1
|
Zheng X, Wang Q, Li L, Liu C, Ma X. Recent advances in germinated cereal and pseudo-cereal starch: Properties and challenges in its modulation on quality of starchy foods. Food Chem 2024; 458:140221. [PMID: 38943963 DOI: 10.1016/j.foodchem.2024.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Germination is an environmentally friendly process with no use of additives, during which only water spraying is done to activate endogenous enzymes for modification. Furthermore, it could induce bioactive phenolics accumulation. Controlling endogenous enzymes' activity is essential to alleviate granular disruption, crystallinity loss, double helices' dissociation, and molecular degradation of cereal and pseudo-cereal starch. Post-treatments (e.g. thermal and high-pressure technology) make it possible for damaged starch to reassemble towards well-packed structure. These contribute to alleviated loss of solubility and pasting viscosity, improved swelling power, or enhanced resistant starch formation. Cereal or pseudo-cereal flour (except that with robust structure) modified by early germination is more applicable to produce products with desirable texture and taste. Besides shortening duration, germination under abiotic stress is promising to mitigate starch damage for better utilization in staple foods.
Collapse
Affiliation(s)
- Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Qingfa Wang
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Xiaoyan Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Yuekainan Street, Baoding, Hebei 071001, China
| |
Collapse
|
2
|
Kaur P, Kaur K, Kaur P, Singh TP, Kennedy JF. Technological quality improvement of gluten-free dough and chapatti-making by incorporation of modified oat 1,4-β-D-glucan. Int J Biol Macromol 2024; 281:136417. [PMID: 39389502 DOI: 10.1016/j.ijbiomac.2024.136417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The present study aimed to explore the contribution of untreated (UtβG) and modified oat 1,4-β-D-glucan (OzβG) to the quality of gluten-free chapattis at varying concentrations (0, 1.5, 3, and 4.5 % labelled as M0, M1, M2 and M3 for maize chapattis and F0, F1, F2 and F3 for finger millet chapattis, respectively). The functionality of flours was significantly enhanced by the addition of UtβG and OzβG. However, OzβG incorporated flour exhibited a more pronounced influence on both functional and farinographic parameters when compared to flours with UtβG. Further, the hardness of the chapattis decreased with incorporation of OzβG and it was lowest for M2 and F2 i.e. 6.38 N and 5.27 N, respectively due to the formation of more carboxyl and hydroxyl groups, which had more affinity towards water molecules. The sensory analysis indicated that OzβG incorporated M2 and F2chapattis exhibited the highest overall acceptability. Hence, this study provides valuable insights into the utilization of UtβG and OzβG for the formulation of gluten-free chapattis with better dough characteristics and chapatti-making properties.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India
| | - Kamaljit Kaur
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India.
| | - Preetinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | | | - John F Kennedy
- Chembiotech Ltd, Kyrewood House, Tenbury Wells WR15 8FF, UK
| |
Collapse
|
3
|
Nandan A, Koirala P, Dutt Tripathi A, Vikranta U, Shah K, Gupta AJ, Agarwal A, Nirmal N. Nutritional and functional perspectives of pseudocereals. Food Chem 2024; 448:139072. [PMID: 38547702 DOI: 10.1016/j.foodchem.2024.139072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/24/2024]
Abstract
An increase in the consumption of carbohydrate-rich cereals over past few decades has led to increased metabolic disorders in population. This nutritional imbalance in diets may be corrected by substituting cereal grains with pseudocereals that are richer in high-quality proteins, dietary fibers, unsaturated fats, and bioactive compounds (e.g., polyphenols and phytosterols) as compared to cereal grains. These nutrients have been associated with numerous health benefits, such as hypolipidemic, anti-inflammatory, anti-hypertensive, anti-cancer, and hepatoprotective properties, and benefits against obesity and diabetes. In this review, the nutritional composition and health benefits of quinoa, amaranth, and buckwheat are compared against wheat, maize, and rice. Subsequently, the processing treatments applied to quinoa, amaranth, and buckwheat and their applications into food products are discussed. This is relevant since there is substantial market potential for both pseudocereals and functional foods formulated with pseudocereals. Despite clear benefits, the current progress is slowed down by the fact that the cultivation of these pseudocereals is limited to its native regions. Therefore, to meet the global needs, it is imperative to support worldwide cultivation of these nutrient-rich pseudocereals.
Collapse
Affiliation(s)
- Alisha Nandan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Urvashi Vikranta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Aparna Agarwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
Vicente-Sánchez ML, Castro-Alija MJ, Jiménez JM, María LV, María Jose C, Pastor R, Albertos I. Influence of salinity, germination, malting and fermentation on quinoa nutritional and bioactive profile. Crit Rev Food Sci Nutr 2024; 64:7632-7647. [PMID: 36960631 DOI: 10.1080/10408398.2023.2188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The depletion of freshwater resources, as well as climate change and population growth, are threatening the livelihoods of thousands of people around the world. The introduction of underutilized crops such as quinoa may be important in countries with limited productivity and/or limited access to water due to its resistance to different abiotic stresses and its high nutritional value. The aim of this review is to assess whether techniques such as germination, malting and fermentation would improve the nutritional and bioactive profile of quinoa. The use of nitrogen oxide-donating, oxygen-reactive and calcium-source substances increases germination. The ecotype used, temperature, humidity and germination time are determining factors in germination. The presence of lactic acid bacteria of the rust-type phenotype can improve the volume and texture during baking of the doughs, increase the fiber content and act as a prebiotic. These techniques produce a significant increase in the content of proteins, amino acids and bioactive compounds, as well as a decrease in anti-nutritional compounds. Further studies are needed to determine which conditions are the most suitable to achieve the best nutritional, functional, technological, and organoleptic quinoa properties.
Collapse
Affiliation(s)
| | - María José Castro-Alija
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - José María Jiménez
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - López-Valdecillo María
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - Cao María Jose
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - Rosario Pastor
- Faculty of Health Sciences, Universidad Católica de Ávila (UCAV), Ávila, Spain
| | - Irene Albertos
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| |
Collapse
|
6
|
Lupu VV, Sasaran MO, Jechel E, Starcea IM, Ioniuc I, Mocanu A, Rosu ST, Munteanu V, Nedelcu AH, Danielescu C, Salaru DL, Knieling A, Lupu A. Celiac disease - a pluripathological model in pediatric practice. Front Immunol 2024; 15:1390755. [PMID: 38715620 PMCID: PMC11074362 DOI: 10.3389/fimmu.2024.1390755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024] Open
Abstract
Being defined as an autoimmune, chronic pathology, frequently encountered in any age group, but especially in pediatrics, celiac disease (also called gluten enteropathy), is gaining more and more ground in terms of diagnosis, but also interest in research. The data from the literature of the last decades attest the chameleonic way of its presentation, there may be both classic onset symptoms and atypical symptoms. Given the impact played by celiac disease, especially in the optimal growth and development of children, the current narrative review aims to highlight the atypical presentation methods, intended to guide the clinician towards the inclusion of the pathology in the differential diagnosis scheme. To these we add the summary presentation of the general data and therapeutic lines regarding the underlying condition and the existing comorbidities. In order to place the related information up to date, we performed a literature review of the recent articles published in international databases. We bring forward the current theories and approaches regarding both classic celiac disease and its atypical manifestations. Among these we note mainly constitutional, skin or mucous, bone, neuro-psychic, renal, reproductive injuries, but also disorders of biological constants and association with multiple autoimmunities. Knowing and correlating them with celiac disease is the key to optimal management of patients, thus reducing the subsequent burden of the disease.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Elena Jechel
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Solange Tamara Rosu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valentin Munteanu
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
7
|
Park J, Kim HS. Rice-Based Gluten-Free Foods and Technologies: A Review. Foods 2023; 12:4110. [PMID: 38002168 PMCID: PMC10670158 DOI: 10.3390/foods12224110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Rice, one of the most widely consumed staples worldwide, serves as a versatile gluten-free substitute. However, review articles on technological developments in grain-free production focusing on rice are scarce. This review assesses various research results concerning the quality attributes of rice-based gluten-free foods, including bread, pasta, and beer. To optimize the key attributes in processed products, such as dough leavening in bread and the physical and cooking properties of noodles and pasta, research has focused on blending different gluten-free grains and incorporating additives that mimic the gluten function. Additionally, various processing technologies, such as starch preprocessing and extrusion puffing processes, have been employed to boost the quality of rice-based gluten-free products. Today, a variety of products, including bread, noodles, and beer, use rice as a partial replacement for barley or wheat. With rapid advancements in technology, a noticeable portion of consumers now shows a preference for products containing rice as a substitute. This trend indicates that rice-based gluten-free foods can be enhanced by leveraging the latest developments in gluten-free product technologies, particularly in countries where rice is a staple or is predominantly cultivated.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Gyeonggi, Republic of Korea
| | | |
Collapse
|
8
|
Is the R-index method for eliciting preference measures from the 9-point hedonic scale fit for purpose? Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2022.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Impact of germination on nutraceutical, functional and gluten free muffin making properties of Tartary buckwheat (Fagopyrum tataricum). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Quinoa Flour, the Germinated Grain Flour, and Sourdough as Alternative Sources for Gluten-Free Bread Formulation: Impact on Chemical, Textural and Sensorial Characteristics. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for gluten-free breads has increased in the last years, but important quality and nutritional challenges remain unsolved. This research evaluated the addition of quinoa in whole quinoa grain flour, germinated quinoa flour, and quinoa sourdough, as a functional ingredient in the formulation of a rice flour-based bread. Twenty percent (w/w) of the rice flour was replaced with quinoa flour alternatives in bread formulations. The chemical composition, shelf-life, and sensory attributes of the rice-quinoa breads were analyzed. The addition of quinoa in sourdough resulted in breads with a significantly improved protein content at 9.82%, relative to 2.70% in the control breads. The amino acid content in quinoa sourdough breads also was also 5.2, 4.4, 2.6, 3.0, and 2.1 times higher in arginine, glutamic acid, leucine, lysine, and phenylalanine, respectively, relative to control breads with rice flour only. The addition of quinoa sourdough in rice breads also improved the texture, color, and shelf-life (up to 6 days), and thus they became moderately accepted among consumers. Although the germinated quinoa flour addition also resulted in a higher protein (9.77%) and amino acid content, they had a reduced shelf-life (4 days). Similarly, the addition of quinoa flour resulted in a higher protein content (9.61%), but the breads had poor texture attributes and were the least preferred by the consumers.
Collapse
|
11
|
Mufari JR, Rodríguez-Ruiz AC, Bergesse AE, Miranda-Villa PP, Nepote V, Velez AR. Bioactive compounds extraction from malted quinoa using water-ethanol mixtures under subcritical conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
|
13
|
Cannas M, Pulina S, Conte P, Del Caro A, Urgeghe PP, Piga A, Fadda C. Effect of Substitution of Rice Flour with Quinoa Flour on the Chemical-Physical, Nutritional, Volatile and Sensory Parameters of Gluten-Free Ladyfinger Biscuits. Foods 2020; 9:foods9060808. [PMID: 32575539 PMCID: PMC7353548 DOI: 10.3390/foods9060808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
The present study investigates the effect of partial or total substitution of rice flour (RF) with quinoa flour (QF) (at 25%, 50%, 75% and 100%) on the chemical-physical, nutritional, and sensory characteristics, as well as the volatile compounds, of ladyfinger biscuits. All quinoa-based formulations positively affected the crust colour, endowing it with lower ‘lightness’ and higher ‘redness’ values, giving the biscuits a more appealing crust colour. Biscuits with higher percentages of QF also had better structure, as they were softer. The substitution of RF with QF significantly improved the nutritional profile of the biscuits, as a result of the increase in protein, lipid, ash, total soluble (SP) and insoluble polyphenol (IP), flavonoid, and antioxidant activity levels, which increased linearly with the substitution rate. Quinoa supplementation led to an increase in volatile compounds that were nearly always characterised by positive olfactory attributes. Sensory analysis revealed that the maximal substitution rate of QF able to maintain an adequate consumer acceptability rating is probably 50%, as higher percentages impaired acceptability due to the presence of herbaceous and bitter tastes, even if the consumers also rated these samples as healthier and softer to touch.
Collapse
|
14
|
Indriani S, Bin Ab Karim MS, Nalinanon S, Karnjanapratum S. Quality characteristics of protein-enriched brown rice flour and cake affected by Bombay locust (Patanga succincta L.) powder fortification. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|