1
|
Martínez-Haro M, Triadó-Margarit X, Mateo R, Viñuela JA, Casamayor EO. Taxonomic and functional fingerprints in the gut microbiota of Iberian hare (Lepus granatensis) inhabiting organic and conventional farming fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125862. [PMID: 39956507 DOI: 10.1016/j.envpol.2025.125862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Intensive farming leading to both landscape homogenization and massive use of pesticides is threatening biodiversity associated with agricultural landscapes. Pesticides may alter the composition of the gut microbiota, which contributes critically to a variety of host metabolic and immune functions, and the consequences on wildlife health are still unknown. We studied potential effects of farming practices on the gut microbiota of wild Iberian hare populations (Lepus granatensis) inhabiting conventional (synthetic pesticide-treated, mostly glyphosate) and organic (synthetic pesticide-free) farming areas in Central Spain. We analyzed duodenum, caecum, and rectum sections and fresh feces by massive 16S rRNA gene sequencing. Our study supports the use of fresh feces as a non-invasive proxy for monitoring dynamic changes in the gut community. The gut metacommunity under conventional farming showed higher richness and diversity (both ecological and phylogenetic) but with more homogeneous composition among hares (lower beta-dispersion) than the gut metacommunity detected in organic farming areas. We did not observe dysbiosis or significant enrichment in pathogenic bacteria. Potential negative effects on community-level abilities for vegetable fiber degradation were observed in conventional farming fields. Ruminococcaceae, which play a key role as cellulose degraders, showed significant lower relative abundances in conventional fields and lower potential for the butyrate metabolism. We show a gut index based on the ratio of fecal Ruminococcaceae that may be helpful for predictive environmental diagnostics. Further experimental research and in situ monitoring of gut microbiota are needed to substantiate these findings and to fully understand the potential undesired effects of synthetic pesticides in untargeted wildlife.
Collapse
Affiliation(s)
- Mónica Martínez-Haro
- Centro de Investigación Agroambiental El Chaparrillo, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Ciudad Real, Spain; Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Xavier Triadó-Margarit
- Ecology of the Global Microbiome-Department of Ecology and Complexity, Centre of Advanced Studies of Blanes-CEAB-CSIC, Blanes, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - José Alberto Viñuela
- Centro de Investigación Apícola y Agroambiental de Marchamalo, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Marchamalo, Guadalajara, Spain
| | - Emilio O Casamayor
- Ecology of the Global Microbiome-Department of Ecology and Complexity, Centre of Advanced Studies of Blanes-CEAB-CSIC, Blanes, Spain.
| |
Collapse
|
2
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2024. [PMID: 39530277 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Xiaolin Wang
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Akhil Kommala
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Noah Schulhof
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Allison MacDonald
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia Jukovich
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emma Smith
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emily Kelleher
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kota Suzuki
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Zoey Hall
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katherine Ryan Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Lu Y, Zhang L, Liu X, Lan Y, Wu L, Wang J, Wu K, Yang C, Lv R, Yi D, Zhuo G, Li Y, Shen F, Hou R, Yue B, Fan Z. Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity. Integr Zool 2024; 19:662-682. [PMID: 38420673 DOI: 10.1111/1749-4877.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.
Collapse
Affiliation(s)
- Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Lixia Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kongju Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Chaojie Yang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruiqing Lv
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Guifu Zhuo
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Yan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhang K, He C, Wang L, Suo L, Guo M, Guo J, Zhang T, Xu Y, Lei Y, Liu G, Qian Q, Mao Y, Kalds P, Wu Y, Cuoji A, Yang Y, Brugger D, Gan S, Wang M, Wang X, Zhao F, Chen Y. Compendium of 5810 genomes of sheep and goat gut microbiomes provides new insights into the glycan and mucin utilization. MICROBIOME 2024; 12:104. [PMID: 38845047 PMCID: PMC11155115 DOI: 10.1186/s40168-024-01806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.
Collapse
Affiliation(s)
- Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chong He
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Mengmeng Guo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611100, China
| | - Ting Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongwei Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quan Qian
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yunrui Mao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Awang Cuoji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Yuxin Yang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meili Wang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 102206, China.
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Zhu XM, Chen JQ, Du Y, Lin CX, Qu YF, Lin LH, Ji X. Microbial communities are thermally more sensitive in warm-climate lizards compared with their cold-climate counterparts. Front Microbiol 2024; 15:1374209. [PMID: 38686106 PMCID: PMC11056556 DOI: 10.3389/fmicb.2024.1374209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Environmental temperature affects the composition, structure, and function of the gut microbial communities in host animals. To elucidate the role of gut microbiota in thermal adaptation, we designed a 2 species × 3 temperatures experiment, whereby we acclimated adult males of two agamid lizard species (warm-climate Leiolepis reevesii and cold-climate Phrynocephalus przewalskii) to 20, 28, and 36°C for 2 weeks and then collected their fecal and small-intestinal samples to analyze and compare the microbiota using 16S rRNA gene amplicon sequencing technology. The fecal microbiota displayed more pronounced interspecific differences in microbial community than the small-intestinal microbiota in the two species occurring in thermally different regions. The response of fecal and small-intestinal microbiota to temperature increase or decrease differed between the two species, with more bacterial taxa affected by acclimation temperature in L. reevesii than in P. przewalskii. Both species, the warm-climate species in particular, could cope with temperature change by adjusting the relative abundance of functional categories associated with metabolism and environmental information processing. Functional genes associated with carbohydrate metabolism were enhanced in P. przewalskii, suggesting the contribution of the fecal microbiota to cold-climate adaptation in P. przewalskii. Taken together, our results validate the two hypotheses tested, of which one suggests that the gut microbiota should help lizards adapt to thermal environments in which they live, and the other suggests that microbial communities should be thermally more sensitive in warm-climate lizards than in cold-climate lizards.
Collapse
Affiliation(s)
- Xia-Ming Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jun-Qiong Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
6
|
Zhang Y, He X, Mo X, Wu H, Zhao D. Similarities and differences: species and diet impact gut microbiota of captive pheasants. PeerJ 2024; 12:e16979. [PMID: 38560462 PMCID: PMC10979745 DOI: 10.7717/peerj.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
The fecal microbiota plays an important role in maintaining animal health and is closely related to host life activities. In recent years, there have been an increasing number of studies on the fecal microbiota from birds. An exploration of the effects of species and living environments on the composition of gut microbiota will provide better protection for wildlife. In this study, non-injury sampling and 16S rDNA high-throughput sequencing were used to investigate the bacterial composition and diversity of the fecal microbiota in silver pheasants (Lophura nycthemera) and golden pheasants (Chrysolophus pictus) from Tianjin Zoo and Beijing Wildlife Park. The results showed that the abundance of Firmicutes was the highest in all fecal samples. At the genus level, Bacteroides was the common dominant bacteria, while there were some differences in other dominant bacteria genera. There were significant differences in fecal microbial composition between the golden pheasants from Tianjin Zoo and Beijing Wildlife Park. The metabolic analysis and functional prediction suggested that the gut microbiota composition and host metabolism were influenced by dietary interventions and living conditions. The results of this study provide the basis for further research of intestinal microbial of L. nycthemera and C. pictus, and valuable insights for conservation of related species.
Collapse
Affiliation(s)
- Yushuo Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xin He
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xiuhong Mo
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
7
|
Guo J, Shi W, Li X, Yang B, Qin C, Su L. Comparative Analysis of Gut Microbiomes in Laboratory Chinchillas, Ferrets, and Marmots: Implications for Pathogen Infection Research. Microorganisms 2024; 12:646. [PMID: 38674591 PMCID: PMC11051751 DOI: 10.3390/microorganisms12040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gut microbes play a vital role in the health and disease of animals, especially in relation to pathogen infections. Chinchillas, ferrets, and marmots are commonly used as important laboratory animals for infectious disease research. Here, we studied the bacterial and fungal microbiota and discovered that chinchillas had higher alpha diversity and a higher abundance of bacteria compared to marmots and ferrets by using the metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. The dominant microbes varied significantly among the three animal species, particularly in the gut mycobiota. In the ferrets, the feces were dominated by yeast such as Rhodotorula and Kurtzmaniella, while in the chinchillas, we found Teunomyces and Penicillium dominating, and Acaulium, Piromyces, and Kernia in the marmots. Nevertheless, the dominant bacterial genera shared some similarities, such as Clostridium and Pseudomonas across the three animal species. However, there were significant differences observed, such as Vagococcus and Ignatzschineria in the ferrets, Acinetobacter and Bacteroides in the chinchillas, and Bacteroides and Cellvibrio in the marmots. Additionally, our differential analysis revealed significant differences in classification levels among the three different animal species, as well as variations in feeding habitats that resulted in distinct contributions from the host microbiome. Therefore, our data are valuable for monitoring and evaluating the impacts of the microbiome, as well as considering potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing 100021, China; (J.G.); (W.S.); (X.L.); (B.Y.); (C.Q.)
| |
Collapse
|
8
|
Yang S, Deng W, Li G, Jin L, Huang Y, He Y, Wu D, Li D, Zhang A, Liu C, Li C, Zhang H, Xu H, Penttinen P, Zhao K, Zou L. Reference gene catalog and metagenome-assembled genomes from the gut microbiome reveal the microbial composition, antibiotic resistome, and adaptability of a lignocellulose diet in the giant panda. ENVIRONMENTAL RESEARCH 2024; 245:118090. [PMID: 38163545 DOI: 10.1016/j.envres.2023.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The giant panda, a strict herbivore that feeds on bamboo, still retains a typical carnivorous digestive system. Reference catalogs of microbial genes and genomes are lacking, largely limiting the antibiotic resistome and functional exploration of the giant panda gut microbiome. Here, we integrated 177 fecal metagenomes of captive and wild giant pandas to construct a giant panda integrated gene catalog (GPIGC) comprised of approximately 4.5 million non-redundant genes and reconstruct 393 metagenome-assembled genomes (MAGs). Taxonomic and functional characterization of genes revealed that the captivity of the giant panda significantly changed the core microbial composition and the distribution of microbial genes. Higher abundance and prevalence of antibiotic resistance genes (ARGs) were detected in the guts of captive giant pandas, and ARG distribution was influenced by geography, for both captive and wild individuals. Escherichia, as the prevalent genus in the guts of captive giant pandas, was the main carrier of ARGs, meaning there is a high risk of ARG transmission by Escherichia. We also found that multiple mcr gene variants, conferring plasmid-mediated mobile colistin resistance, were widespread in the guts of captive and wild giant pandas. There were low proportions of carbohydrate-active enzyme (CAZyme) genes in GPIGC and MAGs compared with several omnivorous and herbivorous mammals. Many members of Clostridium MAGs were significantly enriched in the guts of adult, old and wild giant pandas. The genomes of isolates and MAGs of Clostridiaceae harbored key genes or enzymes in complete pathways for degrading lignocellulose and producing short-chain fatty acids (SCFAs), indicating the potential of these bacteria to utilize the low-nutrient bamboo diet. Overall, our data presented an exhaustive reference gene catalog and MAGs in giant panda gut and provided a comprehensive understanding of the antibiotic resistome and microbial adaptability for a high-lignocellulose diet.
Collapse
Affiliation(s)
- Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Wenwen Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Guo Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Desheng Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Anyun Zhang
- College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chengxi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, 610051, Sichuan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Wu Y, Zhou T, Gu C, Yin B, Yang S, Zhang Y, Wu R, Wei W. Geographical distribution and species variation of gut microbiota in small rodents from the agro-pastoral transition ecotone in northern China. Ecol Evol 2024; 14:e11084. [PMID: 38469048 PMCID: PMC10926059 DOI: 10.1002/ece3.11084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
The gut microbiota of rodents is essential for survival and adaptation and is susceptible to various factors, ranging from environmental conditions to genetic predispositions. Nevertheless, few comparative studies have considered the contribution of species identity and geographic spatial distance to variations in the gut microbiota. In this study, a random sampling survey encompassing four rodent species (Apodemus agrarius, Cricetulus barabensis, Tscherskia triton and Rattus norvegicus) was conducted at five sites in northern China's farming-pastoral ecotone. Through a cross-factorial comparison, we aimed to discern whether belonging to the same species or sharing the same capture site predominantly influences the composition of gut microbiota. Notably, the observed variations in microbiome composition among these four rodent species match the host phylogeny at the family level but not at the species level. The gut microbiota of these four rodent species exhibited typical mammalian characteristics, predominantly characterized by the Firmicutes and Bacteroidetes phyla. As the geographic distance between populations increased, the number of shared microbial taxa among conspecific populations decreased. We observed that within a relatively small geographical range, even different species exhibited convergent α-diversity due to their inhabitation within the same environmental microbial pool. In contrast, the composition and structure of the intestinal microbiota in the allopatric populations of A. agrarius demonstrated marked differences, similar to those of C. barabensis. Additionally, geographical environmental elements exhibited significant correlations with diversity indices. Conversely, host-related factors had minimal influence on microbial abundance. Our findings indicated that the similarity of the microbial compositions was not determined primarily by the host species, and the location of the sampling explained a greater amount of variation in the microbial composition, indicating that the local environment played a crucial role in shaping the microbial composition.
Collapse
Affiliation(s)
- Yongzhen Wu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Taoxiu Zhou
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Chen Gu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Baofa Yin
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Shengmei Yang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Yunzeng Zhang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Ruiyong Wu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Wanhong Wei
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
10
|
Sun X, Sitters J, Ruytinx J, Wassen MJ, Olde Venterink H. Microbial community composition in the dung of five sympatric European herbivore species. Ecol Evol 2024; 14:e11071. [PMID: 38481755 PMCID: PMC10933625 DOI: 10.1002/ece3.11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 06/21/2024] Open
Abstract
The dung microbiome is a complex system that is highly influenced by species and diet. This study characterized the dung bacterial and fungal communities of five herbivore species inhabiting the National Park Zuid-Kennemerland, the Netherlands. The five selected herbivore species were rabbit (Oryctolagus cuniculus L.), cow (Bos taurus L.), horse (Equus ferus caballus L.), fallow deer (Dama dama L.), and European bison (Bison bonasus L.). We explored the effects of distinct digestive physiology (ruminants vs. non-ruminants) and diverse dietary preferences on the microbial community composition of herbivore dung. Firmicutes and Bacteroidetes were dominant bacterial phyla in the dung of all five herbivore species, and Ascomycota was the predominant fungal phylum. Verrucomicrobiota and Mucoromycota were more present in horse dung and Proteobacteria were more abundant in rabbit dung than the three ruminant dung types. There were few significant differences in the microbial community structure among the three ruminant dung types. The alpha and beta diversity of dung microbial communities significantly differed between ruminants and non-ruminants, especially in bacterial communities. Based on MetaCyc pathways, we found that the primary functions of bacteria in herbivore dung were focused on biosynthesis, various super pathways, and degradation, with a few differences between ruminant and non-ruminant dung. FUNGuild analysis showed that horse dung had more saprotrophic fungi, while the fungi in fallow deer dung had more symbiotrophic properties, with the fungal functions of bison, cow, and rabbit dung somewhere in between. There was also a correlation between microbial community and nutrient composition of the substrate in herbivore dung. Understanding the dung microbial community composition of these herbivore species can enrich the database of mammalian gut microbiomes for studying the mechanisms of microbial community variation while preparing for exploring a new perspective to study the impact of herbivores on ecosystems through dung deposition.
Collapse
Affiliation(s)
- Xingzhao Sun
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
| | - Judith Sitters
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
- B‐WARE Research CentreNijmegenThe Netherlands
| | - Joske Ruytinx
- Research Groups Microbiology and Plant GeneticsVrije Universiteit BrusselBrusselsBelgium
| | - Martin J. Wassen
- Environmental Sciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
11
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
12
|
Tang X, Zhang L, Ren S, Zhao Y, Zhang Y. Temporal and geographic distribution of gut microbial enterotypes associated with host thermogenesis characteristics in plateau pikas. Microbiol Spectr 2023; 11:e0002023. [PMID: 37815332 PMCID: PMC10715161 DOI: 10.1128/spectrum.00020-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The gut microbiotas of small mammals play an important role in host energy homeostasis. However, it is still unknown whether small mammals with different enterotypes show differences in thermogenesis characteristics. Our study confirmed that plateau pikas with different bacterial enterotypes harbored distinct thermogenesis capabilities and employed various strategies against cold environments. Additionally, we also found that pikas with different fungal enterotypes may display differences in coprophagy.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
13
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
14
|
Tang X, Zhang L, Ren S, Zhao Y, Liu K, Zhang Y. Stochastic Processes Derive Gut Fungi Community Assembly of Plateau Pikas ( Ochotona curzoniae) along Altitudinal Gradients across Warm and Cold Seasons. J Fungi (Basel) 2023; 9:1032. [PMID: 37888290 PMCID: PMC10607853 DOI: 10.3390/jof9101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Although fungi occupy only a small proportion of the microbial community in the intestinal tract of mammals, they play important roles in host fat accumulation, nutrition metabolism, metabolic health, and immune development. Here, we investigated the dynamics and assembly of gut fungal communities in plateau pikas inhabiting six altitudinal gradients across warm and cold seasons. We found that the relative abundances of Podospora and Sporormiella significantly decreased with altitudinal gradients in the warm season, whereas the relative abundance of Sarocladium significantly increased. Alpha diversity significantly decreased with increasing altitudinal gradient in the warm and cold seasons. Distance-decay analysis showed that fungal community similarities were significantly and negatively correlated with elevation. The co-occurrence network complexity significantly decreased along the altitudinal gradients as the total number of nodes, number of edges, and degree of nodes significantly decreased. Both the null and neutral model analyses showed that stochastic or neutral processes dominated the gut fungal community assembly in both seasons and that ecological drift was the main ecological process explaining the variation in the gut fungal community across different plateau pikas. Homogeneous selection played a weak role in structuring gut fungal community assembly during the warm season. Collectively, these results expand our understanding of the distribution patterns of gut fungal communities and elucidate the mechanisms that maintain fungal diversity in the gut ecosystems of small mammals.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Liu
- Qinghai Provincial Grassland Station, Xining 810008, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| |
Collapse
|
15
|
Zhang C, Jiang J, Li J, Zhang J, Zhang X, Wang H. Long transportation duration affects nutrient composition, mycotoxins and microbial community in whole-plant corn silage. Front Vet Sci 2023; 10:1189358. [PMID: 37275604 PMCID: PMC10234506 DOI: 10.3389/fvets.2023.1189358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Potential nutrient losses and mycotoxin accumulation caused by abnormal fermentation during transportation from cropland to dairy farms leads to the diseases incidence and threatens the health of dairy cows, then further causes financial losses. The aim of this study was to investigate the effects of different transportation times on the nutritional composition, mycotoxins, and microbial communities in whole-plant corn silage (WPCS). Methods Three groups were subjected to different transport times: DY, short (<200 min); ZY, medium time (300-500 min); and CY, long transport time (>600 min). WPCS were collected from the same field, and nutrient composition and microbial composition before and after transportation were analyzed. Results and discussion Our results showed that the temperature of WPCS was higher in the ZY and CY groups than in the DY group (P < 0.01). There were no significant differences in dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE) and starch contents after different transportation times (P > 0.05), whereas the starch and water-soluble carbohydrates (WSC) contents in the CY group was significantly decreased after transport (P < 0.05). Similarly, the concentration of vomitoxin in the DY and CY groups declined markedly (P < 0.05) and the zearalenone content in the DY group also significantly decreased after transportation (P < 0.05). Regarding the analysis of microorganisms in WPCS, UniFrac-distance matrices and Shannon indices showed differences in the ZY group (P < 0.05), but fungal diversities were not influenced by the transport time (P > 0.05). In the ZY group, the relative abundance of Lactiplantibacillus decreased significantly after transportation (P > 0.05), but the relative abundances of unidentified_Chloroplast, Pantoea, Gluconobacter, unidentified Acetobacter and Acinetobacter increased markedly (P < 0.05). In addition, the relative abundances of Acetobacter and Gluconobacter in the CY group increased after transport (P < 0.05). Among fungal communities, a total of three, nine, and ten different fungal flora were observed in the DY, ZY, and CY groups, respectively, although no difference was found in fungal diversity. In conclusion, increased temperature, loss of starch, and mycotoxin variation were found with increased transport time. This might be the result of competition between bacteria and fungi, and novel technologies will need to be utilized for further exploration of the mechanism.
Collapse
Affiliation(s)
- Caixia Zhang
- College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Jiang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Junfeng Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jiming Zhang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xinyue Zhang
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hairong Wang
- College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
16
|
Heni AC, Fackelmann G, Eibner G, Kreinert S, Schmid J, Schwensow NI, Wiegand J, Wilhelm K, Sommer S. Wildlife gut microbiomes of sympatric generalist species respond differently to anthropogenic landscape disturbances. Anim Microbiome 2023; 5:22. [PMID: 37024947 PMCID: PMC10080760 DOI: 10.1186/s42523-023-00237-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Human encroachment into nature and the accompanying environmental changes are a big concern for wildlife biodiversity and health. While changes on the macroecological scale, i.e. species community and abundance pattern, are well documented, impacts on the microecological scale, such as the host's microbial community, remain understudied. Particularly, it is unclear if impacts of anthropogenic landscape modification on wildlife gut microbiomes are species-specific. Of special interest are sympatric, generalist species, assumed to be more resilient to environmental changes and which often are well-known pathogen reservoirs and drivers of spill-over events. Here, we analyzed the gut microbiome of three such sympatric, generalist species, one rodent (Proechimys semispinosus) and two marsupials (Didelphis marsupialis and Philander opossum), captured in 28 study sites in four different landscapes in Panama characterized by different degrees of anthropogenic disturbance. RESULTS Our results show species-specific gut microbial responses to the same landscape disturbances. The gut microbiome of P. semispinosus was less diverse and more heterogeneous in landscapes with close contact with humans, where it contained bacterial taxa associated with humans, their domesticated animals, and potential pathogens. The gut microbiome of D. marsupialis showed similar patterns, but only in the most disturbed landscape. P. opossum, in contrast, showed little gut microbial changes, however, this species' absence in the most fragmented landscapes indicates its sensitivity to long-term isolation. CONCLUSION These results demonstrate that wildlife gut microbiomes even in generalist species with a large ecological plasticity are impacted by human encroachment into nature, but differ in resilience which can have critical implications on conservation efforts and One Health strategies.
Collapse
Affiliation(s)
- Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama.
| | - Gloria Fackelmann
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Georg Eibner
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Swetlana Kreinert
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Julian Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Nina Isabell Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Jonas Wiegand
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Fan C, Xue H, Xu J, Wang S, Wu M, Chen L, Xu L. Host-Specific Differences in Gut Microbiota Between Cricetulus barabensis and Phodopus sungorus. Curr Microbiol 2023; 80:149. [PMID: 36971869 DOI: 10.1007/s00284-023-03274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Gut microbiota plays an important role in the health of the host and is usually associated with the physiological processes of animals. Both host-specific factors and environmental factors are involved in the shaping of the gut microbial community, and it is necessary to identify the host-dominated differences in gut microbiota among animal species to better explain how they affect the choice of life history strategies in hosts. Here, striped hamsters Cricetulus barabensis and Djungarian hamsters Phodopus sungorus were housed under the same controlled conditions, and fecal samples were collected to compare gut microbiota. A higher Shannon index was observed in striped hamsters than in Djungarian hamsters. Linear discriminant analysis of effect size showed enrichment of the family Lachnospiraceae and genera Muribaculum and Oscillibacter in striped hamsters, with the enrichment of family Erysipelotrichaceae and genus Turicibacter in Djungarian hamsters. Among the top 10 amplicon sequence variants (ASVs), eight showed significantly different relative abundance between the two hamster species. The positive correlations and average degree in the co-occurrence network of striped hamsters were less than those of Djungarian hamsters, showing different complexity of synergistic effects among the gut bacteria. The gut microbial community of striped hamsters had a higher R2 value than that of Djungarian hamsters when fitted with a neutral community model. These differences have a degree of consistency with the variation in the lifestyles of the two hamster species. The study provides insights into the understanding of gut microbiota and its connections with rodent hosts.
Collapse
Affiliation(s)
- Chao Fan
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China.
| | - Huiliang Xue
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Shuo Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
18
|
Wang L, Wu D, Zhang Y, Li K, Wang M, Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front Microbiol 2023; 14:1113730. [PMID: 36876099 PMCID: PMC9978850 DOI: 10.3389/fmicb.2023.1113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Weining cattle is a precious species with high tolerance to cold, disease, and stress, and accounts for a large proportion of agricultural economic output in Guizhou, China. However, there are gaps in information about the intestinal flora of Weining cattle. In this study, high-throughput sequencing were employed to analyze the intestinal flora of Weining cattle (WN), Angus cattle (An), and diarrheal Angus cattle (DA), and explore the potential bacteria associated with diarrhea. We collected 18 fecal samples from Weining, Guizhou, including Weining cattle, Healthy Angus, and Diarrheal Angus. The results of intestinal microbiota analysis showed there were no significant differences in intestinal flora diversity and richness among groups (p > 0.05). The abundance of beneficial bacteria (Lachnospiraceae, Rikenellaceae, Coprostanoligenes, and Cyanobacteria) in Weining cattle were significantly higher than in Angus cattle (p < 0.05). The potential pathogens including Anaerosporobacter and Campylobacteria were enriched in the DA group. Furthermore, the abundance of Lachnospiraceae was very high in the WN group (p < 0.05), which might explain why Weining cattle are less prone to diarrhea. This is the first report on the intestinal flora of Weining cattle, furthering understanding of the relationship between intestinal flora and health.
Collapse
Affiliation(s)
- Lei Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Daoyi Wu
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingjin Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Jinping Ma
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| |
Collapse
|
19
|
Chen C, Chen S, Wang B. A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Front Microbiol 2023; 14:1035944. [PMID: 37125200 PMCID: PMC10140447 DOI: 10.3389/fmicb.2023.1035944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.
Collapse
Affiliation(s)
- Chuizhe Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu Chen
- Medical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Wang
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Bo Wang,
| |
Collapse
|
20
|
Wang X, Zhang Z, Li B, Hao W, Yin W, Ai S, Han J, Wang R, Duan Z. Depicting Fecal Microbiota Characteristic in Yak, Cattle, Yak-Cattle Hybrid and Tibetan Sheep in Different Eco-Regions of Qinghai-Tibetan Plateau. Microbiol Spectr 2022; 10:e0002122. [PMID: 35863031 PMCID: PMC9430443 DOI: 10.1128/spectrum.00021-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota is closely associated with the health and production performance of livestock. Partial studies on ruminant microbiota are already in progress in the Qinghai-Tibetan Plateau Area (QTPA) in China, but large-scale and representative profiles for the QTPA are still lacking. Here, 16S rRNA sequencing was used to analyze 340 samples from yak, cattle, yak-cattle hybrids, and Tibetan sheep, which lived in a shared environment from 4 eco-regions of the QTPA during the same season, and aimed to investigate the fecal microbiota community composition, diversity, and potential function. All samples were clustered into 2 enterotypes, which were derived from the genera Ruminococcaceae UCG-005 and Acinetobacter, respectively. Environment, human activity, species, and parasitization all affected the fecal microbiota. By assessing the relationship between the fecal microbiota and the above variables, we identified a scattered pattern of fecal microbiota dissimilarity based more significantly on diet over other factors. Additionally, gastrointestinal nematode infection could reduce the capacity of the bacterial community for biosynthesis of other secondary metabolites, carbohydrate metabolism, and nucleotide metabolism. Ultimately, this study provided a fecal microbiota profile for ruminants living in 4 eco-regions of the QTPA and its potential future applications in developing animal husbandry regimes. IMPORTANCE Cattle, yak, and sheep reside as the main ruminants distributed throughout most regions of Qinghai-Tibetan Plateau Area (QTPA) in China. However, there is a lack of large-scale research in the QTPA on their fecal microbiota, which can regulate and reflect host health as an internalized "microbial organ." Our study depicted the fecal microbiota community composition and diversity of yak, cattle, yak-cattle hybrids, and Tibetan sheep from 4 eco-regions of the QTPA. Additionally, our results demonstrated here that the ruminant samples could be clustered into 2 enterotypes and that diet outweighed other factors in shaping fecal microbiota in the QTPA. This study provided a basis for understanding the microbiota characteristic of ruminants and its possible applications for livestock production in the QTPA.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Zhichao Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Biao Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sitong Ai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rujing Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Ziyuan Duan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang J, Liang Z, Ding Kao R, Han J, Du M, Ahmad AA, Wang S, Salekdeh GH, Long R, Yan P, Ding X. Maternal Fecal Microbes Contribute to Shaping the Early Life Assembly of the Intestinal Microbiota of Co-inhabiting Yak and Cattle Calves. Front Microbiol 2022; 13:916735. [PMID: 35733965 PMCID: PMC9208665 DOI: 10.3389/fmicb.2022.916735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The Qinghai-Tibetan Plateau offers one of the most extreme environments for yaks (Bos grunniens). Although the genetic adaptability of yak and rumen metagenomes is increasingly understood, the relative contribution of host genetics and maternal symbiotic microbes throughout early intestinal microbial successions in yaks remains elusive. In this study, we assessed the intestinal microbiota succession of co-inhabiting yak and cattle (Bos taurus) calves at different weeks after birth as well as the modes of transmission of maternal symbiotic microbes (i.e., rumen fluid, feces, oral cavity, and breast skin) to their calves' intestinal microbiota colonization. We found that the fecal microbiota of yak and cattle calves after birth was dominated by members of the families Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae. The Source Tracker model revealed that maternal fecal microbes played an important role (the average contribution was about 80%) in the intestinal microbial colonization of yak and cattle calves at different weeks after birth. Unlike cattle calves, there was no significant difference in the fecal microbiota composition of yak calves between 5 and 9 weeks after birth (Wilcoxon test, P > 0.05), indicating that yak may adapt to its natural extreme environment to stabilize its intestinal microbiota composition. Additionally, our results also find that the intestinal microbial composition of yak and cattle calves, with age, gradually tend to become similar, and the differences between species gradually decrease. The findings of this study are vital for developing strategies to manipulate the intestinal microbiota in grazing yaks and cattle for better growth and performance on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
- Chinese Academy of Agricultural Sciences (CAAS) and International Livestock Research Institute (ILRI) Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, CAAS, Beijing, China
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ruijun Long
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
22
|
Zhang Y, Zhao H, Li Q, Tsechoe D, Yuan H, Su G, Yang J. Environmental factors influence yak milk composition by modulating short-chain fatty acid metabolism in intestinal microorganisms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
24
|
Metagenomic Comparisons between Soft and Hard Feces of Plateau Pikas ( Ochotona curzoniae). Animals (Basel) 2022; 12:ani12020149. [PMID: 35049773 PMCID: PMC8772556 DOI: 10.3390/ani12020149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Plateau pika produces hard and soft feces with different morphology, component and microbial structure. Hard feces had more abundant Firmicutes, while soft feces had more abundant Akkermansia. The differences of microbial communities between hard and soft feces were mainly driven by core microbomes. Soft feces had a comprehensive advances in predict functional pathways compared to hard feces, these strengthened functional pathways were closely associated with metabolism of energy, vitamins, and amino acid. Our study preliminarily explored the differences in microbial structure and function between hard and soft feces, provided a foundation for future systematic explorations of the cecotrophy. Abstract The division of hard and soft feces is an effective digestion strategy in the order Lagomorpha. Although previous studies have reported that hard and soft feces differ in morphology and component, the discrepancy in the microbiome remains unclear. This study explored the microbiomes of hard and soft feces in plateau pikas by sequencing the V3 and V4 regions of 16S rDNA. We found that hard feces harbored higher Firmicutes, while soft feces harbored higher Akkermansia. Increased rare bacterial taxa were observed in hard feces compared with soft feces. Moreover, hard and soft feces displayed a greater difference in terms of core operational taxonomy units (OTUs) compared to the total OTUs. The soft feces showed enhancements in all predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) functions, indicating an advancing microbial metabolism compared to hard feces. The significantly upregulated pathways in soft feces were mainly enriched in metabolism of energy and carbohydrate, glycan biosynthesis, cofactors and vitamins, and amino acids—all of which are associated with increased contents of microbial proteins, vitamins, and short-chain fatty acids. Our study reports, for the first time, the differential microbiomes between hard and soft feces of pikas and provides direction for the future studies on cecotrophy.
Collapse
|
25
|
Fu H, Zhang L, Fan C, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Sympatric Yaks and Plateau Pikas Promote Microbial Diversity and Similarity by the Mutual Utilization of Gut Microbiota. Microorganisms 2021; 9:microorganisms9091890. [PMID: 34576785 PMCID: PMC8467723 DOI: 10.3390/microorganisms9091890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023] Open
Abstract
Interactions between species provide the basis for understanding coexisting mechanisms. The plateau pika (Ochotona curzoniae) and the yak (Bos grunniens) are considered competitors because they have shared habitats and consumed similar food on the Qinghai–Tibetan Plateau for more than 1 million years. Interestingly, the population density of plateau pikas increases with yak population expansion and subsequent overgrazing. To reveal the underlying mechanism, we sequenced the fecal microbial 16S rDNA from both sympatric and allopatric pikas and yaks. Our results indicated that sympatry increased both gut microbial diversity and similarity between pikas and yaks. The abundance of Firmicutes, Proteobacteria, Cyanobacteria, and Tenericutes decreased, while that of Verrucomicrobia increased in sympatric pikas. As for sympatric yaks, Firmicutes, Bacteroidetes, and Spirochaetes significantly increased, while Cyanobacteria, Euryarchaeota, and Verrucomicrobia significantly decreased. In sympatry, plateau pikas acquired 2692 OTUs from yaks, and yaks obtained 453 OTUs from pikas. The predominant horizontally transmitted bacteria were Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria. These bacteria enhanced the enrichment of pathways related to prebiotics and immunity for pikas, such as heparin sulfate, heparin, chitin disaccharide, chondroitin-sulfate-ABC, and chondroitin-AC degradation pathways. In yaks, the horizontally transmitted bacteria enhanced pathways related to hepatoprotection, xenobiotic biodegradation, and detoxification. Our results suggest that horizontal transmission is a process of selection, and pikas and yaks tend to develop reciprocity through the horizontal transmission of gut microbiota.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.F.); (L.Z.); (C.F.); (W.L.); (C.L.); (H.Z.); (Q.C.)
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence:
| |
Collapse
|
26
|
Surviving winter on the Qinghai-Tibetan Plateau: Pikas suppress energy demands and exploit yak feces to survive winter. Proc Natl Acad Sci U S A 2021; 118:2100707118. [PMID: 34282012 DOI: 10.1073/pnas.2100707118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Qinghai-Tibetan Plateau, with low precipitation, low oxygen partial pressure, and temperatures routinely dropping below -30 °C in winter, presents several physiological challenges to its fauna. Yet it is home to many endemic mammalian species, including the plateau pika (Ochotona curzoniae). How these small animals that are incapable of hibernation survive the winter is an enigma. Measurements of daily energy expenditure (DEE) using the doubly labeled water method show that pikas suppress their DEE during winter. At the same body weight, pikas in winter expend 29.7% less than in summer, despite ambient temperatures being approximately 25 °C lower. Combined with resting metabolic rates (RMRs), this gives them an exceptionally low metabolic scope in winter (DEE/RMRt = 1.60 ± 0.30; RMRt is resting metabolic rate at thermoneutrality). Using implanted body temperature loggers and filming in the wild, we show that this is achieved by reducing body temperature and physical activity. Thyroid hormone (T3 and T4) measurements indicate this metabolic suppression is probably mediated via the thyroid axis. Winter activity was lower at sites where domestic yak (Bos grunniens) densities were higher. Pikas supplement their food intake at these sites by eating yak feces, demonstrated by direct observation, identification of yak DNA in pika stomach contents, and greater convergence in the yak/pika microbiotas in winter. This interspecific coprophagy allows pikas to thrive where yak are abundant and partially explains why pika densities are higher where domestic yak, their supposed direct competitors for food, are more abundant.
Collapse
|
27
|
Li C, Liu Y, Gong M, Zheng C, Zhang C, Li H, Wen W, Wang Y, Liu G. Diet-induced microbiome shifts of sympatric overwintering birds. Appl Microbiol Biotechnol 2021; 105:5993-6005. [PMID: 34272578 DOI: 10.1007/s00253-021-11448-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Gut microbiota have a significant impact on host physiology and health, and host genetics and diet are considered as two important factors, but it is difficult to discriminate the influence of each single factor (host or diet) on gut microbiota under natural conditions. Moreover, current studies of avian microbiota mainly focus on domestic or captive birds, and it is still uncertain how host and diet take part in changing avian gut microbiota composition, diversity, and function in the wild. Here, high-throughput sequencing of 16S rRNA was used to identify the gut microbiota communities for sympatric wintering Great Bustards and Common Cranes at different diets. The results showed that 8.87% operational taxonomic units (OTUs) were shared among all sampling birds; in contrast, 39.43% of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways were common among all individuals, indicating the existence of gut microbiota conservatism both in microbiota structure and function. Microbiota abundance and diversity differed between Great Bustards and Common Cranes in a specific wintering site, and microbiota variation was detected for the same host species under two different sites, suggesting that the change of gut microbiota was induced by both host and diet. Furthermore, we found that changes of both microbial communities and functional pathways were larger between hosts than those between diets, which revealed that host might be the dominant factor determining microbiota characteristics and function, while diet further drove the divergence of gut microbiota. Gut microbiota functions appeared to be more conserved than bacterial community structure, indicating that different bacteria may function in a similar way, while microbiota OTU diversity might not be necessarily associated with functional diversity. With diet shifting, gut microbiota changed both in terms of microbial communities and functional pathways for the sympatric birds, which implies that avian habitats and their physiological microbiota would be influenced by different farmland management regimes. KEY POINTS: • Gut microbiota can be shaped by both diets and hosts in sympatric species. • Host was the dominant factor shaping the gut microbiota communities and functional pathways. • Gut microbiota were conservative both in structure and in function, but more conservative in function.
Collapse
Affiliation(s)
- Chao Li
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Minghao Gong
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changming Zheng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Huixin Li
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wanyu Wen
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhang Wang
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gang Liu
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
28
|
Fu H, Zhang L, Fan C, Liu C, Li W, Li J, Zhao X, Jia S, Zhang Y. Domestication Shapes the Community Structure and Functional Metagenomic Content of the Yak Fecal Microbiota. Front Microbiol 2021; 12:594075. [PMID: 33897627 PMCID: PMC8059439 DOI: 10.3389/fmicb.2021.594075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Domestication is a key factor of genetic variation; however, the mechanism by which domestication alters gut microbiota is poorly understood. Here, to explore the variation in the structure, function, rapidly evolved genes (REGs), and enzyme profiles of cellulase and hemicellulose in fecal microbiota, we studied the fecal microbiota in wild, half-blood, and domestic yaks based on 16S rDNA sequencing, shotgun-metagenomic sequencing, and the measurement of short-chain-fatty-acids (SCFAs) concentration. Results indicated that wild and half-blood yaks harbored an increased abundance of the phylum Firmicutes and reduced abundance of the genus Akkermansia, which are both associated with efficient energy harvesting. The gut microbial diversity decreased in domestic yaks. The results of the shotgun-metagenomic sequencing showed that the wild yak harbored an increased abundance of microbial pathways that play crucial roles in digestion and growth of the host, whereas the domestic yak harbored an increased abundance of methane-metabolism-related pathways. Wild yaks had enriched amounts of REGs in energy and carbohydrate metabolism pathways, and possessed a significantly increased abundance of cellulases and endohemicellulases in the glycoside hydrolase family compared to domestic yaks. The concentrations of acetic, propionic, n-butyric, i-butyric, n-valeric, and i-valeric acid were highest in wild yaks. Our study displayed the domestic effect on the phenotype of composition, function in gut microbiota, and SCFAs associated with gut microbiota, which had a closely association with the growth performance of the livestock. These findings may enlighten the researchers to construct more links between economic characteristics and gut microbiota, and develop new commercial strains in livestock based on the biotechnology of gut microbiota.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jiye Li
- Datong Yak Breeding Farm of Qinghai Province, Datong, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|