1
|
Tang Z, Wang L, Xiong Z, Zhu Y, Zhang H. Process optimized for production of iturin A in biofilm reactor by Bacillus velezensis ND. Bioprocess Biosyst Eng 2024; 47:1095-1105. [PMID: 38847888 DOI: 10.1007/s00449-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
In this research, to provide an optimal growth medium for the production of iturin A, the concentrations of key amino acid precursors were optimized in shake flask cultures using the response surface method. The optimized medium were applied in a biofilm reactor for batch fermentation, resulting in enhanced production of iturin A. On this basis, a step-wise pH control strategy and a combined step-wise pH and temperature control strategy were introduced to further improve the production of iturin A. Finally, the fed-batch fermentation was performed based on combined step-wise pH and temperature control. The titer and productivity of iturin A reached 7.86 ± 0.23 g/L and 65.50 ± 1.92 mg/L/h, respectively, which were 37.65 and 65.20% higher than that before process optimization.
Collapse
Affiliation(s)
- Zhongmin Tang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China
| | - Leiming Wang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China
| | - Zhengjun Xiong
- Sel Biochem Xinjiang Co., Ltd, Xinjiang, People's Republic of China
| | - Yuxia Zhu
- Sel Biochem Xinjiang Co., Ltd, Xinjiang, People's Republic of China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Characteristic Analysis of Soil-Isolated Bacillus velezensis HY-3479 and Its Antifungal Activity Against Phytopathogens. Curr Microbiol 2022; 79:357. [PMID: 36251101 DOI: 10.1007/s00284-022-03060-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022]
Abstract
During the investigation of beneficial agricultural microorganisms, a novel Bacillus strain was isolated. To isolate an effective microorganism that has antifungal activity, soil samples were collected from an agricultural field in the southern area of Pohang, Korea. One strain that had specificity on plant pathogens was analyzed. According to 16S rRNA sequencing, the isolated bacterium was identified as Bacillus velezensis and was designated as HY-3479. Few assays were taken to analyze the characteristics of the HY-3479 strain. In agar plate assay, HY-3479 showed antifungal effects on Colletotrichum acutatum, Cylindrocarpon destructans, Rhizoctonia solani, and Sclerotinia sclerotiorum. The strain also had various enzymatic activities including protease, amylase, and β-1,3-glucanase, which were relatively higher than control strains. Metabolites study of strain HY-3479 was conducted by GC-MS analysis and the bacterium contained many plant growth promoters like 3-methyl-1-butanol, (R, R)-2,3-butanediol, acetoin, and benzoic acid which were not found in untreated TSB medium. In gene expression analysis, antifungal lipopeptide genes like srfc (surfactin) and ituD (iturin A) were highly produced in the HY-3479 strain compared to the control strain KCTC 13417. B. velezensis strain HY-3479 may be the candidate to be an effective microorganism in agriculture and become a beneficial biocontrol agent with plant growth-promoting activities.
Collapse
|
3
|
Wongsirichot P, Gonzalez-Miquel M, Winterburn J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Wang M, Yang C, François JM, Wan X, Deng Q, Feng D, Deng S, Chen S, Huang F, Chen W, Gong Y. A Two-step Strategy for High-Value-Added Utilization of Rapeseed Meal by Concurrent Improvement of Phenolic Extraction and Protein Conversion for Microbial Iturin A Production. Front Bioeng Biotechnol 2021; 9:735714. [PMID: 34869254 PMCID: PMC8635924 DOI: 10.3389/fbioe.2021.735714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Rapeseed meal (RSM) is a major by-product of oil extraction from rapeseed, consists mainly of proteins and phenolic compounds. The use of RSM as protein feedstock for microbial fermentation is always hampered by phenolic compounds, which have antioxidant property with health-promoting benefits but inhibit bacterial growth. However, there is still not any good process that simultaneously improve extraction efficiency of phenolic compounds with conversion efficiency of protein residue into microbial production. Here we established a two-step strategy including fungal pretreatment followed by extraction of phenolic compounds. This could not only increase extraction efficiency and antioxidant property of phenolic compounds by about 2-fold, but also improve conversion efficiency of protein residue into iturin A production by Bacillus amyloliquefaciens CX-20 by about 33%. The antioxidant and antibacterial activities of phenolic extracts were influenced by both total phenolic content and profile, while microbial feedstock value of residue was greatly improved because protein content was increased by ∼5% and phenolic content was decreased by ∼60%. Moreover, this two-step process resulted in isolating more proteins from RSM, bringing iturin A production to 1.95 g/L. In conclusion, high-value-added and graded utilization of phenolic extract and protein residue from RSM with zero waste is realized by a two-step strategy, which combines both benefits of fungal pretreatment and phenolic extraction procedures.
Collapse
Affiliation(s)
- Meng Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | | | - Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Danyang Feng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyu Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| |
Collapse
|
5
|
WoldemariamYohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, Wang J, Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14709-14727. [PMID: 33280382 DOI: 10.1021/acs.jafc.0c06396] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.
Collapse
Affiliation(s)
- Kalekristos WoldemariamYohannes
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Wan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinglin Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
6
|
Chen W, Wang M, Gong Y, Deng Q, Zheng M, Chen S, Wan X, Yang C, Huang F. The unconventional adverse effects of fungal pretreatment on iturin A fermentation by Bacillus amyloliquefaciens CX-20. Microb Biotechnol 2020; 14:587-599. [PMID: 32997385 PMCID: PMC7936297 DOI: 10.1111/1751-7915.13658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/29/2022] Open
Abstract
Fungal pretreatment is the most common strategy for improving the conversion of rapeseed meal (RSM) into value-added microbial products. It was demonstrated that Bacillus amyloliquefaciens CX-20 could directly use RSM as the sole source of all nutrients except the carbon source for iturin A fermentation with high productivity. However, whether fungal pretreatment has an impact on iturin A production is still unknown. In this study, the effects of fungal pretreatment and direct bio-utilization of RSM for iturin A fermentation were comparatively analysed through screening suitable fungal species, and evaluating the relationships between iturin A production and the composition of solid fermented RSM and liquid hydrolysates. Three main unconventional adverse effects were identified. (1) Solid-state fermentation by fungi resulted in a decrease of the total nitrogen for B. amyloliquefaciens CX-20 growth and metabolism, which caused nitrogen waste from RSM. (2) The released free ammonium nitrogen in liquid hydrolysates by fungal pretreatment led to the reduction of iturin A. (3) The insoluble precipitates of hydrolysates, which were mostly ignored and wasted in previous studies, were found to have beneficial effects on producing iturin A. In conclusion, our study verifies the unconventional adverse effects of fungal pretreatment on iturin A production by B. amyloliquefaciens CX-20 compared with direct bio-utilization of RSM.
Collapse
Affiliation(s)
- Wenchao Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Meng Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yangmin Gong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Chen Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| |
Collapse
|
7
|
Wang Y, Zhao B, Liu Y, Mao L, Zhang X, Meng W, Liu K, Chu J. A novel trehalosamine isolated from Bacillus amyloliquefaciens and its antibacterial activities. AMB Express 2020; 10:6. [PMID: 31938970 PMCID: PMC6960277 DOI: 10.1186/s13568-019-0943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Bacillus amyloliquefaciens has been widely used as a probiotic in the field of biological control,and its antibacterial compounds plays an important role in the prevention and control of plant, livestock and poultry diseases. It has the advantages of green, safe and efficiency. This study aims to separate and purify active ingredient from Bacillus amyloliquefaciens GN59 and study its antibacterial activity. A novel compound was isolated from GN59 by column chromatography on silica gel and HPLC purification. The chemical structure was identified as α-D-glucopyranosyl-(1 → 1')-3'-amino-3'-deoxy-β-D-glucopyranoside (a,β-3-trehalosamine) on the basis of spectroscopic analysis. This is the first report about a,β-3-trehalosamine isolated from biological resources on an antibiotic activity against pathogenic bacterium. The 3'-neotrehalosamine displayed antibacterial activity across a broad spectrum of microorganisms, including different gram-positive and gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 0.5 to 0.7 mg/mL. The results indicated that the 3'-neotrehalosamine from GN59 might be a potential candidate for bactericide.
Collapse
|
8
|
Chen W, Li X, Ma X, Chen S, Kang Y, Yang M, Huang F, Wan X. Simultaneous hydrolysis with lipase and fermentation of rapeseed cake for iturin A production by Bacillus amyloliquefaciens CX-20. BMC Biotechnol 2019; 19:98. [PMID: 31842877 PMCID: PMC6915999 DOI: 10.1186/s12896-019-0591-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/05/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Rapeseed cake (RSC), as the intermediate by-product of oil extraction from the seeds of Brassica napus, can be converted into rapeseed meal (RSM) by solvent extraction to remove oil. However, compared with RSM, RSC has been rarely used as a raw material for microbial fermentation, although both RSC and RSM are mainly composed of proteins, carbohydrates and minerals. In this study, we investigated the feasibility of using untreated low-cost RSC as nitrogen source to produce the valuable cyclic lipopeptide antibiotic iturin A using Bacillus amyloliquefaciens CX-20 in submerged fermentation. Especially, the effect of oil in RSC on iturin A production and the possibility of using lipases to improve the iturin A production were analyzed in batch fermentation. RESULTS The maximum production of iturin A was 0.82 g/L at the optimal initial RSC and glucose concentrations of 90 and 60 g/L, respectively. When RSC was substituted with RSM as nitrogen source based on equal protein content, the final concentration of iturin A was improved to 0.95 g/L. The production of iturin A was further increased by the addition of different lipase concentrations from 0.1 to 5 U/mL into the RSC medium for simultaneous hydrolysis and fermentation. At the optimal lipase concentration of 0.5 U/mL, the maximal production of iturin A reached 1.14 g/L, which was 38.15% higher than that without any lipase supplement. Although rapeseed oil and lipase were firstly shown to have negative effects on iturin A production, and the effect would be greater if the concentration of either was increased, their respective negative effects were reduced when used together. CONCLUSIONS Appropriate relative concentrations of lipase and rapeseed oil were demonstrated to support optimal iturin A production. And simultaneous hydrolysis with lipase and fermentation was an effective way to produce iturin A from RSC using B. amyloliquefaciens CX-20.
Collapse
Affiliation(s)
- Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, People's Republic of China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, People's Republic of China
| | - Xuan Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Xuli Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yanping Kang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Minmin Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, People's Republic of China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, People's Republic of China
| | - Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China. .,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China. .,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, People's Republic of China. .,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, People's Republic of China.
| |
Collapse
|