1
|
Constantin OE, Stoica F, Rațu RN, Stănciuc N, Bahrim GE, Râpeanu G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants (Basel) 2024; 13:100. [PMID: 38247524 PMCID: PMC10812587 DOI: 10.3390/antiox13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Significant waste streams produced during winemaking include winery by-products such as pomace, skins, leaves, stems, lees, and seeds. These waste by-products were frequently disposed of in the past, causing resource waste and environmental issues. However, interest has risen in valorizing vineyard by-products to tap into their latent potential and turn them into high-value products. Wine industry by-products serve as a potential economic interest, given that they are typically significant natural bioactive sources that may exhibit significant biological properties related to human wellness and health. This review emphasizes the significance of winery by-product valorization as a sustainable management resource and waste management method. The novelty of this review lies in its comprehensive analysis of the potential of winery by-products as a source of bioactive compounds, extraction techniques, health benefits, and applications in various sectors. Chemical components in winery by-products include bioactive substances, antioxidants, dietary fibers, organic acids, and proteins, all of which have important industrial and therapeutic applications. The bioactives from winery by-products act as antioxidant, antidiabetic, and anticancer agents that have proven potential health-promoting effects. Wineries can switch from a linear waste management pattern to a more sustainable and practical method by adopting a circular bioeconomy strategy. Consequently, the recovery of bioactive compounds that function as antioxidants and health-promoting agents could promote various industries concomitant within the circular economy.
Collapse
Affiliation(s)
- Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Florina Stoica
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Roxana Nicoleta Rațu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| |
Collapse
|
2
|
Winemaking by-products as a source of phenolic compounds: Comparative study of dehydration processes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Baroi AM, Popitiu M, Fierascu I, Sărdărescu ID, Fierascu RC. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants (Basel) 2022; 11:antiox11020393. [PMID: 35204275 PMCID: PMC8869687 DOI: 10.3390/antiox11020393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Wine production is one of the most critical agro-industrial sectors worldwide, generating large amounts of waste with negative environmental impacts, but also with high economic value and several potential applications. From wine shoots to grape pomace or seeds, all of the wastes are rich sources of bioactive compounds with beneficial effects for human health, with these compounds being raw materials for other industries such as the pharmaceutical, cosmetic or food industries. Furthermore, these compounds present health benefits such as being antioxidants, supporting the immune system, anti-tumoral, or preventing cardiovascular and neural diseases. The present work aims to be a critical discussion of the extraction methods used for bioactive compounds from grapevine waste and their beneficial effects on human health.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mircea Popitiu
- Department of Vascular Surgery and Reconstructive Microsurgery, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (M.P.); (I.F.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Correspondence: (M.P.); (I.F.)
| | - Ionela-Daniela Sărdărescu
- National Research and Development Institute for Biotechnology in Horticulture, 117715 Stefanesti, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
4
|
Novel extraction methods and potential applications of polyphenols in fruit waste: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Annunziata G, Capó X, Quetglas-Llabrés MM, Monserrat-Mesquida M, Tejada S, Tur JA, Ciampaglia R, Guerra F, Maisto M, Tenore GC, Novellino E, Sureda A. Ex Vivo Study on the Antioxidant Activity of a Winemaking By-Product Polyphenolic Extract (Taurisolo ®) on Human Neutrophils. Antioxidants (Basel) 2021; 10:antiox10071009. [PMID: 34201732 PMCID: PMC8300751 DOI: 10.3390/antiox10071009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress (OxS) has been linked to several chronic diseases and is recognized to have both major causes and consequences. The use of antioxidant-based nutraceuticals has been licensed as an optimal tool for management of OxS-related diseases. Currently, great interest is focused on the valorization of agri-food by-products as a source of bioactive compounds, including polyphenols. In this sense, we evaluated the efficacy of a novel nutraceutical formulation based on polyphenolic extract from Aglianico cultivar grape pomace (registered as Taurisolo®). In particular, we tested both native and in vitro gastrointestinal digested forms. The two extracts have been used to treat ex vivo neutrophils from subjects with metabolic syndrome, reporting a marked antioxidant activity of Taurisolo®, as shown by its ability to significantly reduce both the levels of reactive oxygen species (ROS) and the activities of catalase and myeloperoxidase in the cell medium after stimulation of neutrophils with phorbol 12-myristate 13-acetate (PMA). Interestingly, we observed an increase in intracellular enzymatic activities in PMA-treated cells, suggesting that Taurisolo® polyphenols might be able to activate nuclear factors, up-regulating the expression of this target antioxidant gene. In addition, Taurisolo® reversed the increase in malondialdehyde induced by PMA; reduced the expression of pro-inflammatory genes such as cyclooxygenase 2 (COX-2), tumor necrosis factor alpha (TNFα) and myeloperoxidase (MPO); and induced the expression of the anti-inflammatory cytokine IL-10. Overall, these results suggest the efficacy of Taurisolo® in contrasting the OxS at blood level, providing evidence for its therapeutic potential in the management of OxS-related pathological conditions in humans.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Silvia Tejada
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Neurophysiology, Biology Department and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Ciampaglia
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Fabrizia Guerra
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Maria Maisto
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
- Correspondence: ; Tel.: +39-081-678-610
| | - Ettore Novellino
- NGN Healthcare—New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Italy;
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Muñoz-Bernal ÓA, Coria-Oliveros AJ, de la Rosa LA, Rodrigo-García J, Del Rocío Martínez-Ruiz N, Sayago-Ayerdi SG, Alvarez-Parrilla E. Cardioprotective effect of red wine and grape pomace. Food Res Int 2020; 140:110069. [PMID: 33648292 DOI: 10.1016/j.foodres.2020.110069] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023]
Abstract
Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.
Collapse
Affiliation(s)
- Óscar A Muñoz-Bernal
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Alma J Coria-Oliveros
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Joaquín Rodrigo-García
- Department of Health Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Nina Del Rocío Martínez-Ruiz
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Sonia G Sayago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175, Tepic, Nayarit, Mexico
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
7
|
Baiano A. Phenolic compounds and antioxidant activity of experimental and industrial table grape juices. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonietta Baiano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente University of Foggia Foggia Italy
| |
Collapse
|
8
|
Averilla JN, Oh J, Kim HJ, Kim JS, Kim JS. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci Biotechnol 2019; 28:1607-1615. [PMID: 31807333 DOI: 10.1007/s10068-019-00628-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Prevention emerges as a powerful approach in minimizing the risk of deleterious lifestyle diseases because therapies do not necessarily guarantee a permanent cure. Accordingly, consumers' growing preference for natural and health-promoting dietary options that are rich in antioxidants has become widespread. Grape (Vitis vinifera) is an antioxidant-rich fruit extensively grown for fresh or processed consumption. The long-term consumption of its polyphenolic antioxidants may promote multiple health benefits. However, grape pomace (GP), consisting of peel, seed, stem, and pulp, is discarded during grape processing, including juice extraction and winemaking, despite its substantial antioxidant content. Polyphenolic extraction techniques have been widely explored to date, but the consolidation of reported physiological impacts of GP-derived polyphenolic constituents is limited. Thus, this review highlights current studies of the potential applications of GP extract in disease prevention and treatment, emphasizing the major influence of polyphenolic compositions and origins of different grape varieties.
Collapse
Affiliation(s)
- Janice N Averilla
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jisun Oh
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hyo Jung Kim
- 2National Development Institute of Korean Medicine, Gyeongbuk Gyeongsan, 38540 Republic of Korea
| | - Jae Sik Kim
- Kimjaesik Health Foods, Gyeongbuk Yeongcheon, 38912 Republic of Korea
| | - Jong-Sang Kim
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
9
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
10
|
Mudenuti NVDR, de Camargo AC, Shahidi F, Madeira TB, Hirooka EY, Grossmann MVE. Soluble and insoluble-bound fractions of phenolics and alkaloids and their antioxidant activities in raw and traditional chocolate: A comparative study. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Potentials and Pitfalls on the Use of Passion Fruit By-Products in Drinkable Yogurt: Physicochemical, Technological, Microbiological, and Sensory Aspects. BEVERAGES 2018. [DOI: 10.3390/beverages4030047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|