% vs Placebo + 8.37%, p = 0.022); IL-8 concentration (∆IL-8(T1-T5): Tangeretin -17.28% vs Placebo + 6.1%, p = 0.012); CC16 concentration (∆CC16(T1-T5): Tangeretin -11.77% vs Placebo + 24.19%); and IgE concentration in the serum (∆IgE(T1-T5): Tangeretin -24.1% vs Placebo -3.9%), and significantly decreased neutrophil count (∆N(T1-T5): Tangeretin -11.34% vs Placebo + 0.3%) and eosinophil count in blood (∆N(T1-T5): Tangeretin -38.5% vs Placebo + 4.35%). Compared with V1, VO2max (p = 0.042) and TLim (p = 0.05) of V2 were significantly increased in the TIG, and there was no significant change in the PCG. Meanwhile, six athletes in the TIG and 0 athletes in the PCG became EIB-negative at ECT2; the overall negative conversion rate of EIB was 40.00% in TCG. Additionally, the number of cough symptoms decreased from 9 to 3 and dyspnea from 4 to 2 in the TIG. CONCLUSION After high-intensity exercise, athletes with EIB achieved significant improvements in lung function and blood inflammatory factors by combining tangeretin and whey protein supplementation. EIB athletes also showed longer exercise endurance and VO2max at 4 weeks after TI. In addition, some patient symptoms disappeared after combination supplementation. The effect of this treatment on professional athletes with EIB was beneficial.
Collapse
Affiliation(s)
- Zhi Cao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Can Zhao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Shiwei Mo
- Shenzhen University, School of Physical Education, Shenzhen, China
| | - Bing-Hong Gao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Meng Liu
- Chongqing University, Chongqing, China
- Chongqing Institute of Sport Science, Chongqing administration of sport, Chongqing, China
| |
Collapse
|
2
|
Gou G, Xu N, Li H, Li J, Aisa HA. Sesquiterpenes from the fruits of Piper longum L. and their anti-inflammatory activity. Fitoterapia 2024; 179:106260. [PMID: 39413978 DOI: 10.1016/j.fitote.2024.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The fruits of Piper longum are called long pepper, which are well-known culinary spice as well as traditional medicine. In present work, thirteen sesquiterpenes including four undescribed compounds were isolated from P. longum fruits. Compound 1 was a rare methylated bisabolane-type sesquiterpene. Compounds (-)-3 and (+)-3 were a pair of enantiomers of an uncommon humulane which were separated by chiral HPLC. The absolute configurations of compounds 1-3 were confirmed through the means of spectroscopic data analyses, 13C NMR calculations employing DP4+ probability analyses, and ECD calculations. Compounds 2 and 11 presented moderated inhibitory effect on the NO release in LPS-induced RAW264.7 cells with IC50 values of 30.65 ± 0.90 and 38.48 ± 2.42 μM, respectively. Above results enriched the chemical information of P. longum fruits, and meanwhile provided scientific evidences for the anti-inflammatory function of P. longum fruits.
Collapse
Affiliation(s)
- Guanghui Gou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nannan Xu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China
| | - Hongliang Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
3
|
Quesada-Vázquez S, Eseberri I, Les F, Pérez-Matute P, Herranz-López M, Atgié C, Lopez-Yus M, Aranaz P, Oteo JA, Escoté X, Lorente-Cebrian S, Roche E, Courtois A, López V, Portillo MP, Milagro FI, Carpéné C. Polyphenols and metabolism: from present knowledge to future challenges. J Physiol Biochem 2024; 80:603-625. [PMID: 39377969 PMCID: PMC11502541 DOI: 10.1007/s13105-024-01046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
A diet rich in polyphenols and other types of phytonutrients can reduce the occurrence of chronic diseases. However, a well-established cause-and-effect association has not been clearly demonstrated and several other issues will need to be fully understood before general recommendations will be carried out In the present review, some of the future challenges that the research on phenolic compounds will have to face in the next years are discussed: toxicological aspects of polyphenols and safety risk assessment; synergistic effects between different polyphenols; metabotype-based nutritional advice based on a differential gut microbial metabolism of polyphenols (precision nutrition); combination of polyphenols with other bioactive compounds; innovative formulations to improve the bioavailability of phenolic compounds; and polyphenols in sports nutrition and recovery.Other aspects related to polyphenol research that will have a boost in the next years are: polyphenol and gut microbiota crosstalk, including prebiotic effects and biotransformation of phenolic compounds into bioactive metabolites by gut microorganisms; molecular docking, molecular dynamics simulation, and quantum and molecular mechanics studies on the protein-polyphenol complexes; and polyphenol-based coating films, nanoparticles, and hydrogels to facilitate the delivery of drugs, nucleic acids and proteins.In summary, this article provides some constructive inspirations for advancing in the research of the applications, risk assessment and metabolic effects of dietary polyphenols in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, 03202, Spain
| | - Claude Atgié
- Equipe ClipIn (Colloïdes pour l'Industrie et la Nutrition), Bordeaux INP, Institut CBMN, UMR 5248, Pessac, 33600, France
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
- Hospital Universitario San Pedro, Logroño, 26006, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
| | - Silvia Lorente-Cebrian
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Zaragoza, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), Elche, 03202, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, 03010, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Arnaud Courtois
- Département des Sciences de l'Environnement, Institut des Sciences de la Vigne et du Vin, UMR OEnologie (UMR 1366, INRAE, Bordeaux INP), AXE Molécules à Intérêt Biologique, Bordeaux, 33882, France
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, 31432, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse, 31432, France
| |
Collapse
|
4
|
de Morais SV, Calado GP, Carvalho RC, Garcia JBS, de Queiroz TM, Cantanhede Filho AJ, Lopes AJO, Cartágenes MDSDS, Domingues GRDS. Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats. Pharmaceuticals (Basel) 2024; 17:630. [PMID: 38794200 PMCID: PMC11125240 DOI: 10.3390/ph17050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association's efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects.
Collapse
Affiliation(s)
- Sebastião Vieira de Morais
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - Gustavo Pereira Calado
- Programa de Pós-graduação em Ciências Farmacêuticas—PPGCF, Departamento de Farmácia, Universidade de Brasília-UnB Brasília-DF, Brasilia 70910-900, Brazil
| | - Rafael Cardoso Carvalho
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Brazil;
| | - Antonio José Cantanhede Filho
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
| | - Alberto Jorge Oliveira Lopes
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
- Bacabal Science Center (CCBa), Federal University of Maranhão, Bacabal 65700-000, Brazil
| | | | | |
Collapse
|
5
|
Alharbi KS. Noncoding RNAs in hepatitis: Unraveling the apoptotic pathways. Pathol Res Pract 2024; 255:155170. [PMID: 38324964 DOI: 10.1016/j.prp.2024.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Hepatitis is a worldwide health issue that causes inflammation of the liver and is frequently brought on by viral infections, specifically those caused by the hepatitis B and C viruses. Although the pathophysiological causes of hepatitis are complex, recent research indicates that noncoding RNAs (ncRNAs) play a crucial role in regulating apoptosis, an essential process for maintaining liver homeostasis and advancing the illness. Noncoding RNAs have been linked to several biological processes, including apoptosis. These RNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Distinct expression patterns characterising different stages of the disease have been discovered, indicating dysregulation of these non-coding RNAs in liver tissues infected with hepatitis. The complex interplay that exists between these noncoding RNAs and apoptotic effectors, including caspases and members of the Bcl-2 family, plays a role in the precarious equilibrium that regulates cell survival and death during hepatitis. The purpose of this review is to provide an overview of ncRNA-mediated apoptosis in hepatitis, as well as insights into possible therapeutic targets and diagnostic indicators.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
6
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
7
|
Restivo I, Basilicata MG, Giardina IC, Massaro A, Pepe G, Salviati E, Pecoraro C, Carbone D, Cascioferro S, Parrino B, Diana P, Ostacolo C, Campiglia P, Attanzio A, D’Anneo A, Pojero F, Allegra M, Tesoriere L. A Combination of Polymethoxyflavones from Citrus sinensis and Prenylflavonoids from Humulus lupulus Counteracts IL-1β-Induced Differentiated Caco-2 Cells Dysfunction via a Modulation of NF-κB/Nrf2 Activation. Antioxidants (Basel) 2023; 12:1621. [PMID: 37627616 PMCID: PMC10451557 DOI: 10.3390/antiox12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
We here investigated the anti-inflammatory activity of a polymethoxylated flavone-containing fraction (PMFF) from Citrus sinensis and of a prenylflavonoid-containing one (PFF) from Humulus lupulus, either alone or in combination (MIX). To this end, an in vitro model of inflammatory bowel disease (IBD), consisting of differentiated, interleukin (IL)-1β-stimulated Caco-2 cells, was employed. We demonstrated that non-cytotoxic concentrations of either PMFF or PFF or MIX reduced nitric oxide (NO) production while PFF and MIX, but not PMFF, also inhibited prostaglandin E2 release. Coherently, MIX suppressed both inducible NO synthase and cyclooxygenase-2 over-expression besides NF-κB activation. Moreover, MIX increased nuclear factor erythroid 2-related factor 2 (Nrf2) activation, heme oxygenase-1 expression, restoring GSH and reactive oxygen and nitrogen species (RONs) levels. Remarkably, these effects with MIX were stronger than those produced by PMFF or PFF alone. Noteworthy, nobiletin (NOB) and xanthohumol (XTM), two of the most represented phytochemicals in PMFF and PFF, respectively, synergistically inhibited RONs production. Overall, our results demonstrate that MIX enhances the anti-inflammatory and anti-oxidative effects of the individual fractions in a model of IBD, via a mechanism involving modulation of NF-κB and Nrf2 signalling. Synergistic interactions between NOB and XTM emerge as a relevant aspect underlying this evidence.
Collapse
Affiliation(s)
- Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | | | - Ilenia Concetta Giardina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| |
Collapse
|
8
|
Nayak SPRR, Boopathi S, Priya PS, Pasupuleti M, Pachaiappan R, Almutairi BO, Arokiyaraj S, Arockiaraj J. Luteolin, a promising quorum quencher mitigates virulence factors production in Pseudomonas aeruginosa - In vitro and in vivo approach. Microb Pathog 2023; 180:106123. [PMID: 37088400 DOI: 10.1016/j.micpath.2023.106123] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1β, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Immunology & Microbiology, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
9
|
Punia Bangar S, Kajla P, Chaudhary V, Sharma N, Ozogul F. Luteolin: A flavone with myriads of bioactivities and food applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Xi M, Hou Y, Wang R, Ji M, Cai Y, Ao J, Shen H, Li M, Wang J, Luo A. Potential Application of Luteolin as an Active Antibacterial Composition in the Development of Hand Sanitizer Products. Molecules 2022; 27:7342. [PMID: 36364167 PMCID: PMC9657794 DOI: 10.3390/molecules27217342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
Antibacterial hand sanitizers could play a prominent role in slowing down the spread and infection of hand bacterial pathogens; luteolin (LUT) is potentially useful as an antibacterial component. Therefore, this study elucidated the antibacterial mechanism of LUT against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and developed an antibacterial hand sanitizer. The results showed that LUT had excellent antibacterial activity against both E. coli (minimum inhibitory concentration (MIC) = 312.5 μg/mL, minimal bactericidal concentration (MBC) = 625 μg/mL), and S. aureus (MIC = 312.5 μg/mL, MBC = 625 μg/mL). Furthermore, LUT induced cell dysfunction in E. coli and S. aureus, changed membrane permeability, and promoted the leakage of cellular contents. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) analysis showed that LUT treatment affected cell structure and disrupted cell membrane integrity. The Fourier transform infrared analysis (FTIR) also confirmed that the LUT acted on the cell membranes of both E. coli and S. aureus. Overall, the application of LUT in hand sanitizer had better inhibition effects. Therefore, this study could provide insight into expanding the application of LUT in the hand sanitizer markets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
11
|
Network Pharmacology-Based Analysis of the Underlying Mechanism of Hyssopus cuspidatus Boriss. for Antiasthma: A Characteristic Medicinal Material in Xinjiang. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7671247. [PMID: 34880921 PMCID: PMC8648465 DOI: 10.1155/2021/7671247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Background Hyssopus cuspidatus Boriss. (Shen Xiang Cao (SXC)), a traditional medicine herb in Xinjiang, has a long history of being used by minorities to treat asthma. However, its active antiasthmatic compounds and underlying mechanism of action are still unknown. The aim of this study was to investigate the bioactive compounds and explore the molecular mechanism of SCX in the treatment of asthma using network pharmacology. Methods The compounds of SCX were collected by a literature search, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction were used to predict targets and screen active compounds. Moreover, asthma-related targets were obtained based on DisGeNET, Herb, and GeneCards databases, and a protein-protein interaction (PPI) network was built by the STRING database. Furthermore, the topological analysis of the PPI and SXC-compound-target networks were analyzed and established by Cytoscape software. Finally, the RStudio software package was used for carrying out Gene Ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. AutoDock tools and AutoDock Vina were used to molecularly dock the active compounds and key targets. Results A total of 8 active compounds and 258 potential targets related to SXC were predicted, and PPI network screened out key targets, including IL-6, JUN, TNF, IL10, and CXCL8. GO enrichment analysis involved cell responses to reactive oxygen species, oxidative stress, chemical stress, etc. In addition, KEGG pathway analysis showed that SXC effectively treated asthma through regulation of mitogen-activated protein kinases (MAPK) signaling pathways, interleukin 17 (IL-17) signaling pathways, toll-like receptor (TLR) signaling pathways, and tumor necrosis factor (TNF) signaling pathways. Conclusion The preliminary study that was based on multiple compounds, multiple targets, and multiple pathways provides a scientific basis for further elucidating the molecules involved and the underlying antiasthma-related mechanisms of SXC.
Collapse
|
12
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
13
|
Nery M, Ferreira PS, Gonçalves DR, Spolidorio LC, Manthey JA, Cesar TB. Physiological effects of tangeretin and heptamethoxyflavone on obese C57BL/6J mice fed a high-fat diet and analyses of the metabolites originating from these two polymethoxylated flavones. Food Sci Nutr 2021; 9:1997-2009. [PMID: 33841818 PMCID: PMC8020949 DOI: 10.1002/fsn3.2167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 01/17/2021] [Indexed: 12/29/2022] Open
Abstract
Two compounds from citrus peel, tangeretin (TAN) and 3',4',3,5,6,7,8-heptamethoxyflavone (HMF), were investigated for their abilities to repair metabolic damages caused by an high-fat diet (HFD) in C57BL/6J mice. In the first 4 weeks, mice were fed either a standard diet (11% kcal from fat) for the control group, or a HFD (45% kcal from fat) to establish obesity in three experimental groups. In the following 4 weeks, two groups receiving the HFD were supplemented with either TAN or HMF at daily doses of 100 mg/kg body weight, while the two remaining groups continued to receive the standard healthy diet or the nonsupplemented HFD. Four weeks of supplementation with TAN and HMF resulted in intermediate levels of blood serum glucose, leptin, resistin, and insulin resistance compared with the healthy control and the nonsupplemented HFD groups. Blood serum peroxidation (TBARS) levels were significantly lower in the TAN and HMF groups compared with the nonsupplemented HFD group. Several differences occurred in the physiological effects of HMF versus TAN. TAN, but not HMF, reduced adipocyte size in the mice with pre-existent obesity, while HMF, but not TAN, decreased fat accumulation in the liver and also significantly increased the levels of an anti-inflammatory cytokine, IL-10. In an analysis of the metabolites of TAN and HMF, several main classes occurred, including a new set of methylglucuronide conjugates. It is suggested that contrasts between the observed physiological effects of TAN and HMF may be attributable to the differences in numbers and chemical structures of TAN and HMF metabolites.
Collapse
Affiliation(s)
- Marina Nery
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
| | - Paula S. Ferreira
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Danielle R. Gonçalves
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Luis C. Spolidorio
- Department of Physiology and PathologySchool of DentistrySão Paulo State University (UNESP)AraraquaraBrazil
| | - John A. Manthey
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Thais B. Cesar
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
| |
Collapse
|
14
|
Novais C, Pereira C, Molina AK, Liberal Â, Dias MI, Añibarro-Ortega M, Alves MJ, Calhelha RC, Ferreira IC, Barros L. Bioactive and Nutritional Potential of Medicinal and Aromatic Plant (MAP) Seasoning Mixtures. Molecules 2021; 26:molecules26061587. [PMID: 33805649 PMCID: PMC7999629 DOI: 10.3390/molecules26061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Medicinal and aromatic plants (MAPs), worldwide appreciated and used as condiments, dyes, and preservatives, possess several biological properties that justify their continuous application in the food industry. In the present study, the nutritional and chemical profiles, as well as the bioactive properties of four combinations of condiments, sold for seasoning poultry, meat, fish, and salads, were evaluated. Twenty-five phenolic compounds (HPLC-DAD-ESI/MS) were identified, with apigenin-O-malonyl-pentoside-hexoside as the major compound detected in all extracts. Oxalic and citric acids were identified in all mixtures (UFLC-PDA), as well as all the four tocopherol isoforms (HPLC-fluorescence). Regarding bioactivities, the mixtures for meat and salads (TBARS) and meat and poultry (OxHLIA) stood out for their antioxidant potential, whereas for the anti-inflammatory and antitumor properties, the mixtures revealing the greatest results were those for poultry and salad, respectively. In terms of antimicrobial activity, all the mixtures revealed the capacity to inhibit the growth of some bacterial strains. In brief, condiment mixtures showed to be a good source of bioactive compounds, as they confer health benefits, validating the importance of their inclusion in the human diet as a good dietary practice.
Collapse
Affiliation(s)
| | - Carla Pereira
- Correspondence: (C.P.); (L.B.); Tel.: +351-2733-309-04 (C.P.); +351-2733-309-01 (L.B.)
| | | | | | | | | | | | | | | | - Lillian Barros
- Correspondence: (C.P.); (L.B.); Tel.: +351-2733-309-04 (C.P.); +351-2733-309-01 (L.B.)
| |
Collapse
|
15
|
Geng YF, Yang C, Zhang Y, Tao SN, Mei J, Zhang XC, Sun YJ, Zhao BT. An innovative role for luteolin as a natural quorum sensing inhibitor in Pseudomonas aeruginosa. Life Sci 2021; 274:119325. [PMID: 33713665 DOI: 10.1016/j.lfs.2021.119325] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
AIMS The emergence of antibiotic tolerance was a tricky problem in the treatment of chronic Pseudomonas aeruginosa-infected cystic fibrosis and burn victims. The quorum sensing (QS) inhibitor may serve as a new tactic for the bacterial resistance by inhibiting the biofilm formation and the production of virulence factors. This study explored the potential of luteolin as a QS inhibitor against P. aeruginosa and the molecular mechanism involved. MAIN METHODS Crystal violet staining, CLSM observation, and SEM analysis were carried out to assess the effect of luteolin on biofilm formation. The motility assays and the production of virulence factors were determined to evaluate the QS-inhibitory activity of luteolin. Acyl-homoserine lactone, RT-PCR, and molecular docking assays were conducted to explain its anti-QS mechanisms. KEY FINDINGS The biofilm formation, the production of virulence factors, and the motility of P. aeruginosa could be efficiently inhibited by luteolin. Luteolin could also attenuate the accumulation of the QS-signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) and N-butanoyl-L-homoserine lactone (BHL) (P < 0.01) and downregulate the transcription levels of QS genes (lasR, lasI, rhlR, and rhlI) (P < 0.01). Molecular docking analysis indicated that luteolin had a greater docking affinity with LasR regulator protein compared with OdDHL. SIGNIFICANCE This study is important as it reports the molecular mechanisms involved in the anti-biofilm formation activity of luteolin against P. aeruginosa. This study also indicated that luteolin could be helpful when used for the treatment of clinical drug-resistant infections of P. aeruginosa.
Collapse
Affiliation(s)
- Ya Fei Geng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Sheng Nan Tao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Mei
- Shenzhen Lantern Science Co. Ltd., Qinglan 2nd Road No. 6, Big Industrial Zone, Pingshan District, Shenzhen 518000, China
| | - Xu Chang Zhang
- Shenzhen Lantern Science Co. Ltd., Qinglan 2nd Road No. 6, Big Industrial Zone, Pingshan District, Shenzhen 518000, China
| | - Ya Juan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bing Tian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Chen J, Li DL, Xie LN, Ma YR, Wu PP, Li C, Liu WF, Zhang K, Zhou RP, Xu XT, Zheng X, Liu X. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153309. [PMID: 32890914 DOI: 10.1016/j.phymed.2020.153309] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Combination drug therapy has become an effective strategy for inflammation control. The anti‑inflammatory capacities of silibinin and thymol have each been investigated on its own, but little is known about the synergistic anti-inflammatory effects of these two compounds. PURPOSE This study aims to investigate the synergistic anti-inflammatory effects of silibinin and thymol when administered in combination to lipopolysaccharide (LPS)-induced RAW264.7 cells. METHODS RAW264.7 cells were pre-treated with silibinin and thymol individually or in combination for 2 h before LPS stimulation. Cell viability was detected by the MTT assay. Nitric oxide (NO) production was measured by Griess reagent. Reactive oxygen species (ROS) was evaluated by 2',7'-dichlorofluorescein-diacetate. ELISA was used to detect tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Western blot was performed to analyse the protein expression of LPS-induced RAW264.7 cells. RESULTS We observed a synergistic anti-inflammatory effect of silibinin and thymol when administered in combination to LPS-induced RAW264.7 cells. Silibinin combined with thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) had more potent effects on the inhibition of NO, TNF-α, and IL-6 than those exerted by individual administration of these compounds in LPS-induced RAW264.7 cells. The combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) strongly inhibited ROS and cyclooxygenase-2 (COX-2). More importantly, the combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) was also successful in inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activities. Our results suggest that the synergistic anti-inflammatory effects of silibinin with thymol were associated with the inhibition of NF-κB and MAPK signalling pathways. CONCLUSION The combination of silibinin and thymol (40 μM and 120 μM, respectively, with the molar ratio 1:3) could inhibit inflammation by suppressing NF-κB and MAPK signalling pathways in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Jie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Ling-Na Xie
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yu-Ran Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Pan-Pan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Chen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Wen-Feng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Ren-Ping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China.
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Xia Liu
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
17
|
Guo Y, Liu Y, Zhang Z, Chen M, Zhang D, Tian C, Liu M, Jiang G. The Antibacterial Activity and Mechanism of Action of Luteolin Against Trueperella pyogenes. Infect Drug Resist 2020; 13:1697-1711. [PMID: 32606820 PMCID: PMC7293968 DOI: 10.2147/idr.s253363] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/16/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose This research aimed to investigate the antibacterial activity and potential mechanism of luteolin against T. pyogenes. Materials and Methods The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of luteolin against various T. pyogenes strains. The potential mechanism of action of luteolin was elucidated through testing and analysing the luteolin-induced alterations of T. pyogenes in several aspects, including cell wall, cell membrane, protein expression, nucleic acid content, topoisomerase activity and energy metabolism. Results The MIC values of luteolin against various T. pyogenes isolates and ATCC19411 were 78 µg/mL. The increased cell membrane permeability, destruction of cell wall integrity and TEM images after exposure to luteolin showed that the cell wall and membrane were damaged. The content of total protein and nucleic acid in T. pyogenes decreased significantly after treatment with luteolin (1/2 MIC) for 12, 24, and 36 h. Moreover, a hypochromic effect was observed in the absorption spectrum of luteolin when deoxyribonucleic acid (DNA) was added. In addition, after treatment with luteolin, a decrease in nicked or relaxed DNA content, which was catalysed by T. pyogenes-isolated DNA topoisomerase, was observed. In addition, the adenosine triphosphate (ATP) content in cells and the activity of succinate dehydrogenase (SDH) both decreased when T. pyogenes was exposed to different concentrations (1/4 MIC, 1/2 MIC, 1 MIC, 2 MIC) of luteolin for 1 h. Conclusion Luteolin showed distinct antibacterial activity against T. pyogenes by multiple actions, which mainly include destroying the integrity of the cell wall and cell membrane, influencing the expression of proteins, inhibiting nucleic acid synthesis, and interfering with energy metabolism.
Collapse
Affiliation(s)
- Yuru Guo
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Yan Liu
- Dalian Sanyi Animal Medicine Co., Ltd., Dalian, Liaoning, People's Republic of China
| | - Zehui Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Menghan Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Dexian Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Chunlian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Guotuo Jiang
- Dalian Sanyi Animal Medicine Co., Ltd., Dalian, Liaoning, People's Republic of China
| |
Collapse
|
18
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Ghasemipour Afshar E. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0191/jbcpp-2019-0191.xml. [PMID: 32329752 DOI: 10.1515/jbcpp-2019-0191] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 06/11/2023]
Abstract
To date, a large number of synthetic drugs have been developed for the treatment and prevention of different disorders, such as neurodegenerative diseases, diabetes mellitus, and cancer. However, these drugs suffer from a variety of drawbacks including side effects and low efficacy. In response to this problem, researchers have focused on the plant-derived natural products due to their valuable biological activities and low side effects. Flavonoids consist of a wide range of naturally occurring compounds exclusively found in fruits and vegetables and demonstrate a number of pharmacological and therapeutic effects. Tangeretin (TGN) is a key member of flavonoids that is extensively found in citrus peels. It has different favorable biological activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, and neuroprotective effects. In the present review, we discuss the various pharmacological and therapeutic effects of TGN and then, demonstrate how this naturally occurring compound affects signaling pathways to exert its impacts.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran, Phone: +989032360639
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
DiMarco-Crook C, Rakariyatham K, Li Z, Du Z, Zheng J, Wu X, Xiao H. Synergistic anticancer effects of curcumin and 3',4'-didemethylnobiletin in combination on colon cancer cells. J Food Sci 2020; 85:1292-1301. [PMID: 32144766 DOI: 10.1111/1750-3841.15073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Chemoprevention strategies employing the use of multiple dietary bioactive components and their metabolites in combination offer advantages due to their low toxicity and potential synergistic interactions. Herein, for the first time, we studied the combination of curcumin and 3',4'-didemethylnobiletin (DDMN), a primary metabolite of nobiletin, to determine their combinatory effects in inhibiting growth of human colon cancer cells. Isobologram analysis revealed a synergistic interaction between curcumin and DDMN in the inhibition of cell growth of HCT116 colon cancer cells. The combination treatment induced significant G2 -M cell-cycle arrest and extensive apoptosis, which greatly exceeded the effects of individual treatments with curcumin or DDMN. Proteins associated with these heightened anticarcinogenic effects were p53, p21, HO-1, c-poly(ADP-ribose) polymerase, Cdc2, and Cdc25c; each of the proteins was confirmed to be substantially impacted by the combination treatment, more than by individual treatments alone. Interestingly, an increase in the stability of curcumin was also observed with the presence of DDMN in cell culture medium, which could offer an explanation in part for the synergistic interaction between curcumin and DDMN. This newly identified synergy between curcumin and DDMN should be explored further to determine its chemopreventive potential against colon cancer in vivo. PRACTICAL APPLICATION: This study identifies for the first time the synergistic inhibition of colon cancer cell growth by the dietary component curcumin present in turmeric, in combination with a metabolite of nobiletin, a unique citrus flavonoid. The synergism of the combination may be due to cell-cycle arrest and apoptosis induced by the combination as well as an improvement in the stability of curcumin as a result of the antioxidant property of the nobiletin metabolite. These significant findings of synergism between curcumin and the nobiletin metabolite could offer potential chemopreventive value against colon cancer.
Collapse
Affiliation(s)
| | | | - Zhengze Li
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Zheyuan Du
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Jinkai Zheng
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xian Wu
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Dept. of Kinesiology and Health, Miami Univ., Oxford, OH, 45056, USA
| | - Hang Xiao
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
20
|
da Cunha LR, Muniz-Junqueira MI, Dos Santos Borges TK. Impact of polyphenols in phagocyte functions. J Inflamm Res 2019; 12:205-217. [PMID: 31686890 PMCID: PMC6708886 DOI: 10.2147/jir.s193749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
Polyphenols are a broad group of substances with potential health benefits found in plant species. Several of these compounds are capable of influencing the activation of intracellular signaling pathways, such as NF-kB, MAPK and JAK-STAT, responsible for the production of various inflammatory mediators such as tumor necrosis factor α (TNF-α) and interleukin 1 beta (IL-1β) and 12 (IL-12), enzymes involved in the production of reactive species such as inducible nitric oxide synthase (iNOS) and superoxide dehydrogenase (SOD), as well as enzymes involved in the production of eicosanoids, such as cyclooxygenase (COX) and lipoxygenase (LO). There is increased interest in the use of polyphenol-rich foods because of their immunomodulatory effect; however, the mechanisms used during macrophage responses are extremely complex and little is known about the effects of polyphenols on these cells. As such, this review summarizes the current view of polyphenol influences on macrophages.
Collapse
Affiliation(s)
- Leandro Rodrigues da Cunha
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | | | | |
Collapse
|
21
|
Goh JXH, Tan LTH, Goh JK, Chan KG, Pusparajah P, Lee LH, Goh BH. Nobiletin and Derivatives: Functional Compounds from Citrus Fruit Peel for Colon Cancer Chemoprevention. Cancers (Basel) 2019; 11:E867. [PMID: 31234411 PMCID: PMC6627117 DOI: 10.3390/cancers11060867] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The search for effective methods of cancer treatment and prevention has been a continuous effort since the disease was discovered. Recently, there has been increasing interest in exploring plants and fruits for molecules that may have potential as either adjuvants or as chemopreventive agents against cancer. One of the promising compounds under extensive research is nobiletin (NOB), a polymethoxyflavone (PMF) extracted exclusively from citrus peel. Not only does nobiletin itself exhibit anti-cancer properties, but its derivatives are also promising chemopreventive agents; examples of derivatives with anti-cancer activity include 3'-demethylnobiletin (3'-DMN), 4'-demethylnobiletin (4'-DMN), 3',4'-didemethylnobiletin (3',4'-DMN) and 5-demethylnobiletin (5-DMN). In vitro studies have demonstrated differential efficacies and mechanisms of NOB and its derivatives in inhibiting and killing of colon cancer cells. The chemopreventive potential of NOB has also been well demonstrated in several in vivo colon carcinogenesis animal models. NOB and its derivatives target multiple pathways in cancer progression and inhibit several of the hallmark features of colorectal cancer (CRC) pathophysiology, including arresting the cell cycle, inhibiting cell proliferation, inducing apoptosis, preventing tumour formation, reducing inflammatory effects and limiting angiogenesis. However, these substances have low oral bioavailability that limits their clinical utility, hence there have been numerous efforts exploring better drug delivery strategies for NOB and these are part of this review. We also reviewed data related to patents involving NOB to illustrate the extensiveness of each research area and its direction of commercialisation. Furthermore, this review also provides suggested directions for future research to advance NOB as the next promising candidate in CRC chemoprevention.
Collapse
Affiliation(s)
- Joanna Xuan Hui Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Joo Kheng Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
22
|
Vuong LD, Nguyen QN, Truong VL. Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells. Immunopharmacol Immunotoxicol 2019; 41:413-419. [PMID: 31142171 DOI: 10.1080/08923973.2019.1569049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives: Accumulating evidence indicates that combination of therapeutic agents may increase their pharmacological properties with fewer undesired side effects. Acetaminophen (APAP) has been widely used to treat pain and fever in many countries. However, APAP only possesses a weak anti-inflammatory property at therapeutic dose, and exhibits hepatotoxicity at high dose. On other hand, sulforaphane (SFN) has been well-known as a potential anti-inflammatory and antioxidant agent. In this study, we investigated the anti-inflammatory and antioxidant effects of combination between APAP and SFN in LPS-stimulated RAW 264.7 macrophage cells. Methods: Nitric oxide (NO) assay was determined using the Griess assay. Reactive oxygen species (ROS) formation was measured using an ROS-sensitive fluorescence indicator, DCFH-DA. The protein expression was determined by western blot analysis. Results: Our results showed that the combination of SFN and APAP exhibited an inhibitory effect on inflammatory markers such as NO, iNOS, COX-2, and IL-1β, and this effect was more pronounced than the compound was used alone. In addition, the combination of SFN and APAP at low doses decreased intracellular ROS formation and increased the protein levels of CAT, GPx, Nrf2, NQO1, and HO-1, which were much better than APAP alone and were equivalent to SFN at full dose. Conclusions: Our findings suggest that the combination of APAP and SFN enhanced anti-inflammatory and anti-oxidant activities in stimulated macrophages, which provide an important rationale to utilize drug and food in combination for prevention and/or treatment inflammation-related diseases.
Collapse
Affiliation(s)
- Linh Dieu Vuong
- a Pathology and Molecular Biology Center , National Cancer Hospital K , Hanoi , Vietnam
| | - Quang Ngoc Nguyen
- a Pathology and Molecular Biology Center , National Cancer Hospital K , Hanoi , Vietnam
| | - Van-Long Truong
- b Department of Smart Food and Drug , College of BNIT, Inje University , Gimhae , South Korea
| |
Collapse
|
23
|
Eriocitrin in combination with resveratrol ameliorates LPS-induced inflammation in RAW264.7 cells and relieves TPA-induced mouse ear edema. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Phan MAT, Bucknall MP, Arcot J. Interferences of anthocyanins with the uptake of lycopene in Caco-2 cells, and their interactive effects on anti-oxidation and anti-inflammation in vitro and ex vivo. Food Chem 2019; 276:402-409. [DOI: 10.1016/j.foodchem.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
|
25
|
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:342-358. [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. AIM OF THE REVIEW This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. MATERIALS AND METHODS We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. RESULTS Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. CONCLUSION In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
26
|
Wu X, Song M, Qiu P, Li F, Wang M, Zheng J, Wang Q, Xu F, Xiao H. A metabolite of nobiletin, 4'-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food Funct 2018; 9:87-95. [PMID: 29063088 DOI: 10.1039/c7fo01155e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combining different chemopreventive agents is a promising strategy to reduce cancer incidence and mortality due to potential synergistic interactions between these agents. Previously, we demonstrated that oral administration of nobiletin (NBT, a citrus flavonoid) at 0.05% (w/w, in diet) together with atorvastatin (ATST, a lipid-lowering drug) at 0.02% (w/w, in diet) produced much stronger inhibition against colon carcinogenesis in rats in comparison with that produced by NBT (at 0.1% w/w in diet) or ATST (at 0.04% w/w in diet) alone at higher doses. To further elucidate the mechanism of this promising synergy between NBT and ATST, herein, we measured the levels of NBT, its major metabolites and ATST in the colonic tissue of rats fed NBT (0.05% w/w, in diet) + ATST (0.02% w/w, in diet), and determined the mode of interaction between the major NBT metabolite and ATST in inhibiting colon cancer cell growth. HPLC-MS analysis showed that 4'-demethylnobiletin (4DN) is the most abundant metabolite of NBT with a level about 5-fold as high as that of NBT in the colonic tissue, which indicated the potential significance of 4DN in mediating the biological effects of NBT in the colon. We found that co-treatments of 4DN/ATST at 2 : 1 concentration ratio produced much stronger growth inhibitory effects on human colon cancer HT-29 cells than 4DN or ATST alone, and isobologram analysis confirmed that this enhanced inhibitory effect by the 4DN/ATST combination was highly synergistic. The co-treatment of 4DN/ATST led to G0/G1 cell cycle arrest and induced extensive apoptosis in HT-29 cells. Furthermore, the 4DN/ATST co-treatment profoundly modulated key signaling proteins related to the regulation of the cell cycle and apoptosis. Our results demonstrated a strong synergy produced by the 4DN/ATST co-treatment in inhibiting colon cancer cell growth, which provided a novel mechanism by which NBT/ATST in combination synergistically inhibit colon carcinogenesis.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Simultaneous characterization of chemical structures and bioactivities of citrus-derived components using SERS barcodes. Food Chem 2018; 240:743-750. [DOI: 10.1016/j.foodchem.2017.07.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|
28
|
Rakariyatham K, Wu X, Tang Z, Han Y, Wang Q, Xiao H. Synergism between luteolin and sulforaphane in anti-inflammation. Food Funct 2018; 9:5115-5123. [DOI: 10.1039/c8fo01352g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Luteolin and sulforaphane are well-known food bioactives with anti-inflammatory properties. In this study, we demonstrated the synergistic interactions between luteolin and sulforaphane against lipopolysaccharide-induced inflammation in macrophages.
Collapse
Affiliation(s)
| | - Xian Wu
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Zhonghai Tang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Yanhui Han
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Qi Wang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Hang Xiao
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Department of Food Science
| |
Collapse
|
29
|
Phan MAT, Paterson J, Bucknall M, Arcot J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr 2017; 58:1310-1329. [DOI: 10.1080/10408398.2016.1254595] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Minh Anh Thu Phan
- Food Science and Technology, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| | - Janet Paterson
- Food Science and Technology, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| | - Martin Bucknall
- Mark Wainwright Analytical Centre, UNSW Australia, Sydney, Australia
| | - Jayashree Arcot
- Food Science and Technology, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| |
Collapse
|
30
|
Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 2017; 25:471-484. [DOI: 10.1007/s10787-017-0348-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022]
|
31
|
Wu X, Song M, Gao Z, Sun Y, Wang M, Li F, Zheng J, Xiao H. Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression. J Nutr Biochem 2017; 42:17-25. [DOI: 10.1016/j.jnutbio.2016.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
|
32
|
Wu X, Song M, Qiu P, Rakariyatham K, Li F, Gao Z, Cai X, Wang M, Xu F, Zheng J, Xiao H. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis. Carcinogenesis 2017; 38:455-464. [PMID: 28207072 PMCID: PMC6248647 DOI: 10.1093/carcin/bgx018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/12/2017] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Different cancer chemopreventive agents may act synergistically and their combination may produce enhanced protective effects against carcinogenesis than each individual agent alone. Herein, we investigated the chemopreventive effects of nobiletin (NBT, a citrus polymethoxyflavone) and atorvastatin (ATST, a lipid-lowering drug) in colon cancer cells/macrophages and an azoxymethane (AOM)-induced colon carcinogenesis rat model. The results demonstrated that co-treatments of NBT/ATST produced enhanced growth inhibitory and anti-inflammatory effects on the colon cancer cells and macrophages, respectively. Isobologram analysis confirmed that these interactions between NBT and ATST were synergistic. NBT/ATST co-treatment also synergistically induced extensive cell cycle arrest and apoptosis in colon cancer cells. Oral administration of NBT (0.1%, w/w in diet) or ATST (0.04%, w/w in diet) significantly decreased colonic tumor incidence and multiplicity in AOM-treated rats. Most importantly, co-treatment of NBT/ATST at their half doses (0.05% NBT + 0.02% ATST, w/w in diet) resulted in even stronger inhibitory effects on colonic tumor incidence and multiplicity than did NBT or ATST alone at higher doses. Statistical analysis confirmed that the enhanced chemopreventive activities against colon carcinogenesis in rats by the NBT/ATST combination were highly synergistic. Our results further demonstrated that NBT/ATST co-treatment profoundly modulated key cellular signaling regulators associated with inflammation, cell proliferation, cell cycle progression, apoptosis, angiogenesis and metastasis in the colon of AOM-treated rats. In conclusion, for the first time, our results demonstrated a strong synergy in inhibiting colon carcinogenesis produced by the co-treatment of NBT and ATST, which provided a scientific basis for using NBT in combination with ATST for colon cancer chemoprevention in humans.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Peiju Qiu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- School of Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China and
| | | | - Fang Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaokun Cai
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Minqi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Fei Xu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100091, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
33
|
Hashiguchi A, Hitachi K, Zhu W, Tian J, Tsuchida K, Komatsu S. Mung bean (Vigna radiata (L.)) coat extract modulates macrophage functions to enhance antigen presentation: A proteomic study. J Proteomics 2017; 161:26-37. [PMID: 28373035 DOI: 10.1016/j.jprot.2017.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022]
Abstract
The immunomodulatory effect of mung bean is mainly attributed to antioxidant properties of flavonoids; however, the precise machinery for biological effect on animal cells remains uncertain. To understand the physiological change produced by mung bean consumption, proteomic and metabolomic techniques were used. In vitro assay confirmed the importance of synergistic interaction among multiple flavonoids by IL-6 expression. Proteomic analysis detected that the abundance of 190 proteins was changed in lipopolysaccharide-stimulated RAW264.7 cells by treatment with coat extract. Pathway mapping revealed that a range of proteins were regulated including an interferon-responsive antiviral enzyme (2'-5'-oligoadenylate synthetase), antigen processing factors (immunoglobulin heavy chain-binding protein and protein disulfide-isomerase), and proteins related to proteasomal degradation. Major histocompatibility complex pathway was activated. These results suggest that mung bean consumption enhances immune response toward a Th2-promoting polarization. BIOLOGICAL SIGNIFICANCE This study highlighted the immunomodulation of RAW264.7 cells in response to treatment with mung bean seed coat extract, using gel-free proteomic technique. The mechanism of immunomodulation by mung bean has not been described until today except for a report which identified HMGB1 suppression as a pathway underlying the protective effect against sepsis. This study suggested that the mung bean is involved in the regulation of antigen processing and presentation, and thus shifts immune response from acute febrile illness to specific/systemic and long-lasting immunity to protect the host.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Department of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Keisuke Hitachi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
34
|
Yamaki K, Takahashi Y. Additive Beneficial Effect of Epigallocatechin Gallate and Quercetin on the Arteriosclerosis Index in Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kohji Yamaki
- Division of Food Function Research, Food Research Institute
| | - Yoko Takahashi
- Division of Food Function Research, Food Research Institute
| |
Collapse
|
35
|
Lin W, Wang W, Yang H, Wang D, Ling W. Influence of Intestinal Microbiota on the Catabolism of Flavonoids in Mice. J Food Sci 2016; 81:H3026-H3034. [DOI: 10.1111/1750-3841.13544] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/17/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Weiqun Lin
- Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ; Guangzhou PR China
| | - Wenting Wang
- Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ; Guangzhou PR China
| | - Hai Yang
- Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ; Guangzhou PR China
| | - Dongliang Wang
- Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ; Guangzhou PR China
- Guangdong Provincial Key Laboratory of Food; Nutrition and Health; Guangzhou PR China
| | - Wenhua Ling
- Dept. of Nutrition, School of Public Health; Sun Yat-sen Univ; Guangzhou PR China
- Guangdong Provincial Key Laboratory of Food; Nutrition and Health; Guangzhou PR China
| |
Collapse
|