1
|
Mallikarachchi KEP, Bandara KRV, Weerasekera MM, Nugara RN, Undugoda LJS, Manage PM. Aromatase (CYP19) gene as a biomarker for detection of naphthalene and phenanthrene in Colombo to Mirissa coastal water in Sri Lanka. MARINE POLLUTION BULLETIN 2024; 201:116187. [PMID: 38412796 DOI: 10.1016/j.marpolbul.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Naphthalene (NAP) and phenanthrene (PHE) are prevalent Polycyclic Aromatic Hydrocarbons (PAHs) in the environment. High-Performance Liquid Chromatography (HPLC) analysis was performed on marine water samples (n = 57) collected from 19 locations. Molecular screening of the aromatase (CYP19) gene expression was examined using quantitative Reverse Transcriptase PCR (qRT-PCR). The findings of the study showed a significant range of naphthalene concentrations along the coastline, spanning from 1.70 to 15.05 mg/L, where phenanthrene concentrations varied from undetectable to a maximum of 5.36 mg/L. The relative expression of the CYP19 gene ranged from 0.5 to 13.9 in the sampling sites. The ANOVA analysis showed a significant positive correlation (p < 0.05) between the concentrations of PAHs and CYP19 gene expression. The study concluded that the CYP19 gene could be useful in detecting contaminants such as naphthalene and phenanthrene in water. This study may help develop effective strategies to detect and mitigate PAH pollution in coastal areas.
Collapse
Affiliation(s)
- K E P Mallikarachchi
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - K R V Bandara
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka
| | - M M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - R N Nugara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, Sri Lanka
| | - L J S Undugoda
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, Sri Lanka
| | - P M Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka.
| |
Collapse
|
2
|
Cano I, Wood G, Stone D, Noyer M, Canier L, Arzul I. Loop-Mediated Isothermal Amplification for the Fast Detection of Bonamia ostreae and Bonamia exitiosa in Flat Oysters. Pathogens 2024; 13:132. [PMID: 38392870 PMCID: PMC10893247 DOI: 10.3390/pathogens13020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The haplosporidian parasites Bonamia ostreae (BO) and B. exitiosa (BE) are serious oyster pathogens. Two independent laboratories evaluated fluorescence real-time loop-mediated isothermal amplification (LAMP) assays for rapidly detecting these parasites. Specific LAMP assays were designed on the BO actin-1 and BE actin genes. A further generic assay was conceived on a conserved region of the 18S gene to detect both Bonamia species. The optimal reaction temperature varied from 65 to 67 °C depending on the test and instrument. Melting temperatures were 89.8-90.2 °C, 87.0-87.6 °C, and 86.2-86.6 °C for each of the BO, BE, and generic assays. The analytical sensitivity of these assays was 50 copies/µL in a 30 min run. The BO and BE test sensitivity was ~1 log lower than a real-time PCR, while the generic test sensitivity was similar to the real-time PCR. Both the BO and BE assays were shown to be specific; however, the generic assay potentially cross-reacts with Haplosporidium costale. The performance of the LAMP assays evaluated on samples of known status detected positives within 7-20 min with a test accuracy of 100% for the BO and generic tests and a 95.8% accuracy for BE. The ease of use, rapidity and affordability of these tests allow for field deployment.
Collapse
Affiliation(s)
- Irene Cano
- The International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK (D.S.)
| | - Gareth Wood
- The International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK (D.S.)
| | - David Stone
- The International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK (D.S.)
| | - Mathilde Noyer
- The Institut Français de Recherche pour l’Exploitation de la Mer Ifremer, RBE-SG2M-ASIM, Station de La Tremblade, Avenue de Mus de Loup, La Tremblade, 17390 Brest, France; (M.N.); (L.C.); (I.A.)
| | - Lydie Canier
- The Institut Français de Recherche pour l’Exploitation de la Mer Ifremer, RBE-SG2M-ASIM, Station de La Tremblade, Avenue de Mus de Loup, La Tremblade, 17390 Brest, France; (M.N.); (L.C.); (I.A.)
| | - Isabelle Arzul
- The Institut Français de Recherche pour l’Exploitation de la Mer Ifremer, RBE-SG2M-ASIM, Station de La Tremblade, Avenue de Mus de Loup, La Tremblade, 17390 Brest, France; (M.N.); (L.C.); (I.A.)
| |
Collapse
|
3
|
Douchet P, Gourbal B, Loker ES, Rey O. Schistosoma transmission: scaling-up competence from hosts to ecosystems. Trends Parasitol 2023; 39:563-574. [PMID: 37120369 PMCID: PMC10880732 DOI: 10.1016/j.pt.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
In a One-Health context, it is urgent to establish the links between environmental degradation, biodiversity loss, and the circulation of pathogens. Here we review and literally draw a general vision of aquatic environmental factors that interface with Schistosoma species, agents of schistosomiasis, and ultimately modulate their transmission at the ecosystem scale. From this synthesis, we introduce the concept of ecosystem competence defined as 'the propensity of an ecosystem to amplify or mitigate an incoming quantity of a given pathogen that can be ultimately transmitted to their definitive hosts'. Ecosystem competence integrates all mechanisms at the ecosystem scale underlying the transmission risk of a given pathogen and offers a promising measure for operationalizing the One-Health concept.
Collapse
Affiliation(s)
- Philippe Douchet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Parasite Division - Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Olivier Rey
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.
| |
Collapse
|
4
|
Mérou N, Lecadet C, Ubertini M, Pouvreau S, Arzul I. Environmental distribution and seasonal dynamics of Marteilia refringens and Bonamia ostreae, two protozoan parasites of the European flat oyster, Ostrea edulis. Front Cell Infect Microbiol 2023; 13:1154484. [PMID: 37384224 PMCID: PMC10293890 DOI: 10.3389/fcimb.2023.1154484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Marteilia refringens and Bonamia ostreae are protozoan parasites responsible for mortalities of farmed and wild flat oysters Ostrea edulis in Europe since 1968 and 1979, respectively. Despite almost 40 years of research, the life-cycle of these parasites is still poorly known, especially regarding their environmental distribution. Methods We carried out an integrated field study to investigate the dynamics of M. refringens and B. ostreae in Rade of Brest, where both parasites are known to be present. We used real-time PCR to monitor seasonally over four years the presence of both parasites in flat oysters. In addition, we used previously developed eDNA based-approaches to detect parasites in planktonic and benthic compartments for the last two years of the survey. Results M. refringens was detected in flat oysters over the whole sampling period, sometimes with a prevalence exceeding 90%. It was also detected in all the sampled environmental compartments, suggesting their involvement in parasite transmission and overwintering. In contrast, B. ostreae prevalence in flat oysters was low and the parasite was almost never detected in planktonic and benthic compartments. Finally, the analysis of environmental data allowed describing the seasonal dynamics of both parasites in Rade of Brest: M. refringens was more detected in summer and fall than in winter and spring, contrary to B. ostreae which showed higher prevalence in winter and spring. Discussion The present study emphasizes the difference between M. refringens and B. ostreae ecology, the former presenting a wider environmental distribution than the latter, which seems closely associated to flat oysters. Our findings highlight the key role of planktonic and benthic compartments in M. refringens transmission and storage or potential overwintering, respectively. More generally, we provide here a method that could be useful not only to further investigate non cultivable pathogens life-cycle, but also to support the design of more integrated surveillance programs.
Collapse
Affiliation(s)
- Nicolas Mérou
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
- POS3IDON, R&D Department, Saint Malo, France
| | - Cyrielle Lecadet
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
| | | | - Stéphane Pouvreau
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Unité Mixte de Recherche (UMR) 6539 Ifremer/Université de Bretagne Occidentale (UBO)/Institut de Recherche pour le Développement (IRD)/Centre National de la Recherche Scientifique (CNRS), Ifremer, Argenton-en-Landunvez, France
| | - Isabelle Arzul
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
| |
Collapse
|
5
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Moro-Martínez I, Vázquez-Luis M, García-March JR, Prado P, Mičić M, Catanese G. Haplosporidium pinnae Parasite Detection in Seawater Samples. Microorganisms 2023; 11:1146. [PMID: 37317120 PMCID: PMC10220642 DOI: 10.3390/microorganisms11051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
In this study, we investigated the presence of the parasite Haplosporidium pinnae, which is a pathogen for the bivalve Pinna nobilis, in water samples from different environments. Fifteen mantle samples of P. nobilis infected by H. pinnae were used to characterize the ribosomal unit of this parasite. The obtained sequences were employed to develop a method for eDNA detection of H. pinnae. We collected 56 water samples (from aquaria, open sea and sanctuaries) for testing the methodology. In this work, we developed three different PCRs generating amplicons of different lengths to determine the level of degradation of the DNA, since the status of H. pinnae in water and, therefore, its infectious capacity are unknown. The results showed the ability of the method to detect H. pinnae in sea waters from different areas persistent in the environment but with different degrees of DNA fragmentation. This developed method offers a new tool for preventive analysis for monitoring areas and to better understand the life cycle and the spread of this parasite.
Collapse
Affiliation(s)
- Irene Moro-Martínez
- LIMIA-IRFAP Laboratorio de Investigaciones Marinas y Acuicultura—Govern de les Illes Balears, 07157 Port d’Andratx, Spain;
| | - Maite Vázquez-Luis
- IEO-CSIC, Centro Oceanográfico de Baleares Instituto Español de Oceanografía, 07010 Palma de Mallorca, Spain;
| | - José Rafael García-March
- IMEDMAR-UCV Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, 03710 Calpe, Spain;
| | | | - Milena Mičić
- Aquarium Pula d.o.o., Ulica Verudella 33, 52100 Pula, Croatia;
| | - Gaetano Catanese
- LIMIA-IRFAP Laboratorio de Investigaciones Marinas y Acuicultura—Govern de les Illes Balears, 07157 Port d’Andratx, Spain;
- INAGEA (UIB)-Instituto de Investigaciones Agroambientales y de Economía del Agua, Universidad de las Islas Baleares, Carretera de Valldemossa, km 7.5, 07122 Palma, Spain
| |
Collapse
|
7
|
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol 2023; 39:285-304. [PMID: 36759269 DOI: 10.1016/j.pt.2022.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Detection of pathogens, parasites, and other symbionts in environmental samples via eDNA/eRNA (collectively eNA) is an increasingly important source of information about their occurrence and activity. There is great potential for using such detections as a proxy for infection of host organisms in connected habitats, for pathogen monitoring and surveillance, and for early warning systems for disease. However, many factors require consideration, and appropriate methods developed and verified, in order that eNA detections can be reliably interpreted and adopted for surveillance and assessment of disease risk, and potentially inclusion in international standards, such as the World Organisation for Animal Health guidelines. Disease manifestation results from host-symbiont-environment interactions between hosts, demanding a multifactorial approach to interpretation of eNA signals.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Kevin W Christison
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - Lauren S J Cook
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Hanna Hartikainen
- University of Nottingham, School of Life Sciences, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
8
|
Batista FM, Hatfield R, Powell A, Baker-Austin C, Lowther J, Turner AD. Methodological advances in the detection of biotoxins and pathogens affecting production and consumption of bivalve molluscs in a changing environment. Curr Opin Biotechnol 2023; 80:102896. [PMID: 36773575 DOI: 10.1016/j.copbio.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023]
Abstract
The production, harvesting and safe consumption of bivalve molluscs can be disrupted by biological hazards that can be divided into three categories: (1) biotoxins produced by naturally occurring phytoplankton that are bioaccumulated by bivalves during filter-feeding, (2) human pathogens also bioaccumulated by bivalves and (3) bivalve pathogens responsible for disease outbreaks. Environmental changes caused by human activities, such as climate change, can further aggravate these challenges. Early detection and accurate quantification of these hazards are key to implementing measures to mitigate their impact on production and safeguard consumers. This review summarises the methods currently used and the technological advances in the detection of biological hazards affecting bivalves, for the screening of known hazards and discovery of new ones.
Collapse
Affiliation(s)
- Frederico M Batista
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Robert Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
9
|
Amarasiri M, Furukawa T, Nakajima F, Sei K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148810. [PMID: 34265610 DOI: 10.1016/j.scitotenv.2021.148810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are spreading in to previously unreported geographical regions, and are reappeared in regions 75 or 100 years after their last reported case, as a result of environmental changes caused by anthropogenic activities. A pathogen, vector/host monitoring methodology is therefore indispensable in identifying potential transmission sites, providing early warnings and evaluating the human health risks of these infectious diseases in a given area. Recently, environmental DNA (eDNA) and environmental RNA approach (eRNA) have become widespread in monitoring organisms in the environment due to advantages like lower cost, time, and labour requirements. However, eDNA/eRNA based monitoring of pathogens and vectors/hosts using aquatic samples is limited to very few studies. In this review, we summarized the currently available eDNA/eRNA based human and non-human pathogens and vectors/hosts detection studies in aquatic samples. Species-specific shedding, transport, and decay of eDNA/eRNA in aquatic environments which is essential in estimating the abundance of pathogen, vectors/host in focus is also summarized. We also suggest the usage of eDNA/eRNA approach in urban aquatic samples like runoff in identifying the disease vectors/hosts inhabiting in locations which are not accessible easily.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan.
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| |
Collapse
|
10
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
11
|
Farrell JA, Whitmore L, Duffy DJ. The Promise and Pitfalls of Environmental DNA and RNA Approaches for the Monitoring of Human and Animal Pathogens from Aquatic Sources. Bioscience 2021. [PMCID: PMC8083301 DOI: 10.1093/biosci/biab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Novel forensics-inspired molecular approaches have revolutionized species detection in the wild and are particularly useful for tracing endangered or invasive species. These new environmental DNA or RNA (eDNA or eRNA)–based techniques are now being applied to human and animal pathogen surveillance, particularly in aquatic environments. They allow better disease monitoring (presence or absence and geographical spread) and understanding of pathogen occurrence and transmission, benefitting species conservation and, more recently, our understanding of the COVID-19 global human pandemic. In the present article, we summarize the benefits of eDNA-based monitoring, highlighted by two case studies: The first is a fibropapillomatosis tumor-associated herpesvirus (chelonid herpesvirus 5) driving a sea turtle panzootic, and the second relates to eRNA-based detection of the SARS-CoV-2 coronavirus driving the COVID-19 human pandemic. The limitations of eDNA- or eRNA-based approaches are also summarized, and future directions and recommendations of the field are discussed. Continuous eDNA- or eRNA-based monitoring programs can potentially improve human and animal health by predicting disease outbreaks in advance, facilitating proactive rather than reactive responses.
Collapse
Affiliation(s)
- Jessica A Farrell
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| | - Liam Whitmore
- University of Limerick's Department of Biological Sciences in the School of Natural Sciences and Faculty of Science and Engineering, Limerick, Ireland
| | - David J Duffy
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| |
Collapse
|