1
|
Chaves MA, Dacanal GC, Pinho SC. High-shear wet agglomeration process for enriching cornstarch with curcumin and vitamin D 3 co-loaded lyophilized liposomes. Food Res Int 2023; 169:112809. [PMID: 37254385 DOI: 10.1016/j.foodres.2023.112809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Curcumin and vitamin D3 are bioactive molecules of great importance for the food industry. However, their low stability in several processing conditions hampers their proper incorporation into powdered food formulations. This study proposes the enrichment of a common raw material (cornstarch) with curcumin and vitamin D3 by using high-shear wet agglomeration. The bioactives were initially encapsulated into liposome dispersions and then subjected to lyophilization. The resulting dried vesicles were later incorporated into cornstarch by wet agglomeration using maltodextrin as the binder solution. The phospholipid content and the amount of added liposomes were evaluated to characterize the enriched cornstarch samples. The lyophilized vesicles showed a high retention rate of 99 % for curcumin and vitamin D3, while the enriched cornstarch samples retained above 96 % (curcumin) and 98 % (vitamin D3) after 30 days of controlled storage. All in all, the presence of dried liposomes improved the flowability and delayed retrogradation phenomenon in agglomerated cornstarch. Therefore, this study introduced a novel and reliable method of incorporating hydrophobic and thermosensitive molecules into powdered food formulations by using readily available materials and a straightforward high-shear wet agglomeration process.
Collapse
Affiliation(s)
- Matheus A Chaves
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP, Brazil
| | - Gustavo C Dacanal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP, Brazil
| | - Samantha C Pinho
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP, Brazil.
| |
Collapse
|
2
|
Ang SS, Thoo YY, Siow LF. Encapsulation of Hydrophobic Apigenin into Small Unilamellar Liposomes Coated with Chitosan Through Ethanol Injection and Spray Drying. FOOD BIOPROCESS TECH 2023:1-16. [PMID: 37363383 PMCID: PMC10261843 DOI: 10.1007/s11947-023-03140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Despite the multiple health benefits, natural flavonoid apigenin has poor aqueous solubility that restricts its delivery in foods. This study investigated the potential of spray-dried chitosan-coated liposomes prepared from scalable methods for the food industry as the delivery carriers for apigenin. Apigenin-loaded small unilamellar liposomes produced from ethanol injection had an encapsulation efficiency of 74.88 ± 5.31%. They were electrostatically stabilised via chitosan coating (0.25% w/v) and spray-dried. Spray-dried chitosan-coated apigenin liposomes (SCAL) exhibited the following powder characteristics: yield 66.62 ± 3.08%, moisture content 4.33 ± 0.56%, water activity 0.2242 ± 0.0548, particle size 10.97 ± 1.55 μm, nearly spherical morphology with wrinkles and dents under microscopic observation. Compared with the unencapsulated apigenin, SCAL demonstrated improved aqueous solubility (10.22 ± 0.18 mg/L), higher antioxidant capacity, and stability against simulated gastrointestinal digestion. The chitosan coating gave a slower in-vitro release of apigenin in SCAL (77.0 ± 6.2%) than that of uncoated apigenin liposomes (94.0 ± 5.3%) at 12 h. The apigenin release kinetics from SCAL could be represented by the Korsmeyer-Peppas model (R2 = 0.971). These findings suggest that SCAL could be a promising delivery system of apigenin for functional food applications.
Collapse
Affiliation(s)
- San-San Ang
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor Malaysia
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor Malaysia
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
3
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Rosenthal AJ, Thompson P. What is cohesiveness?-A linguistic exploration of the food texture testing literature. J Texture Stud 2021; 52:294-302. [PMID: 33464562 DOI: 10.1111/jtxs.12586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022]
Abstract
Cohesiveness is a widely used term in the food texture literature. Authors of this literature employ divergent methodologies, and can be divided into those who assess texture through sensory evaluation and those who use instrumental techniques. Within each of these disciplines, there are some specialized uses of the word, creating discipline specific terms such as "cohesiveness of mass." The fact that many researchers attempt to (re)define cohesiveness, does suggest that the term is not universally understood. This blurring arises partly from the abstract nature of what it describes and also from ill matching measurements being used to quantify it. A widely agreed definition is that cohesiveness is "the strength of the internal bonds making up the body of the product," yet a challenge continues to be how we can measure it. Using the Sketch Engine corpus analysis interface to examine a corpus of articles from the food texture literature in the periods 2002-2017, the contexts in which the word stem "cohes*" is used were explored. Collocation analysis suggests that in addition to considerable commonality in the way that "cohesiveness" combines with other terms, differences reflect the foci of the disciplines with the instrumental community predominantly dealing with physical measurement while the sensory community relate "cohesiveness" more to oral processing and texture perception.
Collapse
Affiliation(s)
- Andrew J Rosenthal
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Paul Thompson
- Centre for Corpus Research, Department of English Language and Linguistics, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Wet agglomeration by high shear of binary mixtures of curcumin-loaded lyophilized liposomes and cornstarch: Powder characterization and incorporation in cakes. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|