1
|
Hao F, Deng X, Yu X, Wang W, Yan W, Zhao X, Wang X, Bai C, Wang Z, Han L. Taraxacum: A Review of Ethnopharmacology, Phytochemistry and Pharmacological Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:183-215. [PMID: 38351703 DOI: 10.1142/s0192415x24500083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Taraxacum refers to the genus Taraxacum, which has a long history of use as a medicinal plant and is widely distributed around the world. There are over 2500 species in the genus Taraxacum recorded as medicinal plants in China, Central Asia, Europe, and the Americas. It has traditionally been used for detoxification, diuresis, liver protection, the treatment of various inflammations, antimicrobial properties, and so on. We used the most typically reported Taraxacum officinale as an example and assembled its chemical makeup, including sesquiterpene, triterpene, steroids, flavone, sugar and its derivatives, phenolic acids, fatty acids, and other compounds, which are also the material basis for its pharmacological effects. Pharmacological investigations have revealed that Taraxacum crude extracts and chemical compounds contain antimicrobial infection, anti-inflammatory, antitumor, anti-oxidative, liver protective, and blood sugar and blood lipid management properties. These findings adequately confirm the previously described traditional uses and aid in explaining its therapeutic applications.
Collapse
Affiliation(s)
- Fusheng Hao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Xin Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wen Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wei Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xi Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xiaofei Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Changcai Bai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Lu Han
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| |
Collapse
|
2
|
Jin M, Zhang W, Zhang X, Huang Q, Chen H, Ye M. Characterization, chemical modification and bioactivities of a polysaccharide from Stropharia rugosoannulata. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
3
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Conte de Almeida L, Salvador MR, Pinheiro-Sant’Ana HM, Della Lucia CM, Brasil Landulfo Teixeira RD, de Morais Cardoso L. Proximate composition and characterization of the vitamins and minerals of dandelion (Taraxacum officinale) from the Middle Doce River region – Minas Gerais, Brazil. Heliyon 2022; 8:e11949. [DOI: 10.1016/j.heliyon.2022.e11949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
|
5
|
A greener and sustainable route for medicinal plant analysis: Recycle utilization of hydrophobic deep eutectic solvent. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
A New Polysaccharide Carrier Isolated from Camelina Cake: Structural Characterization, Rheological Behavior, and Its Influence on Purple Corn Cob Extract's Bioaccessibility. Foods 2022; 11:foods11121736. [PMID: 35741934 PMCID: PMC9223137 DOI: 10.3390/foods11121736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharide fraction obtained from camelina cake (CCP), selected as a carrier to encapsulate purple corn cob extract (MCE), was investigated. A wide population of carbohydrate polymers (with a polydispersivity index of 3.26 ± 0.07 and an average molecular weight of about 139.749 × 103 ± 4.392 × 103 g/mol) with a gel-like behavior and a thixotropic feature characterized the fraction. MCE-CCP combinations (50–50 and 25–75, w/w), selected based on CCP encapsulation efficiency, were tested for their stability and MCE polyphenols’ bioaccessibility during digestion (monitored using an in vitro static procedure). During the oral and gastric phases of the digestion process, CCP gradually swelled and totally released MCE polyphenols. MCE-CCP50 had the fastest release. Moreover, anthocyanins were still detectable during the duodenal phase, in both MCE-CCP ingredients. Furthermore, CCP (5 mg/mL) exerted in vitro potential hypocholesterolemic activity via bile salts binding during digestion.
Collapse
|
7
|
Yue Q, Wang Z, Tang X, Zhao C, Li K, Su L, Zhang S, Sun X, Liu X, Zhao L. Hypolipidemic Effects of Fermented Seaweed Extracts by Saccharomyces cerevisiae and Lactiplantibacillus plantarum. Front Microbiol 2021; 12:772585. [PMID: 34867907 PMCID: PMC8633411 DOI: 10.3389/fmicb.2021.772585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 11/15/2022] Open
Abstract
The fermentation of food materials with suitable probiotic strains is an effective way to improve biological activities. In this study, seaweed extracts were fermented by Saccharomyces cerevisiae and Lactiplantibacillus plantarum, and the hypolipidemic effects of the fermentation products were investigated. In vitro experiments suggested that fermented seaweed extracts have a high capacity for bile acid-binding. Additionally, a significant inhibitory effect against pancreatic lipase was observed. Furthermore, effects in hyperlipidemic mice were determined. Fermented seaweed extracts can alleviate lipid metabolism disorder. The administration of fermented seaweed extracts to mice showed decreased total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels and increased high-density lipoprotein cholesterol (HDL-C) levels. Combined, these results suggest that fermented seaweed extracts perform a potent hypolipidemic action, thus providing an effective method for the preparation of functional foods to combat cardiovascular diseases.
Collapse
Affiliation(s)
- Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhongjian Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xueyang Tang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
8
|
Acharya P, Jayaprakasha GK, Semper J, Patil BS. 1H Nuclear Magnetic Resonance and Liquid Chromatography Coupled with Mass Spectrometry-Based Metabolomics Reveal Enhancement of Growth-Promoting Metabolites in Onion Seedlings Treated with Green-Synthesized Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13206-13220. [PMID: 32233481 DOI: 10.1021/acs.jafc.0c00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seed priming is a promising approach to improve germination, emergence, and seedling growth by triggering pre-germinative metabolism and enhancing seedling vigor. Recently, nanopriming gained importance in seed improvement as a result of the small size and unique physicochemical characteristics of nanomaterials. In the present study, silver and gold nanoparticles were synthesized using onion extracts as the reducing agent. Similarly, the agro-food industrial byproducts citrus seed oil and curcumin-removed turmeric oleoresin were used for the preparation of nanoemulsions. For seed priming, these green-synthesized nanomaterials were incubated with seeds of two onion (Allium cepa L.) cultivars (Legend and 50147) for 72 h, and then the plants were grown in a greenhouse for 3 weeks. Seed priming with these nanomaterials increased seed germination and seedling emergence. One-dimensional 1H nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry metabolomics studies showed that different nanopriming treatments distinctly altered the metabolome of onion seedlings. Seed priming treatments significantly inhibited plant hormones and growth regulators, such as abscisic acid and cis-(+)-12-oxo-phytodienoic acid, and enhanced germination stimulators, such as γ-aminobutyric acid and zeatin, in onion seeds and seedlings. Therefore, these priming treatments have positive impact on improving seed performance and plant growth.
Collapse
Affiliation(s)
- Pratibha Acharya
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - James Semper
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| |
Collapse
|
9
|
Lee JHJ, Jayaprakasha GK, Avila CA, Crosby KM, Patil BS. Effects of genotype and production system on quality of tomato fruits and in vitro bile acids binding capacity. J Food Sci 2020; 85:3806-3814. [PMID: 33073376 DOI: 10.1111/1750-3841.15495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
Tomato is an important source of health-promoting constituents, and researchers have focused on enhancing the content. In the present study, the influence of net-house (NH) and open-field (OF) growing conditions on physicochemical traits of tomatoes from eight different cultivars were evaluated. The tomato fruit qualities, such as color, total soluble solids (TSS), total acidity (TA), and pH were measured. Furthermore, ultra-performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) was used for identification and quantification of health-promoting compounds such as ascorbic acid, ß-carotene, lycopene, and its isomers. In addition, in vitro bile acid binding capacity of all tomato samples was analyzed along with soluble and insoluble dietary fiber analysis as biofunctional properties. The results suggest that production systems influenced tomato fruit quality and biofunctional characteristics in a variety-specific manner. Notably, TA and all-trans-ß-carotene values were considerably influenced by production systems, and their levels were higher in the NH- and OF-grown tomatoes, respectively. Our findings underline the importance of the rational choice of genotype and production system to obtain high-quality tomatoes with enhanced desired traits for breeders and consumers. PRACTICAL APPLICATION: Tomato is one of the nutritional high-valued horticultural crops. The present study aimed to assess the impact of production systems, such as net-house and open-field conditions, on physicochemical traits and biofunctional properties, in vitro bile acid binding capacity of eight tomato varieties. This study supplies a good reference for the rational selection of genotype and production system to obtain high-quality tomatoes with improved desired traits for breeders and consumers.
Collapse
Affiliation(s)
- Jisun H J Lee
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Carlos A Avila
- Department of Horticultural Sciences, Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Kevin M Crosby
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion ( Allium cepa L.) Cultivars. PLANTS 2020; 9:plants9091077. [PMID: 32825622 PMCID: PMC7569911 DOI: 10.3390/plants9091077] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
Onion is among the most widely cultivated and consumed economic crops. Onions are an excellent dietary source of polyphenols and nutrients. However, onions phytonutrient compositions vary with cultivars and growing locations. Therefore, the present study involved the evaluation of polyphenol, nutritional composition (proteins, nitrogen, and minerals), sugars, pyruvate, antioxidant, and α-amylase inhibition activities of red onion cultivars, sweet Italian, and honeysuckle grown in California and Texas, respectively. The total flavonoid for honeysuckle and sweet Italian was 449 and 345 μg/g FW, respectively. The total anthocyanin for honeysuckle onion was 103 μg/g FW, while for sweet Italian onion was 86 μg/g FW. Cyanidin-3-(6”-malonoylglucoside) and cyanidin-3-(6”-malonoyl-laminaribioside) were the major components in both the cultivars. The pungency of red onions in honeysuckle ranged between 4.9 and 7.9 μmoL/mL, whereas in sweet Italian onion ranged from 8.3 to 10 μmoL/mL. The principal component analysis was applied to determine the most important variables that separate the cultivars of red onion. Overall results indicated that total flavonoids, total phenolic content, total anthocyanins, protein, and calories for honeysuckle onions were higher than the sweet Italian onions. These results could provide information about high quality and adding value to functional food due to the phytochemicals and nutritional composition of red onions.
Collapse
|
11
|
Multivariate Analysis of Amino Acids and Health Beneficial Properties of Cantaloupe Varieties Grown in Six Locations in the United States. PLANTS 2020; 9:plants9091058. [PMID: 32824999 PMCID: PMC7570236 DOI: 10.3390/plants9091058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023]
Abstract
Cantaloupe is a good dietary source of amino acids, including γ-aminobutyric acid (GABA), glutamine, and citrulline. However, the levels of these amino acids vary among different cantaloupe varieties grown in different locations. Understanding the variation in amino acid contents provides fundamentally important information for quality control and improving melon varieties. To examine this variation, we measured the amino acid contents in cantaloupes grown in six locations in the United States (Texas, Georgia, North Carolina, California, Indiana, and Arizona). Principal component analyses were applied to analyze the effect of growing location on the amino acid profiles in different varieties. The GABA content ranged from 1006.14 ± 64.77 to 3187.12 ± 64.96 µg/g and citrulline ranged from 92.65 ± 9.52 to 464.75 ± 34.97 µg/g depending on the variety and location. Total phenolic contents, α-amylase inhibition, and antioxidant activities were also measured. Tuscan type Da Vinci had significantly higher phenolic contents in Arizona (381.99 ± 16.21 µg/g) but had the lowest level when grown in California (224.56 ± 14.62 µg/g). Our analyses showed significant differences in amino acid levels, phenolics contents, and antioxidant activity in the cantaloupe varieties based on the growing location. These findings underline the importance of considering growing location in the selection and improvement of cantaloupe varieties.
Collapse
|
12
|
Duan L, Zhang C, Zhao Y, Chang Y, Guo L. Comparison of Bioactive Phenolic Compounds and Antioxidant Activities of Different Parts of Taraxacum mongolicum. Molecules 2020; 25:molecules25143260. [PMID: 32708908 PMCID: PMC7397316 DOI: 10.3390/molecules25143260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Herbs derived from Taraxacum genus have been used as traditional medicines and food supplements in China for hundreds of years. Taraxacum mongolicum is a famous traditional Chinese medicine derived from Taraxacum genus for the treatment of inflammatory disorders and viral infectious diseases. In the present study, the bioactive phenolic chemical profiles and antioxidant activities of flowers, leaves, and roots of Taraxacum mongolicum were investigated. Firstly, a high performance liquid chromatography method combined with segmental monitoring strategy was employed to simultaneously determine six bioactive phenolic compounds in Taraxacum mongolicum samples. Moreover, multivariate statistical analysis, including hierarchical clustering analysis, principal component analysis, and partial least squares discriminant analysis were performed to compare and discriminate different parts of Taraxacum mongolicum based on the quantitative data. The results showed that three phenolic compounds, caftaric acid, caffeic acid, and luteolin, could be regarded as chemical markers for the differences of flowers, leaves, and roots of Taraxacum mongolicum. In parallel, total phenolic contents, total flavonoid contents and antioxidant activities of different parts of Taraxacum mongolicum were also evaluated and compared. It is clear that Taraxacum mongolicum had antioxidant properties, and the antioxidant capacities of different parts of Taraxacum mongolicum in three antioxidant assays showed a similar tendency: Flowers ≈ leaves > roots, which revealed a positive relationship with their total phenolic and flavonoid contents. Furthermore, to find the potential antioxidant components of Taraxacum mongolicum, the latent relationships of the six bioactive phenolic compounds and antioxidant activities of Taraxacum mongolicum were investigated by Pearson correlation analysis. The results indicated caftaric acid and caffeic acid could be the potential antioxidant ingredients of Taraxacum mongolicum. The present work may facilitate better understanding of differences of bioactive phenolic constituents and antioxidant activities of different parts of Taraxacum mongolicum and provide useful information for utilization of this herbal medicine.
Collapse
Affiliation(s)
- Li Duan
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (L.D.); (C.Z.); (Y.Z.)
| | - Chenmeng Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (L.D.); (C.Z.); (Y.Z.)
| | - Yang Zhao
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (L.D.); (C.Z.); (Y.Z.)
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China;
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Correspondence: ; Tel.: +86-0311-8992-6017
| |
Collapse
|
13
|
BAO YH, SUN KF, GUO Y. Effect of molecular weight on hypolipidemic and hypoglycemic activities of fermented Auriculaia auricula supernatant. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - Yang GUO
- Northeast Forestry University, China
| |
Collapse
|
14
|
Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep 2020; 10:5037. [PMID: 32193449 PMCID: PMC7081193 DOI: 10.1038/s41598-020-61696-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Seed priming uses treatments to improve seed germination and thus potentially increase growth and yield. Low-cost, environmentally friendly, effective seed treatment remain to be optimized and tested for high-value specialty crop like watermelon (Citrullus lanatus) in multi-locations. This remains a particularly acute problem for triploids, which produce desirable seedless watermelons, but show low germination rates. In the present study, turmeric oil nanoemulsions (TNE) and silver nanoparticles (AgNPs) synthesized from agro-industrial byproducts were used as nanopriming agents for diploid (Riverside) and triploid (Maxima) watermelon seeds. Internalization of nanomaterials was confirmed by neutron activation analysis, transmission electron microscopy, and gas chromatography-mass spectrometry. The seedling emergence rate at 14 days after sowing was significantly higher in AgNP-treated triploid seeds compared to other treatments. Soluble sugar (glucose and fructose) contents were enhanced during germination in the AgNP-treated seeds at 96 h. Seedlings grown in the greenhouse were transplanted at four locations in Texas: Edinburg, Pecos, Grapeland, and Snook in 2017. At Snook, higher yield 31.6% and 35.6% compared to control were observed in AgNP-treated Riverside and Maxima watermelons, respectively. To validate the first-year results, treated and untreated seeds of both cultivars were sown in Weslaco, Texas in 2018. While seed emegence and stand establishments were enhanced by seed priming, total phenolics radical-scavenging activities, and macro- and microelements in the watermelon fruits were not significantly different from the control. The results of the present study demonstracted that seed priming with AgNPs can enhance seed germination, growth, and yield while maintaining fruit quality through an eco-friendly and sustainable nanotechnological approach.
Collapse
|
15
|
Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9124-9138. [PMID: 30969768 DOI: 10.1021/acs.jafc.8b07306] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bile acids are cholesterol-derived steroid molecules that serve various metabolic functions, particularly in the digestion of lipids. Gut microbes produce unconjugated and secondary bile acids through deconjugation and dehydroxylation reactions, respectively. Alterations in the gut microbiota have profound effects on bile acid metabolism, which can result in the development of gastrointestinal and metabolic diseases. Emerging research shows that diets rich in dietary fiber have substantial effects on the microbiota and human health. Plant-based foods are primary sources of bioactive compounds and dietary fiber, which are metabolized by microbes to produce different metabolites. However, the bioaccessibility of these compounds are not well-defined. In this review, we discuss the interaction of bile acids with dietary fiber, the gut microbiota, and their role in the bioaccessibility of bioactive compounds. To understand the possible mechanism by which bile acids bind fiber, molecular docking was performed between different dietary fiber and bile salts.
Collapse
Affiliation(s)
- Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Rita Metrani
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Siddanagouda R Shivanagoudra
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| |
Collapse
|
16
|
Mediterranean Wild Edible Plants: Weeds or "New Functional Crops"? Molecules 2018; 23:molecules23092299. [PMID: 30205584 PMCID: PMC6225202 DOI: 10.3390/molecules23092299] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023] Open
Abstract
The Mediterranean basin is a biodiversity hotspot of wild edible species, and their therapeutic and culinary uses have long been documented. Owing to the growing demand for wild edible species, there are increasing concerns about the safety, standardization, quality, and availability of products derived from these species collected in the wild. An efficient cultivation method for the species having promising nutraceutical values is highly desirable. In this backdrop, a hydroponic system could be considered as a reproducible and efficient agronomic practice to maximize yield, and also to selectively stimulate the biosynthesis of targeted metabolites. The aim of this report is to review the phytochemical and toxic compounds of some potentially interesting Mediterranean wild edible species. Herein, after a deep analysis of the literature, information on the main bioactive compounds, and some possibly toxic molecules, from fifteen wild edible species have been compiled. The traditional recipes prepared with these species are also listed. In addition, preliminary data about the performance of some selected species are also reported. In particular, germination tests performed on six selected species revealed that there are differences among the species, but not with crop species. “Domestication” of wild species seems a promising approach for exploiting these “new functional foods”.
Collapse
|