1
|
Li Y, Wang Y, Yan S, Li Y, Gao X, Yu J, Chen S, Li P, Gu Q. Nisin A elevates adenosine to achieve anti-inflammatory activity. Food Funct 2024; 15:10490-10503. [PMID: 39352047 DOI: 10.1039/d4fo01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Inflammation is a ubiquitous physiological status that exists during the occurrence, development and prognosis of numerous diseases. Clinical anti-inflammatory drugs mainly include antibiotics, antivirals, non-steroids and corticosteroids, and the treatments are often accompanied by side effects, including nausea, abdominal pain, allergy, nerve injury and organ dysfunction. Current studies have focused on continuously exploring efficient anti-inflammatory natural components with high biosafety, while nisin, a natural bioactive anti-microbial peptide produced by Lactococcus, has been reported to have anti-inflammatory activity via its superior anti-bacterial abilities. Several recent studies have focused on the potent direct anti-inflammation of nisin, whereas its effects and the corresponding mechanism still remain unclear. The cellular and Caenorhabditis elegans (C. elegans) models were constructed in this study to evaluate the anti-inflammatory effects of nisin A both in vitro and in vivo, while the inflammatory mechanism was further uncovered based on omics analysis. This study reveals the direct anti-inflammatory activity of nisin A and elucidates the regulatory actions of nisin A on adenosine, followed by alteration of the sphingolipid signaling pathway and purine metabolism, enhancing the deep understanding of nisin A with its anti-inflammatory capacity, providing new ideas for future nisin A-based anti-inflammatory strategies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Jiabin Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Shuxin Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Peng J, Luo X, Wang T, Yue C, Duan M, Wu C. Radix Tetrastigma Hemsleyani Flavone represses cutaneous squamous cell carcinoma via Janus kinase/signal transducer and activator of transcription 3 pathway inactivation. Cytokine 2024; 175:156480. [PMID: 38232644 DOI: 10.1016/j.cyto.2023.156480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common malignant skin tumor and significantly affects patients' quality of life and health. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway activation is involved in CSCC development. Radix Tetrastigma hemsleyani flavone (RTHF) is an active Radix Tetrastigma extract (RTE), which was recently reported to have promising inhibitory effects on CSCC. However, the underlying functional mechanisms of this inhibition remain unknown. In the present study, A431 cells or SCL-1 cells were incubated with 1, 5, and 10 mg/mL RTHF for 48 h, respectively. A significantly increased wound closure rate, decreased number of migrated and invaded cells, decreased colony number, and elevated apoptotic rate were observed after treatment with 1, 5, and 10 mg/mL RTHF. Furthermore, after incubation with RTHF, p-JAK1/JAK1, p-JAK2/JAK2, and p-STAT3/STAT3 levels were drastically reduced. An A431 xenograft model was constructed, followed by oral administration of 15, 30, or 60 mg/kg RTHF for 21 consecutive days. A significantly lower increase in tumor volume and reduced tumor weight were observed in all RTHF-treated groups. In addition, JAK/STAT3 signaling was drastically repressed in tumor tissues. Collectively, RTHF inhibited CSCC progression, which may be associated with JAK/STAT3 pathway inactivation.
Collapse
Affiliation(s)
- Jianzhong Peng
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China.
| | - Xianyan Luo
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Tao Wang
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Chao Yue
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Mengying Duan
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Chenyang Wu
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Cui J, Zong W, Zhao N, Yuan R. Burdock ( Arctium lappa L.) leaf flavonoids rich in morin and quercetin 3-O-rhamnoside ameliorate lipopolysaccharide-induced inflammation and oxidative stress in RAW264.7 cells. Food Sci Nutr 2022; 10:2718-2726. [PMID: 35959264 PMCID: PMC9361437 DOI: 10.1002/fsn3.2875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, the anti-inflammatory and antioxidant activities and mechanism of burdock leaf flavonoids (BLF) on LPS-stimulated inflammation in RAW264.7 macrophage cells were explored. We have observed that BLF and main effective components morin and quercetin 3-O-rhamnoside pretreatment significantly inhibited LPS-stimulated inflammatory activation of RAW264.7 cells by lowering the levels of NO, PGE2, TNF-α, and IL-6 production (p < .05). At the same time, BLF not only had potent free radical scavenging ability in vitro (DPPH: 2025.33 ± 84.15 μmol Trolox/g, ABTS: 159.14 ± 5.28 μmol Trolox/g, and ORAC: 248.72 ± 9.74 μmol Trolox/g) but also effectively ameliorated cellular oxidative stress status by restoring the decreased activity of antioxidant enzymes (SOD, CAT, and GSH-Px) and decreasing the elevated levels of ROS and TBARS in LPS-stimulated macrophages (p < .05). The western blot analysis indicated that BLF and main components morin and quercetin 3-O-rhamnoside mainly inhibited LPS-stimulated inflammation by reducing the iNOS and COX-2 protein expression, decreasing cellular ROS, and blocking the activation of NF-κB signaling pathway in macrophages. Our results collectively imply that BLF could be used as a new type of functional factor for the development of antioxidant and anti-inflammatory foods.
Collapse
Affiliation(s)
- Jue Cui
- School of Food and Biological EngineeringXuzhou University of TechnologyXuzhouChina
- Jiangsu Key Laboratory of Food Resource Development and Quality SafeXuzhou Institute of TechnologyXuzhouChina
| | - Wenyi Zong
- School of Food and Biological EngineeringXuzhou University of TechnologyXuzhouChina
| | - Nannan Zhao
- School of Food and Biological EngineeringXuzhou University of TechnologyXuzhouChina
- Jiangsu Key Laboratory of Food Resource Development and Quality SafeXuzhou Institute of TechnologyXuzhouChina
| | - Rui Yuan
- School of Food and Biological EngineeringXuzhou University of TechnologyXuzhouChina
| |
Collapse
|
4
|
Essential Oils from Zingiber striolatum Diels Attenuate Inflammatory Response and Oxidative Stress through Regulation of MAPK and NF-κB Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10122019. [PMID: 34943122 PMCID: PMC8698606 DOI: 10.3390/antiox10122019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Zingiber striolatum Diels (Z. striolatum), a widely popular vegetable in China, is famous for its medicinal and nutritional values. However, the anti-inflammatory effects of essential oil from Z. striolatum (EOZS) remain unclear. In this study, EOZS from seven regions in China were extracted and analyzed by GC–MS. LPS-induced RAW264.7 cells and 12-O-Tetradecanoylphorbol 13-acetate (TPA)-stimulated mice were used to evaluate the anti-inflammatory effects of EOZS. Results show that 116 compounds were identified in EOZS from seven locations. Samples 2, 4 and 5 showed the best capability on DPPH radical scavenging and NO inhibition. They also significantly reduced the production of ROS, pro-inflammatory cytokines, macrophage morphological changes, migration and phagocytic capability. Transcriptomics revealed MAPK and NF-κB signaling pathways may be involved in the anti-inflammatory mechanism, and the predictions were proven by Western blotting. In TPA-induced mice, EOZS reduced the degree of ear swelling and local immune cell infiltration by blocking the activation of MAPK and NF-κB signaling pathways, which was consistent with the in vitro experimental results. Our research unveils the antioxidant capability and potential molecular mechanism of EOZS in regulating inflammatory response, and suggests the application of EOZS as a natural antioxidant and anti-inflammatory agent in the pharmaceutical and functional food industries.
Collapse
|
5
|
Li Y, Yu X, Wang Y, Zheng X, Chu Q. Kaempferol-3- O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food Funct 2021; 12:8351-8365. [PMID: 34338262 DOI: 10.1039/d1fo00581b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer has been threatening human health worldwide for a long time. However, the clinic therapies remain unsatisfactory. In this study, the anti-adenocarcinoma lung cancer A549 cell line abilities of Tetrastigma hemsleyanum tuber flavonoids (THTF) were evaluated in vivo, and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to detect the protein alterations in THTF-treated solid tumors. The differentially expressed proteins were related to the cytoskeleton and mostly accumulated in the calcium signaling pathway. The in vitro study illustrated that 80 μg mL-1 THTF significantly suppressed cellular viability to approximately 75% of the control. Further results suggested that kaempferol-3-O-rutinoside (K3R), the major component of THTF, effectively triggered cytoskeleton collapse, mitochondrial dysfunction and consequent calcium overload to achieve apoptosis, which remained consistent with proteomic results. This study uncovers a new mechanism for THTF anti-tumor ability, and suggests THTF and K3R as promising anti-cancer agents, providing new ideas and possible strategies for future anti-lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xin Yu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yaxuan Wang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Qiang Chu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China. and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
6
|
Tetrastigma hemsleyanum leaf flavones have anti-NSCLC ability by triggering apoptosis using the Akt-mTOR pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Apios Americana Medicus: A potential staple food candidate with versatile bioactivities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Valéria Amorim L, de Lima Moreira D, Muálem de Moraes Alves M, Jessé Ramos Y, Pereira Costa Sobrinho E, Arcanjo DDR, Rodrigues de Araújo A, de Souza de Almeida Leite JR, das Chagas Pereira de Andrade F, Mendes AN, Aécio de Amorim Carvalho F. Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae). ACTA ACUST UNITED AC 2021; 76:229-241. [PMID: 33660490 DOI: 10.1515/znc-2020-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 μg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 μg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Layane Valéria Amorim
- Antileishmania Activity Laboratory, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Davyson de Lima Moreira
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Ygor Jessé Ramos
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Daniel Dias Rufino Arcanjo
- Department of Biophysics and Physiology, Laboratory of Funcional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, Piauí, Brazil
| | | | | | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology, Laboratory of Innovation on Science and Technology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | |
Collapse
|
9
|
Hua F, Zhou P, Liu PP, Bao GH. Rat plasma protein binding of kaempferol-3-O-rutinoside from Lu'an GuaPian tea and its anti-inflammatory mechanism for cardiovascular protection. J Food Biochem 2021; 45:e13749. [PMID: 34041764 DOI: 10.1111/jfbc.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Previous study found a high content of kaempferol-3-O-rutinoside (KR) in Lu'an GuaPian tea, however, the rat plasma protein binding and mechanism of KR for cardiovascular protection are unclear. Thus, we studied plasma protein binding using ultrafiltration followed by UPLC, and screened its inhibition against LPS-induced inflammation injury in vitro as well as the underlying mechanism by molecular docking and western blot. KR showed over 74% plasma protein binding ratio. Furthermore, KR may act on the toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). In vitro experiments showed that KR decreases the overexpression of TLR4, MyD88, and nuclear factor-κB (NF-κB), which further validates the molecular docking results, suggesting that KR could block TLR4/MyD88/NF-κB signaling. These results indicate that KR could be a potential active agent in the protection of myocardial injury. PRACTICAL APPLICATIONS: Health benefits of tea are largely dependent on the intake of flavonoids. Flavonoids are a group of compounds beneficial to cardiovascular disease and an important part of "functional foods." Lu'an GuaPian tea is mainly produced in Lu'an City, Anhui Province and is one of the top 10 famous teas in China. Kaempferol-3-O-rutinoside in Lu'an GuaPian has good hypoglycemic effect, mainly manifested in a strong inhibition of α-glucosidase and α-amylase activities. Present study showed that kaempferol-3-O-rutinoside could block TLR4/MyD88/NF-κB signaling, suggesting that it could be a potential active agent in the protection of myocardial injury.
Collapse
Affiliation(s)
- Fang Hua
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Pharmacy, Anhui Xinhua University, Hefei, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Pei-Pei Liu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Li Y, Wang Y, Yu X, Yu T, Zheng X, Chu Q. Radix Tetrastigma Inhibits the Non-Small Cell Lung Cancer via Bax/Bcl-2/Caspase-9/Caspase-3 Pathway. Nutr Cancer 2021; 74:320-332. [PMID: 33586527 DOI: 10.1080/01635581.2021.1881569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer with high mortality is regarded as a challenging global problem with unsatisfied curative effects. Clinically, the chemotherapy drugs are often faced with side-effects and tumor resistance. Radix Tetrastigma (RT) is a traditional Chinese herb and now regarded as a kind of functional food. In this study, A549-bearing nude mice control was adopted to evaluate the anti-tumor capacity of RT. Results demonstrated that RT showed excellent anti-tumor ability with no side-effect on mice compared to chemotherapy drug (5-Fu).Further studies proved that RT down-regulated the proliferation-related proteins (PCNA, Ki67) and vascular endothelial growth factor (VEGF). Additionally, RT up-regulated the ratio of Bax/Bcl-2, which caused the over-expression of Caspase-9, leading to the activation of downstream protein caspase-3, eventually resulting in apoptosis of A549 in solid tumor. These results together suggest that RT inhibits the non-small cell lung cancer (NSCLC) via Bax/Bcl2/Caspase-9/Caspase-3 pathway. Furthermore, the anti-A549 abilities of the main flavonoid components from RT were compared, and kaempferol-3-O-rutinoside would play a role in RT's outstanding anti-NSCLC ability.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|