1
|
Małkowska A, Makarowa K, Zawada K, Grzelak M, Zmysłowska A. Effect of curcumin on the embryotoxic effect of ethanol in a zebrafish model. Toxicol In Vitro 2024; 101:105951. [PMID: 39389325 DOI: 10.1016/j.tiv.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Curcumin, a natural polyphenol found in the turmeric plant, has been shown to have anti-inflammatory and antioxidant properties. It has been widely studied for its potential protective effect against various health conditions, including ethanol-induced malformation. Ethanol exposure during pregnancy can lead to various developmental abnormalities, known as fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Due to the high prevalence of FASD and FAS and no effective treatment, it is essential to develop preventive strategies. Recent studies have investigated the potential protective effect of curcumin against ethanol-induced malformation in animal models. This study aimed to examine whether curcumin can reduce the toxic effects of ethanol in zebrafish embryos. The present study showed that pure curcumin applied together with 1.5 % ethanol (v/v) did not lead to a protective effect on ethanol-induced malformations such as disturbances of body length and width or pericardia oedema in growing zebrafish embryos. Moreover, curcumin extract showed a pro-oxidant effect in the Fenton reaction in the presence of ethanol.
Collapse
Affiliation(s)
- Anna Małkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland.
| | - Katerina Makarowa
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Katarzyna Zawada
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Maksymilian Grzelak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Aleksandra Zmysłowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
3
|
Cantacorps L, Montagud-Romero S, Valverde O. Curcumin treatment attenuates alcohol-induced alterations in a mouse model of foetal alcohol spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109899. [PMID: 32109509 DOI: 10.1016/j.pnpbp.2020.109899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Alcohol exposure during development produces physical and mental abnormalities in the foetus that result in long-term molecular adjustments in the brain, which could underlie the neurobehavioural deficits observed in individuals suffering from foetal alcohol spectrum disorders. In this study, we assessed the effects of curcumin on cognitive impairments caused by prenatal and lactational alcohol exposure (PLAE). Furthermore, we examined whether curcumin could counteract the molecular alterations that may underlie these behavioural impairments. We focused on inflammatory and epigenetic mechanisms by analysing the expression of pro-inflammatory mediators, such as IL-6, TNF-α, and NF-κB, in the hippocampus and prefrontal cortex, as well as microglia and astrocyte activation in the dentate gyrus. We also assessed the activity of histone acetyltransferase in these brain areas. To model binge alcohol drinking, we exposed pregnant C57BL/6 mice to a 20% v/v alcohol solution during gestation and lactation, with limited access periods. We treated male offspring with curcumin during postnatal days (PD28-35) and then evaluated their behaviour in adulthood (PD60). Our results showed that curcumin treatment during the peri-adolescence period improved the anxiety and memory deficits observed in PLAE mice. At the molecular level, we found enhanced histone acetyltransferase activity in mice subjected to PLAE that curcumin treatment could not reverse to baseline levels. These mice also showed increased expression of pro-inflammatory mediators, which could be rescued by curcumin treatment. They also displayed astrogliosis and microglia activation. Our study provides further evidence to support the use of curcumin as a therapeutic agent for counteracting behavioural and molecular alterations induced by PLAE.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
4
|
Paul I, Tsang B, Gerlai R. Short Exposure to Moderate Concentration of Alcohol During Embryonic Development Does Not Alter Gross Morphology in Zebrafish. Zebrafish 2020; 17:253-260. [PMID: 32493176 DOI: 10.1089/zeb.2020.1872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have demonstrated translational potential of the zebrafish in modeling fetal alcohol spectrum disorders (FASDs), including the less severe forms of this disease. Short exposure to even low doses of alcohol during embryonic development has been shown to disrupt behavior, alter neurochemistry, and expression of neuronal markers and glial cell phenotypes in zebrafish. However, no study to date has systematically analyzed the potential morphological effects of the short- and low-dose embryonic alcohol exposure regimen used before with zebrafish to model milder forms of human FASD. In this study, we use this previously used embryonic alcohol exposure regimen. We immerse intact zebrafish eggs of AB strain and of a genetically variable wild-type population for 2 h into 1% or 0% (vol/vol) ethanol bath at one of five developmental stages (8, 16, 24, 32, or 40 h postfertilization). At 8 days postfertilization, we quantify body length and width and eye diameter of the larvae. We report nonsignificant effects of embryonic alcohol exposure used at all developmental stages in both populations of zebrafish. Our results confirm that visual perception or motor function is unlikely to have contributed to previously reported behavioral abnormalities resulting from embryonic alcohol exposure in zebrafish.
Collapse
Affiliation(s)
- Ishti Paul
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Research Operations, Hospital for Sick Children, Peter Gilgan Center for Research & Learning, Toronto, Canada
| | - Robert Gerlai
- Department of Psychology and University of Toronto Mississauga, Mississauga, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Lutte AH, Nazario LR, Majolo JH, Pereira TCB, Altenhofen S, Dadda ADS, Bogo MR, Da Silva RS. Persistent increase in ecto‑5'‑nucleotidase activity from encephala of adult zebrafish exposed to ethanol during early development. Neurotoxicol Teratol 2018; 70:60-66. [PMID: 30366104 DOI: 10.1016/j.ntt.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure causes alterations to the brain and can lead to numerous cognitive and behavioral outcomes. Long-lasting effects of early ethanol exposure have been registered in glutamatergic and dopaminergic systems. The purinergic system has been registered as an additional target of ethanol exposure. The objective of this research was to evaluate if the ecto‑5'‑nucleotidase and adenosine deaminase activities and gene expression of adult zebrafish exposed to 1% ethanol during early development could be part of the long-lasting targets of ethanol. Zebrafish embryos were exposed to 1% ethanol in two distinct developmental phases: gastrula/segmentation (5-24 h post-fertilization) or pharyngula (24-48 h post-fertilization). At the end of three months, after checking for morphological outcomes, the evaluation of enzymatic activity and gene expression was performed. Exposure to ethanol did not promote gross morphological defects; however, a significant decrease in the body length was observed (17% in the gastrula and 22% in the pharyngula stage, p < 0.0001). Ethanol exposure during the gastrula/segmentation stage promoted an increase in ecto‑5'‑nucleotidase activity (39.5%) when compared to the control/saline group (p < 0.0001). The ecto‑5'‑nucleotidase gene expression and the deamination of adenosine exerted by ecto and cytosolic adenosine deaminase were not affected by exposure to ethanol in both developmental stages. HPLC experiments did not identify differences in adenosine concentration on the whole encephala of adult animals exposed to ethanol during the gastrula stage or on control animals (p > 0.05). Although the mechanism underlying these findings requires further investigation, these results indicate that ethanol exposure during restricted periods of brain development can have long-term consequences on ecto‑5'‑nucleotidase activity, which could have an impact on subtle sequels of ethanol early exposure.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adilio da Silva Dadda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|