1
|
Haas EA, Saad MJA, Santos A, Vitulo N, Lemos WJF, Martins AMA, Picossi CRC, Favarato D, Gaspar RS, Magro DO, Libby P, Laurindo FRM, Da Luz PL. A red wine intervention does not modify plasma trimethylamine N-oxide but is associated with broad shifts in the plasma metabolome and gut microbiota composition. Am J Clin Nutr 2022; 116:1515-1529. [PMID: 36205549 PMCID: PMC9761755 DOI: 10.1093/ajcn/nqac286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/16/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Gut microbiota profiles are closely related to cardiovascular diseases through mechanisms that include the reported deleterious effects of metabolites, such as trimethylamine N-oxide (TMAO), which have been studied as diagnostic and therapeutic targets. Moderate red wine (RW) consumption is reportedly cardioprotective, possibly by affecting the gut microbiota. OBJECTIVES To investigate the effects of RW consumption on the gut microbiota, plasma TMAO, and the plasma metabolome in men with documented coronary artery disease (CAD) using a multiomics assessment in a crossover trial. METHODS We conducted a randomized, crossover, controlled trial involving 42 men (average age, 60 y) with documented CAD comparing 3-wk RW consumption (250 mL/d, 5 d/wk) with an equal period of alcohol abstention, both preceded by a 2-wk washout period. The gut microbiota was analyzed via 16S rRNA high-throughput sequencing. Plasma TMAO was evaluated by LC-MS/MS. The plasma metabolome of 20 randomly selected participants was evaluated by ultra-high-performance LC-MS/MS. The effect of RW consumption was assessed by individual comparisons using paired tests during the abstention and RW periods. RESULTS Plasma TMAO did not differ between RW intervention and alcohol abstention, and TMAO concentrations showed low intraindividual concordance over time, with an intraclass correlation coefficient of 0.049 during the control period. After RW consumption, there was significant remodeling of the gut microbiota, with a difference in β diversity and predominance of Parasutterella, Ruminococcaceae, several Bacteroides species, and Prevotella. Plasma metabolomic analysis revealed significant changes in metabolites after RW consumption, consistent with improved redox homeostasis. CONCLUSIONS Modulation of the gut microbiota may contribute to the putative cardiovascular benefits of moderate RW consumption. The low intraindividual concordance of TMAO presents challenges regarding its role as a cardiovascular risk biomarker at the individual level. This study was registered at clinical trials.gov as NCT03232099.
Collapse
Affiliation(s)
- Elisa A Haas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nicola Vitulo
- Department of Biotechnology, Verona University, Verona, Italy
| | - Wilson J F Lemos
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Aline M A Martins
- Department of Medical Science, University of Brasília (UnB), Brasília, Brazil
| | | | - Desidério Favarato
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato S Gaspar
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniéla O Magro
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco R M Laurindo
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Protasio L Da Luz
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Identification of α-Glucosidase Inhibitors from Leaf Extract of Pepper ( Capsicum spp.) through Metabolomic Analysis. Metabolites 2021; 11:metabo11100649. [PMID: 34677364 PMCID: PMC8538662 DOI: 10.3390/metabo11100649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and in vitro α-glucosidase inhibitory (AGI) activities of pepper leaves were used to identify bioactive compounds and select genotypes for the management of type 2 diabetes mellitus (T2DM). Targeted metabolite analysis using UPLC-DAD-QToF-MS was employed and identified compounds that belong to flavone and hydroxycinnamic acid derivatives from extracts of pepper leaves. A total of 21 metabolites were detected from 155 samples and identified based on MS fragmentations, retention time, UV absorbance, and previous reports. Apigenin-O-(malonyl) hexoside, luteolin-O-(malonyl) hexoside, and chrysoeriol-O-(malonyl) hexoside were identified for the first time from pepper leaves. Pepper genotypes showed a huge variation in their inhibitory activity against α-glucosidase enzyme(AGE) ranging from 17% to 79%. Genotype GP38 with inhibitory activity of 79% was found to be more potent than the positive control acarbose (70.8%.). Orthogonal partial least square (OPLS) analyses were conducted for the prediction of the AGI activities of pepper leaves based on their metabolite composition. Compounds that contributed the most to the bioactivity prediction model (VIP >1.5), showed a strong inhibitory potency. Caffeoyl-putrescine was found to show a stronger inhibitory potency (IC50 = 145 µM) compared to acarbose (IC50 = 197 µM). The chemometric procedure combined with high-throughput AGI screening was effective in selecting polyphenols of pepper leaf for T2DM management.
Collapse
|
3
|
Lima RDCL, Böcker U, McDougall GJ, Allwood JW, Afseth NK, Wubshet SG. Magnetic ligand fishing using immobilized DPP-IV for identification of antidiabetic ligands in lingonberry extract. PLoS One 2021; 16:e0247329. [PMID: 33617581 PMCID: PMC7899330 DOI: 10.1371/journal.pone.0247329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
In this work, a new magnetic ligand fishing probe for discovery of DPP-IV inhibitory ligands was developed and it was tested as a proof of concept on the fruit extract of Vaccinium vitis-idaea (lingonberry). The ligands were shown to have appreciable dipeptidyl peptidase IV (DPP-IV) inhibitory activity (IC50: 31.8 μg mL-1).) Inhibition of DPP-IV is a well-known therapeutic approach for management of type 2 diabetes (T2D). DPP-IV was successfully immobilized onto magnetic beads and was shown to retain its catalytic activity and selectivity over a model mixture. A total of four ligands were successfully fished out and identified as cyanidin-3-galactoside (2), cyanidin-3-arabinoside (3), proanthocynidin A (4), and 10-carboxyl-pyranopeonidin 3-O-(6″-O-p-coumaroyl)-glucoside (5) using HPLC/HRMS.
Collapse
Affiliation(s)
| | | | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, United Kingdom
| | - J. William Allwood
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, United Kingdom
| | | | | |
Collapse
|
4
|
Iriondo-DeHond M, Blázquez-Duff JM, del Castillo MD, Miguel E. Nutritional Quality, Sensory Analysis and Shelf Life Stability of Yogurts Containing Inulin-Type Fructans and Winery Byproducts for Sustainable Health. Foods 2020; 9:foods9091199. [PMID: 32878017 PMCID: PMC7554681 DOI: 10.3390/foods9091199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to evaluate the use of winery byproduct extracts (grape pomace, seed and skin) and a mixture of inulin-type fructans (inulin and FOS) as suitable ingredients for the development of yogurts with antioxidant and antidiabetic properties. Their effect on the physicochemical, textural, microbiological and sensory parameters of yogurts was evaluated during 21 days of refrigerated storage. The incorporation of winery byproduct extracts in yogurt resulted in a significant increase (p < 0.05) in total phenolic content (TPC) and antioxidant and antidiabetic properties, compared to the controls. The grape skin yogurt showed the highest (p < 0.05) TPC (0.09 ± 0.00 mg GAE/g yogurt) and antioxidant capacity (7.69 ± 1.15 mmol TE/g yogurt). Moreover, the grape skin yogurt presented the highest (p < 0.05) inhibition of the activity of the enzyme α-glucosidase (56.46 ± 2.31%). The addition of inulin-type fructans did not significantly (p > 0.05) modify the overall antioxidant capacity or inhibition of the enzyme α-glucosidase of control and winery byproduct extract yogurts. Yogurts containing winery byproduct extracts and dietary fiber achieved high overall acceptance scores (6.33–6.67) and showed stable physicochemical, textural and microbiological characteristics during storage, assuring an optimal 21-day shelf life. According to their antioxidant and antidiabetic properties, we propose the yogurt containing grape skin extract, together with inulin and FOS, as a novel food product for the promotion of sustainable health.
Collapse
Affiliation(s)
- Maite Iriondo-DeHond
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38,200, 28800 Alcalá de Henares, Spain; (M.I.-D.); (J.M.B.-D.); (E.M.)
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - José Manuel Blázquez-Duff
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38,200, 28800 Alcalá de Henares, Spain; (M.I.-D.); (J.M.B.-D.); (E.M.)
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-0017900 (ext. 953); Fax: +34-91-0017905
| | - Eugenio Miguel
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38,200, 28800 Alcalá de Henares, Spain; (M.I.-D.); (J.M.B.-D.); (E.M.)
| |
Collapse
|
5
|
Guo C, Bi J, Li X, Lyu J, Wu X, Xu Y. Polyphenol metabolic diversity of Chinese peach and nectarine at thinned and ripe stages by UPLC-ESI-Q-TOF-MS combined with multivariate statistical analysis. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants (Basel) 2020; 9:antiox9060502. [PMID: 32521718 PMCID: PMC7346141 DOI: 10.3390/antiox9060502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Oral health is considered an important factor of general health and it contributes to the quality of life. Despite the raising awareness of preventive measures, the prevalence of oral health conditions continues to increase. In this context, a growing interest in investigating natural resources like Vitis vinifera (V. vinifera) phenolic compounds (PhCs) as oral health promoters has emerged. This paper aims to review the evidence about the bioactivities of V. vinifera by-products in oral health. Up to date, a high number of studies have thoroughly reported the antimicrobial and antiplaque activity of V. vinifera extracts against S. mutans or in multi-species biofilms. Moreover, the bioactive compounds from V. vinifera by-products have been shown to modulate the periodontal inflammatory response and the underlying oxidative stress imbalance induced by the pathogenic bacteria. Considering these beneficial effects, the utility of V. vinifera by-products in the maintaining of oral health and the necessary steps towards the development of oral care products were emphasized. In conclusion, the high potential of V. vinifera by-products could be valorized in the development of oral hygiene products with multi-target actions in the prevention and progression of several oral conditions.
Collapse
|