1
|
Iñiguez-Moreno M, Santiesteban-Romero B, Melchor-Martínez EM, Parra-Saldívar R, González-González RB. Valorization of fishery industry waste: Chitosan extraction and its application in the industry. MethodsX 2024; 13:102892. [PMID: 39221014 PMCID: PMC11363563 DOI: 10.1016/j.mex.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
2
|
Keerthika K, Jayakumar M. Extraction, characterization and evaluation of antimicrobial activity of chitosan from adult Zophobas morio (Fabricius, 1776) (Coleoptera: Tenebrionidae). Int J Biol Macromol 2024; 279:135188. [PMID: 39216586 DOI: 10.1016/j.ijbiomac.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing demand for chitosan has led to the exploration of alternative sources, including insects. In this study, chitosan was extracted from Zophobas morio beetles with 19.17 % yield. FTIR and Raman Spectroscopy showed similar peaks in Z. morio chitosan (ZC) and commercial chitosan (CC). ZC showed low crystallinity (40.96 %) and high thermal residual mass (42.7 %) than CC. SEM imaging of ZC displayed pores ranging from 10 μm to 0.3 μm. EDX mapping revealed the homogenous presence of C, N and O elements. ZC exhibited low molecular weight (435.95 kDa) and low intrinsic viscosity (317.95 cm3/g) than CC (680.20 kDa and 480.87 cm3/g, respectively). Degree of deacetylation of ZC and CC was 96.24 % and 78.26 %, respectively. ZC showed antimicrobial activity against Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13883), Proteus mirabilis (ATCC 29906), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212) and Candida albicans (ATCC 90028) with zones of inhibition ranging from 5 mm to 11 mm. The minimum bactericidal concentration of ZC against K. pneumoniae and P. mirabilis was lower than CC. This study suggests the applicability of insect chitosan as an antimicrobial agent in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Kannan Keerthika
- Unit of Applied Entomology, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India
| | - Manickkam Jayakumar
- Unit of Applied Entomology, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Dogan M. Analysis of the mechanisms underlying the anticancer and biological activity of retinoic acid and chitosan nanoparticles containing retinoic acid. Med Oncol 2024; 41:251. [PMID: 39320578 DOI: 10.1007/s12032-024-02512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Retinoic acid (RA) has been shown in earlier investigations to have anticancer properties in various cancer cells. RA's effect on breast cancer treatment remains uncertain, though. This study investigated whether RA and chitosan nanoparticles (NPs) loaded with RA could be harmful to the MCF-7 cell line. In this study, NPs with RA were used in characterization tests. Using ELISA kits, the amounts of 8-okso-2'-deoksiguanozin (8-oxo-dG), BCL-2, Bcl-2-Associated X-protein (Bax), cleaved Poly (ADP-ribose) polymerases (PARP), total oxidant and antioxidant, and cleaved caspase-3 capacities were determined. The analysis of chitosan NPs showed that their drug-release profile, encapsulation efficiency (EE), and particle size were suitable for cell culture experiment. The EE value of NPs including RA was calculated as 83.32 ± 0.04%. The IC50 value for RA was 2.89 ± 0.03 µg/mL, while the IC50 value for RA-loaded NPs was significantly lower at 2.28 ± 0.02 µg/mL. In ELISA testing, RA and chitosan NPs containing RA at a concentration of 2 µg/mL dramatically increased the concentrations of total oxidant, cleaved caspase-3. Cleaved caspase-3 levels were quantified as 614.90 ± 3.40 pg/mg protein in the control group, 826.37 ± 5.82 pg/mg protein in RA-treated cells, and 863.52 ± 4.32 pg/mg protein in RA-NP-treated cells. Interestingly, no substantial variations were observed in the levels of the anti-apoptotic protein BCL-2. Overall, studies revealed that RA and RA-NPs promoted apoptosis in MCF-7 cells by upregulating the expression of pro-apoptotic proteins Bax, cleaved caspase-3, and cleaved PARP.
Collapse
Affiliation(s)
- Murat Dogan
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
- Feinberg Faculty of Medicine, Robert H. Lurie Cancer Research Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Paul J, Qamar A, Ahankari SS, Thomas S, Dufresne A. Chitosan-based aerogels: A new paradigm of advanced green materials for remediation of contaminated water. Carbohydr Polym 2024; 338:122198. [PMID: 38763724 DOI: 10.1016/j.carbpol.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.
Collapse
Affiliation(s)
- Joyel Paul
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Ahsan Qamar
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sandeep S Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sabu Thomas
- School of Polymer Science and Technology, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Nanoscience, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Energy Science, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Chemical Sciences, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
5
|
Soltani M, Farhadi A, Rajabi S, Homayouni-Tabrizi M, Hussein FS, Mohammadian N. Folic acid-modified nanocrystalline cellulose for enhanced delivery and anti-cancer effects of crocin. Sci Rep 2024; 14:13985. [PMID: 38886450 PMCID: PMC11183259 DOI: 10.1038/s41598-024-64758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Crocin is a carotenoid compound in saffron with anti-cancer properties. However, its therapeutic application is limited by its low absorption, bioavailability, and stability, which can be overcome through nanocarrier delivery systems. This study used surface-modified Nano-crystalline cellulose (NCC) to deliver crocin to cancer cells. NCC modified with CTAB were loaded with crocin and then conjugated with folic acid (NCF-CR-NPs). The synthesized nanoparticles (NPs) were characterized using FTIR, XRD, DLS, and FESEM. The crystallinity index of NCC was 66.64%, higher than microcrystalline cellulose (61.4%). The crocin loading and encapsulation efficiency in NCF-CR-NPs were evaluated. Toxicity testing by MTT assay showed that NCF-CR-NPs had higher toxicity against various cancer cell lines, including colon cancer HT-29 cells (IC50 ~ 11.6 μg/ml), compared to free crocin. Fluorescent staining, flow cytometry, and molecular analysis confirmed that NCF-CR-NPs induced apoptosis in HT-29 cells by increasing p53 and caspase 8 expression. The antioxidant capacity of NCF-CR-NPs was also evaluated using ABTS and DPPH radical scavenging assays. NCF-CR-NPs exhibited high free radical scavenging ability, with an IC50 of ~ 46.5 μg/ml for ABTS. In conclusion, this study demonstrates the potential of NCF-CR-NPs to deliver crocin to cancer cells effectively. The NPs exhibited enhanced anti-cancer and antioxidant activities compared to free crocin, making them a promising nanocarrier system for crocin-based cancer therapy.
Collapse
Affiliation(s)
- Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Amin Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Navid Mohammadian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
6
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
7
|
Vaidya G, Pramanik S, Kadi A, Rayshan AR, Abualsoud BM, Ansari MJ, Masood R, Michaelson J. Injecting hope: chitosan hydrogels as bone regeneration innovators. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:756-797. [PMID: 38300215 DOI: 10.1080/09205063.2024.2304952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Spontaneous bone regeneration encounters substantial restrictions in cases of bone defects, demanding external intervention to improve the repair and regeneration procedure. The field of bone tissue engineering (BTE), which embraces a range of disciplines, offers compelling replacements for conventional strategies like autografts, allografts, and xenografts. Among the diverse scaffolding materials utilized in BTE applications, hydrogels have demonstrated great promise as templates for the regeneration of bone owing to their resemblance to the innate extracellular matrix. In spite of the advancement of several biomaterials, chitosan (CS), a natural biopolymer, has garnered significant attention in recent years as a beneficial graft material for producing injectable hydrogels. Injectable hydrogels based on CS formulations provide numerous advantages, including their capacity to absorb and preserve a significant amount of water, their minimally invasive character, the existence of porous structures, and their capability to adapt accurately to irregular defects. Moreover, combining CS with other naturally derived or synthetic polymers and bioactive materials has displayed its effectiveness as a feasible substitute for traditional grafts. We aim to spotlight the composition, production, and physicochemical characteristics and practical utilization of CS-based injectable hydrogels, explicitly focusing on their potential implementations in bone regeneration. We consider this review a fundamental resource and a source of inspiration for future research attempts to pioneer the next era of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Gayatri Vaidya
- Department of Studies and Research in Food Technology, Davangere University, Davangere, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Ahmed Raheem Rayshan
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Jacob Michaelson
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
8
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
9
|
Zhang Z, Ma Z, Song L, Farag MA. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J Adv Res 2024; 57:59-76. [PMID: 37931655 PMCID: PMC10918363 DOI: 10.1016/j.jare.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt.
| |
Collapse
|
10
|
Thirunavookarasu N, Kumar S, Shetty P, Shanmugam A, Rawson A. Impact of ultrasound treatment on the structural modifications and functionality of carbohydrates - A review. Carbohydr Res 2024; 535:109017. [PMID: 38163393 DOI: 10.1016/j.carres.2023.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Carbohydrates are crucial in food as essential biomolecules, serving as natural components, ingredients, or additives. Carbohydrates have numerous applications in the food industry as stabilizers, thickeners, sweeteners, and humectants. The properties and functionality of the carbohydrates undergo alterations when exposed to various thermal or non-thermal treatments. Ultrasonication is a non-thermal method that modifies the structural arrangement of carbohydrate molecules. These structural changes lead to enhanced gelling and viscous nature of the carbohydrates, thus enhancing their scope of application. Ultrasound may improve carbohydrate functionality in an environmentally sustainable way, leaving no chemical residues. The high-energy ultrasound treatments significantly reduce the molecular size of complex carbohydrates. Sonication parameters like treatment intensity, duration of treatment, and energy applied significantly affect the molecular size, depolymerization, viscosity, structural modifications, and functionality of carbohydrate biomolecules. This review provides a comprehensive analysis of ultrasound-assisted modifications in carbohydrates and the changes in functional properties induced by sonication.
Collapse
Affiliation(s)
- Nirmal Thirunavookarasu
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Sumit Kumar
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Prakyath Shetty
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Akalya Shanmugam
- Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Food Processing Business Incubation Centre, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India.
| |
Collapse
|
11
|
Zhang J, Mohd Said F, Jing Z. Hydrogels based on seafood chitin: From extraction to the development. Int J Biol Macromol 2023; 253:126482. [PMID: 37640188 DOI: 10.1016/j.ijbiomac.2023.126482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Chitin is extensively applied in vast applications due to its excellent biological properties, such as biodegradable and non-toxic. About 50 % of waste generated during seafood processing is chitin. Conventionally, chitin is extracted via chemical method. However, it has many shortcomings. Many novel extraction methods have emerged, including enzymatic hydrolysis, microbial fermentation, ultrasonic or microwave-assisted, ionic liquids, and deep eutectic solvents. Chitin and its derivatives-based hydrogels have attracted much attention due to their excellent properties. Nevertheless, they all have many limitations. Therefore, the preparation and application of chitin and its derivatives-based hydrogels are still facing great challenges. This review focuses on the challenges and prospects for sustainable chitin extraction from seafood waste and the preparation and application of chitin and its derivatives-based hydrogels. First section summarizes the mechanism and application of several methods of extracting chitin. The different extraction methods were evaluated from the aspects of yield, degree of acetylation, and protein and mineral residuals. The shortcomings of the extraction methods are also discussed. Next section summarizes the preparation and application of chitin and its derivatives-based hydrogels. Overall, we hope this mini-review can provide a practical reference for selecting chitin extraction methods from seafood and applying chitin and its derivatives-based hydrogels.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
12
|
Vieira H, Lestre GM, Solstad RG, Cabral AE, Botelho A, Helbig C, Coppola D, de Pascale D, Robbens J, Raes K, Lian K, Tsirtsidou K, Leal MC, Scheers N, Calado R, Corticeiro S, Rasche S, Altintzoglou T, Zou Y, Lillebø AI. Current and Expected Trends for the Marine Chitin/Chitosan and Collagen Value Chains. Mar Drugs 2023; 21:605. [PMID: 38132926 PMCID: PMC10744996 DOI: 10.3390/md21120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.
Collapse
Affiliation(s)
- Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Gonçalo Moura Lestre
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Runar Gjerp Solstad
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Ana Elisa Cabral
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Anabela Botelho
- GOVCOPP—Research Unit on Governance, Competitiveness and Public Policies, DEGEIT, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Helbig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Kjersti Lian
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Kyriaki Tsirtsidou
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Miguel C. Leal
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Nathalie Scheers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden;
| | - Ricardo Calado
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Sofia Corticeiro
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Themistoklis Altintzoglou
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Ana I. Lillebø
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| |
Collapse
|
13
|
Mittal A, Singh A, Buatong J, Saetang J, Benjakul S. Chitooligosaccharide and Its Derivatives: Potential Candidates as Food Additives and Bioactive Components. Foods 2023; 12:3854. [PMID: 37893747 PMCID: PMC10606384 DOI: 10.3390/foods12203854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Chitooligosaccharide (CHOS), a depolymerized chitosan, can be prepared via physical, chemical, and enzymatic hydrolysis, or a combination of these techniques. The superior properties of CHOS have attracted attention as alternative additives or bioactive compounds for various food and biomedical applications. To increase the bioactivities of a CHOS, its derivatives have been prepared via different methods and were characterized using various analytical methods including FTIR and NMR spectroscopy. CHOS derivatives such as carboxylated CHOS, quaternized CHOS, and others showed their potential as potent anti-inflammatory, anti-obesity, neuroprotective, and anti-cancer agents, which could further be used for human health benefits. Moreover, enhanced antibacterial and antioxidant bioactivities, especially for a CHOS-polyphenol conjugate, could play a profound role in shelf-life extension and the safety assurance of perishable foods via the inhibition of spoilage microorganisms and pathogens and lipid oxidation. Also, the effectiveness of CHOS derivatives for shelf-life extension can be augmented when used in combination with other preservative technologies. Therefore, this review provides an overview of the production of a CHOS and its derivatives, as well as their potential applications in food as either additives or nutraceuticals. Furthermore, it revisits recent advancements in translational research and in vivo studies on CHOS and its derivatives in the medical-related field.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Liu Y, Li D, Chen M, Sun Q, Zhang Y, Zhou J, Wang T. Radical adducts formation mechanism of CH 3CO 2∙ and CH 3CO 3∙ realized decomposition of chitosan by plasma catalyzed peracetic acid. Carbohydr Polym 2023; 318:121121. [PMID: 37479454 DOI: 10.1016/j.carbpol.2023.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023]
Abstract
High-molecular-weight chitosan has limited applications due to unsatisfactory solubility and hydrophilicity. Discharge plasma coupled with peracetic acid (PAA) oxidation ("plasma+PAA") realized fast depolymerization of high-molecular-weight chitosan in this study. The molecular weight of chitosan rapidly declined to 81.1 kDa from initial 682.5 kDa within 60 s of "plasma+PAA" treatment, and its reaction rate constant was 12-fold higher than single plasma oxidation. Compared with 1O2, ∙CH3, CH3O2·, and O2∙-, CH3CO2∙ and CH3CO3∙ played decisive roles in the chitosan depolymerization in the plasma+PAA system through mechanisms of radical adduct formation. The attacks of CH3CO2∙ and CH3CO3∙ destroyed the β-(1,4) glycosidic bonds and hydrogen bonds of chitosan, leading to generation of low-molecular-weight chitosan; the main chain structure of chitosan was not changed during the depolymerization process. Furthermore, the generated low-molecular-weight chitosan exhibited greater antioxidant activities than original chitosan. Overall, this study revealed the radical adduct formation mechanisms of CH3CO2∙ and CH3CO3∙ for chitosan decomposition, providing an alternative for fast depolymerization of high-molecular-weight chitosan.
Collapse
Affiliation(s)
- Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Dongrui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mengna Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qingyuan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
15
|
Psarianos M, Ojha S, Schlüter OK. Evaluating an emerging technology-based biorefinery for edible house crickets. Front Nutr 2023; 10:1185612. [PMID: 37533573 PMCID: PMC10390837 DOI: 10.3389/fnut.2023.1185612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Edible insects, specifically house crickets, are expected to play an important role in the future food systems due to their rich nutritional profile, low environmental impact and growing consumer acceptance as food. Their content of proteins, lipids, chitin and phenolics offer great potential for the valorization of their biomass into nutritional end products and fractions. Furthermore, emerging food processing technologies and green solvents are relevant for improving the valorization process. Materials and methods High pressure (HP) and ultrasound (US) processing were implemented in an insect biorefinery system, where a hexane/methanol/water solvent was used to separate fat, phenolics and a solid fraction containing proteins and chitin. Subsequently, a deep eutectic solvent of betaine and urea (B/U) was used to for protein and chitin isolation. Results A maximum of 15% of fat was isolated, with no positive effect from the US or HP treatments. The US treatment enhanced the phenolic extraction yield by 38.69%, while HP negatively affected the antioxidant capacity. B/U was efficient in separating proteins and chitin, resulting in a protein concentrate with a protein content ≥80% and a chitinous fraction with a chitin content ≥70%. Conclusion House cricket biomass can be refined into valuable fractions with a quick and simple method, making the process industrially relevant.
Collapse
Affiliation(s)
- Marios Psarianos
- Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Shikha Ojha
- Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Oliver K. Schlüter
- Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
16
|
Kaewprachu P, Jaisan C. Physicochemical Properties of Chitosan from Green Mussel Shells ( Perna viridis): A Comparative Study. Polymers (Basel) 2023; 15:2816. [PMID: 37447462 DOI: 10.3390/polym15132816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Green mussel shells (Perna viridis) are generated in huge amounts and discarded as waste materials. Such waste may be used to produce biopolymer materials such as chitosan. The physicochemical properties of chitosan prepared from different sizes of green mussel shells (small size (CHS): ≤5.00 cm in length and big size (CHB): >5.01 cm in length) were characterized and compared with commercial chitosan (CH). Furthermore, the mechanical and physicochemical properties of the blended films were also investigated. The results of the physicochemical properties showed that CHS and CHB were quite different from CH. The degree of deacetylation of CHS, CHB, and CH was found to be 32.71%, 52.56%, and 70.42%, respectively (p < 0.05). The water- and fat-binding capacities of CH were higher than those of CHS and CHB. Structural differences between CHS, CHB, and CH were studied using Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). Significant increases in thickness, water vapor permeability, and strength of the blended films were found when the extracted chitosan was added (p < 0.05). However, further study is needed to improve the chitosan extraction process, which can enhance the physicochemical properties of the obtained chitosan and be widely used in many industries.
Collapse
Affiliation(s)
- Pimonpan Kaewprachu
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Chalalai Jaisan
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| |
Collapse
|
17
|
Tafi E, Triunfo M, Guarnieri A, Ianniciello D, Salvia R, Scieuzo C, Ranieri A, Castagna A, Lepuri S, Hahn T, Zibek S, De Bonis A, Falabella P. Preliminary investigation on the effect of insect-based chitosan on preservation of coated fresh cherry tomatoes. Sci Rep 2023; 13:7030. [PMID: 37120448 PMCID: PMC10148861 DOI: 10.1038/s41598-023-33587-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Chitosan was produced from Hermetia illucens pupal exuviae by heterogeneous and homogeneous deacetylation. Tomato fruits (Solanum lycopersicum), that are one of the most grown and consumed food throughout the world, were coated with 0.5 and 1% chitosan, applied by dipping or spraying, and stored at room temperature or 4 °C, for a storage period of 30 days. Statistical analysis give different results depending on the analysed parameters: heterogeneous chitosan, indeed, had a better effect than the homogenous one in maintaining more stable physico-chemical parameters, while the homogenous chitosan improved the total phenols, flavonoids and antioxidant activity. Chitosan coatings applied by spraying were more effective in all the analyses. Chitosan derived from H. illucens always performed similarly to the commercial chitosan. However, a general better performance of insect-derived chitosan on the concentration of phenolics and flavonoids, and the antioxidant activity was observed as compared to the commercial one. Chitosan coating has already been successfully used for preservation of fresh fruits, as alternative to synthetic polymers, but this is the first investigation of chitosan produced from an insect for this application. These preliminary results are encouraging regarding the validation of the insect H. illucens as a source of chitosan.
Collapse
Affiliation(s)
- Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Samuel Lepuri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
18
|
Carvalho DN, Gelinsky M, Williams DS, Mearns-Spragg A, Reis RL, Silva TH. Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. Int J Biol Macromol 2023; 241:124510. [PMID: 37080412 DOI: 10.1016/j.ijbiomac.2023.124510] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David S Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
19
|
Biswas S, Rashid TU. Effect of ultrasound on the physical properties and processing of major biopolymers-a review. SOFT MATTER 2022; 18:8367-8383. [PMID: 36321472 DOI: 10.1039/d2sm01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing and developing modern techniques to facilitate the extraction and modification of functional properties of biopolymers are key motivations among researchers. As a low-cost, sustainable, non-toxic, and fast process, ultrasound has been considered a method to improve the processing of carbohydrate and protein-based biopolymers such as cellulose, chitin, starch, alginate, carrageenan, gelatine, and guar gum. A better understanding of the complex physicochemical behavior of biopolymers under ultrasonication may fortify the eminence of this technology in advanced-level applications. This review summarizes the recent advances in biopolymer processing and the effect of ultrasound on the physical properties of the selected biopolymers. A major focus will be given to the mechanisms of action and their impact on the properties and extraction. At the end, some possible suggestions are highlighted which need future investigation for amending the physical properties of biopolymers using ultrasonication.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA.
| | - Taslim Ur Rashid
- Fiber and Polymer Science, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
20
|
Hazeena SH, Hou CY, Zeng JH, Li BH, Lin TC, Liu CS, Chang CI, Hsieh SL, Shih MK. Extraction Optimization and Structural Characteristics of Chitosan from Cuttlefish ( S. pharaonis sp.) Bone. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7969. [PMID: 36431456 PMCID: PMC9698347 DOI: 10.3390/ma15227969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
In fish processing, reducing the waste rate and increasing the economic value of products is an important issue for global environmental protection and resource sustainability. It has been discovered that cuttlefish bones can be an excellent resource for producing attractive amounts of chitin and chitosan. Therefore, this study optimized chitosan extraction conditions using response surface methodology (RSM) to establish application conditions suitable for industrial production and reducing environmental impact. In addition, Fourier-transform infrared spectroscopy (FTIR), 1H NMR and scanning electron microscope (SEM) characteristics of extracted chitosan were evaluated. The optimum extraction conditions for chitosan from cuttlebone chitin were 12.5M NaOH, 6 h and 80 °C, and the highest average yield was 56.47%. FTIR spectroscopy, 1H NMR, and SEM identification proved that the chitosan prepared from cuttlefish bone has a unique molecular structure, and the degree of deacetylation of chitosan was about 81.3%. In addition, it was also confirmed that chitosan has significant anti-oxidation and oil-absorbing abilities. This research has successfully transformed the by-products of cuttlefish processing into value-added products. The process not only achieved the recycling and utilization of by-products but also enhanced industrial competitiveness and resource sustainability.
Collapse
Affiliation(s)
- Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jing-Huei Zeng
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Bo-Heng Li
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tzu-Chih Lin
- Hong Yu Foods Company, Limited, Kaohsiung 806042, Taiwan
| | - Cai-Sian Liu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
21
|
Yarnpakdee S, Kaewprachu P, Jaisan C, Senphan T, Nagarajan M, Wangtueai S. Extraction and Physico-Chemical Characterization of Chitosan from Mantis Shrimp ( Oratosquilla nepa) Shell and the Development of Bio-Composite Film with Agarose. Polymers (Basel) 2022; 14:polym14193983. [PMID: 36235935 PMCID: PMC9570686 DOI: 10.3390/polym14193983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Mantis shrimp (Oratosquilla nepa) exoskeleton, a leftover generated after processing, was used as a starting material for chitosan (CS) production. CS was extracted with different deacetylation times (2, 3 and 4 h), termed CS−2, CS−3 and CS−4, respectively, and their characteristics and antimicrobial and film properties with agarose (AG) were investigated. Prolonged deacetylation time increased the degree of deacetylation (DDA: 73.56 ± 0.09−75.56 ± 0.09%), while extraction yield (15.79 ± 0.19−14.13 ± 0.09%), intrinsic viscosity (η: 3.58 ± 0.09−2.97 ± 0.16 dL/g) and average molecular weight (Mν: 1.4 ± 0.05−1.12 ± 0.08 (×106 Da)) decreased (p < 0.05). FTIR spectra of extracted CS were similar to that of commercial CS. Among all the CS samples prepared, CS−3 had the best yield, DDA, Mν and antimicrobial activity. Therefore, it was chosen for the development of composite films with AG at different ratios (CS−3/AG; 100/0, 75/25, 50/50, 25/75 and 0/100). As the proportion of AG increased, the tensile strength (29.96 ± 1.80−89.70 ± 5.08 MPa) of the composite films increased, while thickness (0.056 ± 0.012−0.024 ± 0.001 mm), elongation at break (36.52 ± 1.12−25.32 ± 1.23%) and water vapor permeability (3.56 ± 0.10−1.55 ± 0.02 (×10−7 g m m−2 s−1 Pa−1)) decreased (p < 0.05). Moreover, lightness of the films increased and yellowness decreased. CS−3/AG (50/50) composite film exhibited high mechanical and barrier properties and excellent compatibility according to FTIR and SEM analyses. According to these finding, mantis shrimp exoskeleton could be used to produce CS. The developed bio-composite film based on an appropriate ratio (50/50) of CS−3 and AG has potential for being used as food packaging material.
Collapse
Affiliation(s)
- Suthasinee Yarnpakdee
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: ; Tel.: +66-5394-8259
| | - Pimonpan Kaewprachu
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Chalalai Jaisan
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Theeraphol Senphan
- Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | - Muralidharan Nagarajan
- Tamil Nadu Dr. J Jayalalithaa Fisheries University, Department of Fish Processing Technology, Dr. MGR Fisheries College and Research Institute, Ponneri 601 204, Tamil Nadu, India
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| |
Collapse
|
22
|
Dogan M. Assessment of mechanism involved in the apoptotic and anti-cancer activity of Quercetin and Quercetin-loaded chitosan nanoparticles. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:176. [PMID: 35999475 DOI: 10.1007/s12032-022-01820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
In prior studies, Quercetin was revealed to exhibit anti-cancer features in a variety of cancer cell lines. However, the impact of Quercetin on neuroblastoma is unknown. This study looked into the potential cytotoxic effects of Quercetin and Quercetin-loaded chitosan nanoparticles (NPs) on the SH-SY5Y cell line. In this study, NPs containing Quercetin was prepared and characterization studies were performed. The vitality of the cells was measured using the XTT test after 24 h of treatment with various concentrations of Quercetin (0.5, 1, 2, 4, and 8 µg/mL). ELISA kits were used to detect the amounts of cleaved PARP, BCL-2, 8-Hydroxy-deoxyguanosine (8-oxo-dG), cleaved caspase 3, Bax, total oxidant status, and total antioxidant status in the cells. The results of the chitosan NPs characterization investigation revealed that the particle size, encapsulation effectiveness, and drug release profile of NPs were all appropriate for cell culture studies. Quercetin and Quercetin-loaded chitosan NPs significantly reduced cell viability in SH-SY5Y cells at different concentrations (**p < 0.05). 2 µg/mL Quercetin and Quercetin-loaded chitosan NPs significantly enhanced the levels of 8-oxo-dG, cleaved caspase 3, Bax, cleaved PARP, and total oxidant in ELISA testing. However, treatment with 2 µg/mL of Quercetin and Quercetin-loaded chitosan NPs did not affect the amount of BCL-2 protein. Overall, Quercetin and Quercetin-loaded chitosan NPs caused significant cytotoxicity in SH-SY5Y cells via producing oxidative stress, DNA damage, and eventually apoptosis.
Collapse
Affiliation(s)
- Murat Dogan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
23
|
Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods. Polymers (Basel) 2022; 14:polym14163417. [PMID: 36015674 PMCID: PMC9416096 DOI: 10.3390/polym14163417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Low molecular weight chitosan (LMWC) has higher solubility and lower viscosity allowing for a wider pharmaceutical application compared to high molecular weight chitosan. LMWC chitosan can be obtained through a chitosan depolymerization process. This research aimed to produce LWMC using the combination of formic acid and ultrasonication method with the optimal condition of the depolymerization process. The chitosan depolymerization method was performed by combining formic acid and ultrasonication. The optimum conditions of the depolymerization process were obtained using the Box–Behnken design. The LMWC obtained from depolymerization was characterized to identify its yield, degree of deacetylation, the molecular weight, structure, morphology, thermal behavior, and crystallinity index. Results: The characterization results of LWMC obtained from the depolymerization process using the optimum conditions showed that the yield was 89.398%; the degree of deacetylation was 98.076%; the molecular weight was 32.814 kDa; there was no change in the chemical structure, LWMC had disorganized shape, there was no change in the thermal behavior, and LWMC had a more amorphous shape compared to native chitosan. Conclusion: The production of LWMC involving depolymerization in the presence of weak acid and ultrasonication can be developed by using the optimal condition of the depolymerization process.
Collapse
|
24
|
Zhang Q, Duan L, Li Y. Positive effects and mechanism of ultrasound on chitin preparation from shrimp shells by co-fermentation. ULTRASONICS SONOCHEMISTRY 2022; 88:106066. [PMID: 35724485 PMCID: PMC9234067 DOI: 10.1016/j.ultsonch.2022.106066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study is to explore the effect and mechanism of ultrasound on chitin extraction from shrimp shells powder (SSP) by the co-fermentation of Bacillus subtilis and Acetobacter pasteurianus. After pre-treating the SSP with high-intensity ultrasound (HIU) at 800 W, the protease activity in the fermentation solution reached 96.9 U/mL on day 3, which was significantly higher than for SSP that had not been pre-treated with ultrasound (81.8 U/mL). The fermentation time of the chitin extraction process was 5.0 d without ultrasound pre-treatment, while it was shortened to 4.5 d when using ultrasound at 800 W to treat SSP. However, there were no obvious differences when we applied ultrasound at low power (200 W, 400 W). Furthermore, chitin purified from shrimp shells pre-treated with HIU at 800 W exhibited lower molecular weight (11.2 kDa), higher chitin purity (89.8%), and a higher degree of deacetylation (21.1%) compared to SSP with no ultrasound pre-treatment (13.5 kDa, 86.6%, 18.5%). Results indicate that HIU peels off the protein/CaCO3 matrix that covers the SSP surface. About 9.1% of protein and 4.7% of Ca2+ were released from SSP pre-treated with HIU at 800 W. These figures were both higher than with no ultrasound pre-treatment (4.5%, 3.2%). Additionally, the amount of soluble protein extracted from SSP through HIU at 800 W was 50% higher than for the control sample. SDS-PAGE analysis indicated that the soluble protein was degraded to the micromolecule. It also revealed that HIU (600, 800 W) induced the secondary and tertiary structure destruction of protein extracted from SSP. In conclusion, HIU-induced degradation and structural damage of protein enhances the protein/CaCO3 matrix to be peeled off from SSP. Also, in the co-fermentation process, an increase of protease activity further accelerates deproteinization.
Collapse
Affiliation(s)
- Qiao Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| | - Lirui Duan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022; 287:119349. [DOI: 10.1016/j.carbpol.2022.119349] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
|
26
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|
27
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
28
|
Ramachandran S, Narasimman V, Rajesh P. Low molecular weight sulfated chitosan isolation, characterization and anti-tuberculosis activity derived from Sepioteuthis lessoniana. Int J Biol Macromol 2022; 206:29-39. [PMID: 35218800 DOI: 10.1016/j.ijbiomac.2022.02.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/02/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
The research focused on tuberculosis as it is one of the world's most serious health problems. The extracted chitin from the gladius of Sepioteuthis lessoniana converted into Chitosan (CH). The purified and freeze-dried CH was refined as Sulfated Chitosan (SCH). The SCH was converted into low molecular weight of SCH with various doses of Gamma Irradiation (GIR). Fluorescence characteristics of GIR-SCH and elemental analysis were confirmed. The structure and molecular weights of GIR-SCH were determined with FT-IR, NMR and MALDI-TOF/Mass Spectroscopy. 100 Gy of GIR-SCH significantly showed the minimum inhibitory concentration (MIC) against Mycobacterium smegmatis. The MIC against M. smegmatis was not affected by the varied sulfate levels in the identical molecular weight GIR-SCH. However, the lowest molecular weight GIR-SCH displayed a significantly MIC against M. smegmatis. In docking analysis, the 6ZT3 ligand had the lowest binding energy of -1.57 kcal/Mol indicating a superior binding interaction with GIR-SCH. The effect of molecular weight reduction by GIR on the anti-tuberculosis capacity of GIR SCH was investigated in this study which had antimicrobial implications.
Collapse
Affiliation(s)
- Saravanan Ramachandran
- Native Medicine & Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (Deemed to be University), Kelambakkam 603103, Tamil Nadu, India.
| | - Vignesh Narasimman
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Puspalata Rajesh
- Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603102, Tamil Nadu, India.
| |
Collapse
|
29
|
Zegarra-Urquia CL, Santiago J, Bumgardner JD, Vega-Baudrit J, Hernández-Escobar CA, Zaragoza-Contreras EA. Synthesis of nanoparticles of the chitosan-poly((α,β)-DL-aspartic acid) polyelectrolite complex as hydrophilic drug carrier. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2029440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julio Santiago
- Departamento de Química Orgánica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Joel D. Bumgardner
- Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA
| | - José Vega-Baudrit
- Centro Nacional de Alta Tecnología “Dr. Franklin Chang Díaz”, Laboratorio Nacional de Nanotecnología (LANOTEC), San José, Costa Rica
- POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Claudia A. Hernández-Escobar
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C. Chihuahua, Chih, Complejo Industrial Chihuahua, Chihuahua, Mexico
| | - E. Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C. Chihuahua, Chih, Complejo Industrial Chihuahua, Chihuahua, Mexico
| |
Collapse
|
30
|
Pandit A, Indurkar A, Deshpande C, Jain R, Dandekar P. A systematic review of physical techniques for chitosan degradation. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Li X, Zhang ZH, Qi X, Li L, Zhu J, Brennan CS, Yan JK. Application of nonthermal processing technologies in extracting and modifying polysaccharides: A critical review. Compr Rev Food Sci Food Saf 2021; 20:4367-4389. [PMID: 34397139 DOI: 10.1111/1541-4337.12820] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Polysaccharides are natural polymer compounds widely distributed in plants, animals, and microorganisms, most of which have a broad spectrum of biological activities to promote human health. They could also be used as texture modifiers in food industry due to their excellent rheological and mechanical properties. Many researchers have shown that nonthermal processing technologies have numerous advantages, such as high extraction efficiency, short extraction time, and environmental friendliness, in the extraction of polysaccharides compared with the traditional extraction methods. Moreover, nonthermal technologies could effectively change the physicochemical properties and structural characteristics of polysaccharides to improve their biological activities or processing properties. Therefore, a comprehensive summary about the extraction and modification of polysaccharides by nonthermal technologies, including ultrasound, high hydrostatic pressure, pulsed electric fields, and cold plasma, was provided in this review. In particular, the underlying mechanisms, processing operations, and current application status of these technologies were discussed. In addition, the applications of combining nonthermal techniques with other technological methods in polysaccharide extraction and modification were briefly introduced.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Charles S Brennan
- School of Science, RMIT University, Victoria Road, Melbourne, VIC, 3500, Australia
| | - Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
32
|
Singh A, Mittal A, Benjakul S. Chitosan, Chitooligosaccharides and Their Polyphenol Conjugates: Preparation, Bioactivities, Functionalities and Applications in Food Systems. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
33
|
Singh A, Benjakul S, Zhang B, Deng S, Mittal A. Effect of squid pen chitooligosaccharide in conjugation with different modified atmospheric packaging conditions on color and storage stability of tuna slices. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Vallejo-Domínguez D, Rubio-Rosas E, Aguila-Almanza E, Hernández-Cocoletzi H, Ramos-Cassellis ME, Luna-Guevara ML, Rambabu K, Manickam S, Siti Halimatul Munawaroh H, Loke Show P. Ultrasound in the deproteinization process for chitin and chitosan production. ULTRASONICS SONOCHEMISTRY 2021; 72:105417. [PMID: 33352467 PMCID: PMC7803815 DOI: 10.1016/j.ultsonch.2020.105417] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 05/14/2023]
Abstract
Recently, chitin and chitosan are widely investigated for food preservation and active packaging applications. Chemical, as well as biological methods, are usually adopted for the production of these biopolymers. In this study, modification to a chemical method of chitin synthesis from shrimp shells has been proposed through the application of high-frequency ultrasound. The impact of sonication time on the deproteinization step of chitin and chitosan preparation was examined. The chemical identities of chitin and chitosan were verified using infrared spectroscopy. The influence of ultrasound on the deacetylation degree, molecular weight and particle size of the biopolymer products was analysed. The microscopic characteristics, crystallinity and the colour characteristics of the as-obtained biopolymers were investigated. Application of ultrasound for the production of biopolymers reduced the protein content as well as the particle size of chitin. Chitosan of high deacetylation degree and medium molecular weight was produced through ultrasound assistance. Finally, the as-derived chitosan was applied for beef preservation. High values of luminosity, chromatid and chrome were noted for the beef samples preserved using chitosan films, which were obtained by employing biopolymer subjected to sonication for 15, 25 and 40 min. Notably; these characteristics were maintained even after ten days of packaging. The molecular weight of these samples are 73.61 KDa, 86.82 KDa and 55.66 KDa, while the deacetylation degree are 80.60%, 92.86% and 94.03%, respectively; in the same order, the particle size of chitosan are 35.70 μm, 25.51 μm and 20.10 μm.
Collapse
Affiliation(s)
- D Vallejo-Domínguez
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico
| | - E Rubio-Rosas
- Benemérita Universidad Autónoma de Puebla, Centro Universitario de Vinculación y Transferencia de Tecnología, Prol. 24 sur S/N CU, San Manuel C. P. 72570, Puebla, Mexico
| | - E Aguila-Almanza
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico
| | - H Hernández-Cocoletzi
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico.
| | - M E Ramos-Cassellis
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico
| | - M L Luna-Guevara
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU, San Manuel C. P. 72570, Puebla, Mexico
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
35
|
Vicente FA, Huš M, Likozar B, Novak U. Chitin Deacetylation Using Deep Eutectic Solvents: Ab Initio-Supported Process Optimization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:3874-3886. [PMID: 33842102 PMCID: PMC8025712 DOI: 10.1021/acssuschemeng.0c08976] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Chitin is the most abundant marine biopolymer, being recovered during the shell biorefining of crustacean shell waste. In its native form, chitin displays a poor reactivity and solubility in most solvents due to its extensive hydrogen bonding. This can be overcome by deacetylation. However, this process requires a high concentration of acids or bases at high temperatures, forming large amounts of toxic waste. Herein, we report on the first deacetylation with deep eutectic solvents (DESs) as an environmentally friendly alternative, requiring only mild reaction conditions. Biocompatible DESs are efficient in disturbing the native hydrogen-bonding network of chitin, readily dissolving it. First, quantum chemical calculations have been performed to evaluate the feasibility of different DESs to perform chitin deacetylation by studying their mechanism. Comparing these with the calculated barriers for garden-variety alkaline/acidic hydrolysis, which are known to proceed, prospective DESs were identified with barriers around 25 kcal·mol-1 or lower. Based on density functional theory results, an experimental screening of 10 distinct DESs for chitin deacetylation followed. The most promising DESs were identified as K2CO3:glycerol (K2CO3:G), choline chloride:acetic acid ([Ch]Cl:AA), and choline chloride:malic acid ([Ch]Cl:MA) and were subjected to further optimization with respect to the water content, process duration, and temperature. Ultimately, [Ch]Cl:MA showed the best results, yielding a degree of deacetylation (DDA) of 40% after 24 h of reaction at 120 °C, which falls slightly behind the threshold value (50%) for chitin to be considered chitosan. Further quantum chemical calculations were performed to elucidate the mechanism. Upon the removal of 40% N-acetyl groups from the chitin structure, its reactivity was considerably improved.
Collapse
Affiliation(s)
- Filipa A. Vicente
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
| | - Matej Huš
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
- Association
For Technical Culture of Slovenia (ZOTKS), Zaloška 65, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
| | - Uroš Novak
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Singh A, Benjakul S, Zhou P, Zhang B, Deng S. Effect of squid pen chitooligosaccharide and epigallocatechin gallate on discoloration and shelf-life of yellowfin tuna slices during refrigerated storage. Food Chem 2021; 351:129296. [PMID: 33640769 DOI: 10.1016/j.foodchem.2021.129296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/30/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
This study evaluated the effects of treatments of squid pen chitooligosaccharide (COS) or epigallocatechin gallate (EGCG) or COS/EGCG mixture (1:1, w/w) at different concentrations (0, 200, and 400 mg/kg) on the discoloration and quality changes in yellowfin tuna slices stored at 4 °C for 12 days. Tuna slices added with 200 and 400 mg/kg of COS (C2 and C4, respectively) showed the lowest reduction in oxymyoglobin and a* value (redness) ascertained by the lower metmyoglobin formation than other samples. Additionally, C2 and C4 samples showed a lower total viable count and TBARS value than the remaining samples. EGCG alone and its mixture with COS exhibited lower efficacy in retaining the quality loss than COS alone. COS at both levels effectively reduced the metMb formation. It maintained the redness with sensory acceptability of slices up to 9 days, and C4 sample prolonged shelf-life for 12 days based on the microbiological limit.
Collapse
Affiliation(s)
- Avtar Singh
- The International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
37
|
Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel) 2021; 10:228. [PMID: 33546282 PMCID: PMC7913366 DOI: 10.3390/antiox10020228] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes. The recovery methods and their varying types and the advantages of the recovery methods are briefly discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables contained by this biopolymer, have been concisely presented. The variations of chitosan and its derivatives and their unique properties are discussed. The antioxidant properties of chitosan have been presented and the need for more work targeted towards harnessing the antioxidant property of chitosan has been emphasized. Some portions of the crustacean waste are being converted to chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted product chitosan is projected in this review. The future of chitosan recovery from marine crustacean wastes and the need to improve in this area of research, through the inclusion of nanotechnological inputs have been listed under future perspective.
Collapse
Affiliation(s)
- Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | | | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
38
|
Mittal A, Singh A, Benjakul S, Prodpran T, Nilsuwan K, Huda N, Caba KDL. Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106384] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Cui R, Zhu F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Singh A, Benjakul S, Nuthong P, Prodpran T. Elemental and structural changes associated with white spot formation in sun‐dried Pacific white shrimp shells. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90110Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90110Thailand
| | - Pornpot Nuthong
- Office of Scientific Instrument and Testing Prince of Songkla University Hat Yai Songkhla90112Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90110Thailand
| |
Collapse
|
41
|
Combined effect of microbial transglutaminase and ethanolic coconut husk extract on the gel properties and in-vitro digestibility of spotted golden goatfish (Parupeneus heptacanthus) surimi gel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Mittal A, Singh A, Aluko RE, Benjakul S. Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. J Food Biochem 2020; 45:e13569. [PMID: 33249640 DOI: 10.1111/jfbc.13569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022]
Abstract
Chitin was isolated from Pacific white shrimp (Litopenaeus vannamei) shell by demineralization and deproteinization using 1 M HCl (1:20, w/v) for 2 hr and 1 M NaOH (1:30 w/v) for 80 min at 70ºC, respectively, with 29.96% optimum yield. Thereafter, the chitin was deacetylated at various temperatures for different times, in which the chitosan prepared at 130ºC for 4 hr (CS-130-4) showed higher yield (73.11%), crystallinity index (19.75%), and 85.28% degree of deacetylation (DDA) as measured by 1 H-NMR. CS-130-4 was then conjugated to epigallocatechin gallate (EGCG) at various concentrations (2-8%, w/w of chitosan). CS-130-4 was grafted with 8% EGCG (CE-8) had the higher conjugation efficiency (92.63%) and antimicrobial/antioxidant activities as compared to other conjugates (p < .05). 1 H-NMR analysis also confirmed the successful conjugation of CE-8. All the conjugates were completely water soluble. Therefore, CE-8 may be used as the natural antimicrobial and antioxidant agents in various food products. PRACTICAL APPLICATIONS: Shrimp shells are generally considered as processing by-products of the shellfish industries and can cause environmental pollution when improperly disposed. Chitosan from shrimp shells has been widely produced but it is soluble mainly in acidic solutions, which limits its applications. However, grafting of epigallocatechin gallate (EGCG) onto chitosan yielded water-soluble conjugates with enhanced antioxidant and antimicrobial properties. Although several preservatives have been applied in foods, their health hazards have been a major concern. To mitigate this limitation, chitosan-EGCG conjugates could be employed as alternative natural preservatives or additives for shelf-life extension of various foods.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
43
|
Van Hoa N, Vuong NTH, Minh NC, Cuong HN, Trung TS. Squid pen chitosan nanoparticles: small size and high antibacterial activity. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03488-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Debittering of salmon (Salmo salar) frame protein hydrolysate using 2-butanol in combination with β-cyclodextrin: Impact on some physicochemical characteristics and antioxidant activities. Food Chem 2020; 321:126686. [DOI: 10.1016/j.foodchem.2020.126686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 01/14/2023]
|
45
|
The combined effect of squid pen chitooligosaccharides and high voltage cold atmospheric plasma on the shelf-life extension of Asian sea bass slices stored at 4 °C. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102339] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Zainol Abidin NA, Kormin F, Zainol Abidin NA, Mohamed Anuar NAF, Abu Bakar MF. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int J Mol Sci 2020; 21:ijms21144978. [PMID: 32679639 PMCID: PMC7404258 DOI: 10.3390/ijms21144978] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023] Open
Abstract
Chitin, being the second most abundant biopolymer after cellulose, has been gaining popularity since its initial discovery by Braconot in 1811. However, fundamental knowledge and literature on chitin and its derivatives from insects are difficult to obtain. The most common and sought-after sources of chitin are shellfish (especially crustaceans) and other aquatic invertebrates. The amount of shellfish available is obviously restricted by the amount of food waste that is allowed; hence, it is a limited resource. Therefore, insects are the best choices since, out of 1.3 million species in the world, 900,000 are insects, making them the most abundant species in the world. In this review, a total of 82 samples from shellfish—crustaceans and mollusks (n = 46), insects (n = 23), and others (n = 13)—have been collected and studied for their chemical extraction of chitin and its derivatives. The aim of this paper is to review the extraction method of chitin and chitosan for a comparison of the optimal demineralization and deproteinization processes, with a consideration of insects as alternative sources of chitin. The methods employed in this review are based on comprehensive bibliographic research. Based on previous data, the chitin and chitosan contents of insects in past studies favorably compare and compete with those of commercial chitin and chitosan—for example, 45% in Bombyx eri, 36.6% in Periostracum cicadae (cicada sloughs), and 26.2% in Chyrysomya megacephala. Therefore, according to the data reported by previous researchers, demonstrating comparable yield values to those of crustacean chitin and the great interest in insects as alternative sources, efforts towards comprehensive knowledge in this field are relevant.
Collapse
Affiliation(s)
- Nurul Alyani Zainol Abidin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Faridah Kormin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
- Centre of Research on Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
- Correspondence:
| | - Nurul Akhma Zainol Abidin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Nor Aini Fatihah Mohamed Anuar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
- Centre of Research on Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
| |
Collapse
|
47
|
Singh A, Mittal A, Benjakul S. Full Utilization of Squid Meat and Its Processing By-products: Revisit. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Ajay Mittal
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
48
|
Singh A, Benjakul S, Huda N, Xu C, Wu P. Preparation and characterization of squid pen chitooligosaccharide–epigallocatechin gallate conjugates and their antioxidant and antimicrobial activities. RSC Adv 2020; 10:33196-33204. [PMID: 35515026 PMCID: PMC9056682 DOI: 10.1039/d0ra05548d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 01/27/2023] Open
Abstract
Chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) at various concentrations were used for the preparation of COS–EGCG conjugates. The highest total phenolic content (TPC), representing the amount of EGCG conjugated, was obtained for 1 wt% COS together with EGCG at 0.5 wt% (C1-E0.5-conjugate) or 1.0 wt% (C1-E1.0-conjugate) (66.83 and 69.22 mg EGCG per g sample, respectively) (p < 0.05). The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities (DRSA and ARSA, respectively) and ferric reducing antioxidant power (FRAP) of all the samples showed similar trends with TPC. The C1-E0.5-conjugate had higher DRSA, ARSA, FRAP and oxygen radical absorbance capacity (ORAC) values than COS (p < 0.05). Similarly, the antimicrobial activity of COS increased when conjugated with EGCG (p < 0.05). FTIR, 1H-NMR and 13C-NMR analyses confirmed the successful grafting of EGCG with COS. Therefore, 1 wt% COS and 0.5 wt% EGCG were used for the production of a conjugate with augmented antioxidant activity, which could be used to retard lipid oxidation of fatty foods. Chitooligosaccharide from squid pen showed increases in both antioxidant and antimicrobial activities via conjugation with epigallocatechin-gallate (EGCG).![]()
Collapse
Affiliation(s)
- Avtar Singh
- The International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Nurul Huda
- Faculty of Food Science and Nutrition
- Universiti Malaysia Sabah
- Kota Kinabalu
- 88400 Malaysia
| | - Changan Xu
- Technical Innovation Centre for Utilization Marine Biological Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen
- China
| | - Peng Wu
- Technical Innovation Centre for Utilization Marine Biological Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen
- China
| |
Collapse
|
49
|
Singh A, Benjakul S, Prodpran T. Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0005-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Chitooligosaccharides (COS) from squid pen produced using amylase, lipase and pepsin were characterized. COS produced by 8% (w/w) lipase (COS-L) showed the maximum FRAP and ABTS radical scavenging activity than those prepared using other two enzymes. COS-L had the average molecular weight (MW) of 79 kDa, intrinsic viscosity of 0.41 dL/g and water solubility of 49%. DPPH, ABTS radical scavenging activities, FRAP and ORAC of COS-L were 5.68, 322.68, 5.66 and 42.20 μmol TE/g sample, respectively. Metal chelating activity was 2.58 μmol EE/g sample. For antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-L against the targeted bacteria were in the range of 0.31–4.91 mg/mL and 0.62–4.91 mg/mL, respectively. Sardine surimi gel added with 1% (w/w) COS-L showed the lower PV, TBARS and microbial growth during 10 days of storage at 4 °C. COS-L from squid pen could inhibit lipid oxidation and extend the shelf-life of refrigerated sardine surimi gel.
Graphical abstract
Collapse
|
50
|
Chandrasekharan A, Hwang YJ, Seong KY, Park S, Kim S, Yang SY. Acid-Treated Water-Soluble Chitosan Suitable for Microneedle-Assisted Intracutaneous Drug Delivery. Pharmaceutics 2019; 11:E209. [PMID: 31052596 PMCID: PMC6572209 DOI: 10.3390/pharmaceutics11050209] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Chitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery. The water-soluble chitosan was prepared by acid hydrolysis using trifluoroacetic acid followed by dialysis in 0.1 M NaCl solutions. We successfully fabricated bullet-shaped microneedle (MN) arrays by the single molding process with neutral aqueous chitosan solutions (pH 6.0). The chitosan MN showed sufficient mechanical properties for skin insertion and, interestingly, exhibited slow dissolving behavior in wet conditions, possibly resulting from a physical crosslinking of chitosan chains. Chitosan MN patches loading rhodamine B, a model hydrophilic drug, showed prolonged release kinetics in the course of the dissolving process for more than 72 h and they were found to be biocompatible to use. Since the water-soluble chitosan can be used for MN fabrication in the mild conditions (neutral pH and 25 °C) required for the loading of bioactive agents such as proteins and achieve a prolonged release, this biocompatible chitosan MN would be suitable for sustained transdermal drug delivery of a diverse range of drugs.
Collapse
Affiliation(s)
- Ajeesh Chandrasekharan
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| | - Young Jun Hwang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
- SNvia Co., Ltd, Busan 46241, Korea.
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| | | | - Sodam Kim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea.
| |
Collapse
|