1
|
Gomez-Hinostroza ES, Gurdo N, Alvan Vargas MVG, Nikel PI, Guazzaroni ME, Guaman LP, Castillo Cornejo DJ, Platero R, Barba-Ostria C. Current landscape and future directions of synthetic biology in South America. Front Bioeng Biotechnol 2023; 11:1069628. [PMID: 36845183 PMCID: PMC9950111 DOI: 10.3389/fbioe.2023.1069628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Synthetic biology (SynBio) is a rapidly advancing multidisciplinary field in which South American countries such as Chile, Argentina, and Brazil have made notable contributions and have established leadership positions in the region. In recent years, efforts have strengthened SynBio in the rest of the countries, and although progress is significant, growth has not matched that of the aforementioned countries. Initiatives such as iGEM and TECNOx have introduced students and researchers from various countries to the foundations of SynBio. Several factors have hindered progress in the field, including scarce funding from both public and private sources for synthetic biology projects, an underdeveloped biotech industry, and a lack of policies to promote bio-innovation. However, open science initiatives such as the DIY movement and OSHW have helped to alleviate some of these challenges. Similarly, the abundance of natural resources and biodiversity make South America an attractive location to invest in and develop SynBio projects.
Collapse
Affiliation(s)
- E. Sebastian Gomez-Hinostroza
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Linda P. Guaman
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Raúl Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador,Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador,*Correspondence: Carlos Barba-Ostria,
| |
Collapse
|
2
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
3
|
Liu H, Lin G, Gao D, Chen H, He M, Lu J. Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf. MICROBIAL ECOLOGY 2023; 85:121-136. [PMID: 35039906 DOI: 10.1007/s00248-021-01946-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongyu Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Miao He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Thompson D, Cognat V, Goodfellow M, Koechler S, Heintz D, Carapito C, Van Dorsselaer A, Mahmoud H, Sangal V, Ismail W. Phylogenomic Classification and Biosynthetic Potential of the Fossil Fuel-Biodesulfurizing Rhodococcus Strain IGTS8. Front Microbiol 2020; 11:1417. [PMID: 32733398 PMCID: PMC7358434 DOI: 10.3389/fmicb.2020.01417] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/02/2020] [Indexed: 01/02/2023] Open
Abstract
Rhodococcus strain IGTS8 is the most extensively studied model bacterium for biodesulfurization of fossil fuels via the non–destructive sulfur–specific 4S pathway. This strain was initially assigned to Rhodococcus rhodochrous and later to Rhodococcus erythropolis thus making its taxonomic status debatable and reflecting the limited resolution of methods available at the time. In this study, phylogenomic analyses of the whole genome sequences of strain IGTS8 and closely related rhodococci showed that R. erythropolis and Rhodococcus qingshengii are very closely related species, that Rhodococcus strain IGTS8 is a R. qingshengii strain and that several strains identified as R. erythropolis should be re-classified as R. qingshengii. The genomes of strains assigned to these species contain potentially novel biosynthetic gene clusters showing that members of these taxa should be given greater importance in the search for new antimicrobials and other industrially important biomolecules. The plasmid-borne dsz operon encoding fossil fuel desulfurization enzymes was present in R. qingshengii IGTS8 and R. erythropolis XP suggesting that it might be transferable between members of these species.
Collapse
Affiliation(s)
- Dean Thompson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandrine Koechler
- Institut de Biologie Moléculaire des Plantes, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Université de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Université de Strasbourg, Strasbourg, France
| | - Huda Mahmoud
- Department of Biological Sciences, College of Science, Kuwait University, Safat, Kuwait
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
5
|
de Rezende JR, Oldenburg TBP, Korin T, Richardson WDL, Fustic M, Aitken CM, Bowler BFJ, Sherry A, Grigoryan A, Voordouw G, Larter SR, Head IM, Hubert CRJ. Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs. Environ Microbiol 2020; 22:3049-3065. [PMID: 32216020 DOI: 10.1111/1462-2920.14995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g-1 oil d-1 , orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC-MS and FTICR-MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.
Collapse
Affiliation(s)
- Júlia R de Rezende
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Thomas B P Oldenburg
- PRG, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Tetyana Korin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - William D L Richardson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Milovan Fustic
- PRG, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.,School of Mining and Geoscience, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Carolyn M Aitken
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Bernard F J Bowler
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | | | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Stephen R Larter
- PRG, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Casey R J Hubert
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
6
|
Sierra-Garcia IN, Belgini DRB, Torres-Ballesteros A, Paez-Espino D, Capilla R, Santos Neto EV, Gray N, de Oliveira VM. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136646. [PMID: 32014760 DOI: 10.1016/j.scitotenv.2020.136646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Microbial biodegradation of hydrocarbons in petroleum reservoirs has major consequences in the petroleum value and quality. The identification of microorganisms capable of in-situ degradation of hydrocarbons under the reservoir conditions is crucial to understand microbial roles in hydrocarbon transformation and the impact of oil exploration and production on energy resources. The aim of this study was to profile the metagenome of microbial communities in crude oils and associated formation water from two high temperature and relatively saline oil-production wells, where one has been subjected to water flooding (BA-2) and the other one is considered pristine (BA-1). The microbiome was studied in the fluids using shotgun metagenome sequencing. Distinct microbial compositions were revealed when comparing pristine and water flooded oil wells in contrast to the similar community structures observed between the aqueous and oil fluids from the same well (BA-2). The equal proportion of archaea and bacteria together with the greater anaerobic hydrocarbon degradation potential in the BA-1 pristine but degraded reservoir contrasted with the predominance of bacteria over archaea, aerobic pathways and lower frequency of anaerobic degradation genes in the BA-2 water flooded undegraded well. Our results suggest that Syntrophus, Syntrophomonas, candidatus Atribacteria and Synergistia, in association with mainly acetoclastic methanogenic archaea of the genus Methanothrix, were collectively responsible for the oil biodegradation observed in the pristine petroleum well BA-1. Conversely, the microbial composition of the water flooded oil well BA-2 was mainly dominated by the fast-growing and putatively aerobic opportunists Marinobacter and Marinobacterium. This presumable allochthonous community introduced a greater metabolic versatility, although oil biodegradation has not been detected hitherto perhaps due to in-reservoir unfavorable physicochemical conditions. These findings provide a better understanding of the petroleum reservoir microbiomes and their potential roles in biogeochemical processes occurring in environments with different geological and oil recovery histories.
Collapse
Affiliation(s)
- Isabel Natalia Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil; Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil.
| | - Daiane R B Belgini
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil; Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Adriana Torres-Ballesteros
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | | | | | | | - Neil Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Valeria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
7
|
Hu B, Wang M, Geng S, Wen L, Wu M, Nie Y, Tang YQ, Wu XL. Metabolic Exchange with Non-Alkane-Consuming Pseudomonas stutzeri SLG510A3-8 Improves n-Alkane Biodegradation by the Alkane Degrader Dietzia sp. Strain DQ12-45-1b. Appl Environ Microbiol 2020; 86:AEM.02931-19. [PMID: 32033953 PMCID: PMC7117941 DOI: 10.1128/aem.02931-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Biodegradation of alkanes by microbial communities is ubiquitous in nature. Interestingly, the microbial communities with high hydrocarbon-degrading performances are sometimes composed of not only hydrocarbon degraders but also nonconsumers, but the synergistic mechanisms remain unknown. Here, we found that two bacterial strains isolated from Chinese oil fields, Dietzia sp. strain DQ12-45-1b and Pseudomonas stutzeri SLG510A3-8, had a synergistic effect on hexadecane (C16 compound) biodegradation, even though P. stutzeri could not utilize C16 individually. To gain a better understanding of the roles of the alkane nonconsumer P. stutzeri in the C16-degrading consortium, we reconstructed a two-species stoichiometric metabolic model, iBH1908, and integrated in silico prediction with the following in vitro validation, a comparative proteomics analysis, and extracellular metabolomic detection. Metabolic interactions between P. stutzeri and Dietzia sp. were successfully revealed to have importance in efficient C16 degradation. In the process, P. stutzeri survived on C16 metabolic intermediates from Dietzia sp., including hexadecanoate, 3-hydroxybutanoate, and α-ketoglutarate. In return, P. stutzeri reorganized its metabolic flux distribution to fed back acetate and glutamate to Dietzia sp. to enhance its C16 degradation efficiency by improving Dietzia cell accumulation and by regulating the expression of Dietzia succinate dehydrogenase. By using the synergistic microbial consortium of Dietzia sp. and P. stutzeri with the addition of the in silico-predicted key exchanged metabolites, diesel oil was effectively disposed of in 15 days with a removal fraction of 85.54% ± 6.42%, leaving small amounts of C15 to C20 isomers. Our finding provides a novel microbial assembling mode for efficient bioremediation or chemical production in the future.IMPORTANCE Many natural and synthetic microbial communities are composed of not only species whose biological properties are consistent with their corresponding communities but also ones whose chemophysical characteristics do not directly contribute to the performance of their communities. Even though the latter species are often essential to the microbial communities, their roles are unclear. Here, by investigation of an artificial two-member microbial consortium in n-alkane biodegradation, we showed that the microbial member without the n-alkane-degrading capability had a cross-feeding interaction with and metabolic regulation to the leading member for the synergistic n-alkane biodegradation. Our study improves the current understanding of microbial interactions. Because "assistant" microbes showed importance in communities in addition to the functional microbes, our findings also suggest a useful "assistant-microbe" principle in the design of microbial communities for either bioremediation or chemical production.
Collapse
Affiliation(s)
- Bing Hu
- Institute for Synthetic Biosystems, Department of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Miaoxiao Wang
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Shuang Geng
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Liqun Wen
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Mengdi Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Nie
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yue-Qin Tang
- Department of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Biological hydrogen production: molecular and electrolytic perspectives. World J Microbiol Biotechnol 2019; 35:116. [PMID: 31332538 DOI: 10.1007/s11274-019-2692-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Exploration of renewable energy sources is an imperative task in order to replace fossil fuels and to diminish atmospheric pollution. Hydrogen is considered one of the most promising fuels for the future and implores further investigation to find eco-friendly ways toward viable production. Expansive processes like electrolysis and fossil fuels are currently being used to produce hydrogen. Biological hydrogen production (BHP) displays recyclable and economical traits, and is thus imperative for hydrogen economy. Three basic modes of BHP were investigated, including bio photolysis, photo fermentation and dark fermentation. Photosynthetic microorganisms could readily serve as powerhouses to successively produce this type of energy. Cyanobacteria, blue green algae (bio photolysis) and some purple non-sulfur bacteria (Photo fermentation) utilize solar energy and produce hydrogen during their metabolic processes. Ionic species, including hydrogen (H+) and electrons (e-) are combined into hydrogen gas (H2), with the use of special enzymes called hydrogenases in the case of bio photolysis, and nitrogenases catalyze the formation of hydrogen in the case of photo fermentation. Nevertheless, oxygen sensitivity of these enzymes is a drawback for bio photolysis and photo fermentation, whereas, the amount of hydrogen per unit substrate produced appears insufficient for dark fermentation. This review focuses on innovative advances in the bioprocess research, genetic engineering and bioprocess technologies such as microbial fuel cell technology, in developing bio hydrogen production.
Collapse
|
9
|
Sangavai C, Bharathi M, Ganesh SP, Chellapandi P. Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture. AMB Express 2019; 9:82. [PMID: 31183623 PMCID: PMC6557928 DOI: 10.1186/s13568-019-0803-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/22/2019] [Indexed: 12/03/2022] Open
Abstract
Studying amino acid catabolism-coupled methanogenesis is the important standpoints to decipher the metabolic behavior of a methanogenic culture. l-Glycine and l-alanine are acted as sole carbon and nitrogen sources for acidogenic bacteria. One amino acid is oxidized and another one is reduced for acetate production via pyruvate by oxidative deamination process in the Stickland reactions. Herein, we have developed a kinetic model for the Stickland reactions-coupled methanogenesis (SRCM) and simulated objectively to maximize the rate of methane production. We collected the metabolic information from enzyme kinetic parameters for amino acid catabolism of Clostridium acetobutylicum ATCC 824 and methanogenesis of Methanosarcina acetivorans C2A. The SRCM model of this study consisted of 18 reactions and 61 metabolites with enzyme kinetic parameters derived experimental data. The internal or external metabolic flux rate of this system found to control the acidogenesis and methanogenesis in a methanogenic culture. Using the SRCM model, flux distributions were calculated for each reaction and metabolite in order to maximize the methane production rate from the glycine–alanine pair. Results of this study, we demonstrated the metabolic behavior, metabolite pairing while mutually interact, and advantages of syntrophic metabolism of amino acid-directed methane production in a methanogenic starter culture.
Collapse
|
10
|
Pleomorphochaeta naphthae sp. nov., a new anaerobic fermentative bacterium isolated from an oil field. Int J Syst Evol Microbiol 2018; 68:3747-3753. [DOI: 10.1099/ijsem.0.003048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11
|
Sherry A, Andrade L, Velenturf A, Christgen B, Gray ND, Head IM. How to access and exploit natural resources sustainably: petroleum biotechnology. Microb Biotechnol 2017; 10:1206-1211. [PMID: 28771985 PMCID: PMC5609234 DOI: 10.1111/1751-7915.12793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/28/2022] Open
Abstract
As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially‐mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. How to access and exploit natural resources sustainably: petroleum biotechnology.
Collapse
Affiliation(s)
- Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Luiza Andrade
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Anne Velenturf
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Beate Christgen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Neil D Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
12
|
Ismail WA, Van Hamme JD, Kilbane JJ, Gu JD. Editorial: Petroleum Microbial Biotechnology: Challenges and Prospects. Front Microbiol 2017; 8:833. [PMID: 28553269 PMCID: PMC5427579 DOI: 10.3389/fmicb.2017.00833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Wael A Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf UniversityManama, Bahrain
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers UniversityKamloops, BC, Canada
| | - John J Kilbane
- Department of Biology, Illinois Institute of TechnologyChicago, IL, USA
| | - Ji-Dong Gu
- School of Biological Sciences, University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
13
|
Head IM, Gray ND. Microbial Biotechnology 2020; microbiology of fossil fuel resources. Microb Biotechnol 2016; 9:626-34. [PMID: 27506422 PMCID: PMC4993181 DOI: 10.1111/1751-7915.12396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets.
Collapse
Affiliation(s)
- Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|