1
|
Yang M, Song Y, Ma H, Li Z, Ding J, Yin T, Niu K, Sun S, Qi J, Lu G, Fazal A, Yang Y, Wen Z. Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:78. [PMID: 39439005 PMCID: PMC11494790 DOI: 10.1186/s40793-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil. RESULTS The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere. CONCLUSIONS Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.
Collapse
Affiliation(s)
- Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Song
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hanke Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiawei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kechang Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Liu X, Hu X, Tu Z, Sun Z, Qin P, Liu Y, Chen X, Li Z, Jiang N, Yang Y. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1478159. [PMID: 39445147 PMCID: PMC11496149 DOI: 10.3389/fpls.2024.1478159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Phytopathogens represent an ongoing threat to crop production and a significant impediment to global food security. During the infection process, these pathogens spatiotemporally deploy a large array of effectors to sabotage host defense machinery and/or manipulate cellular pathways, thereby facilitating colonization and infection. However, besides their pivotal roles in pathogenesis, certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly perceived by plant resistance (R) proteins, leading to race-specific resistance. An in-depth understanding of the intricate AVR-R interactions is instrumental for genetic improvement of crops and safeguarding them from diseases. Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an exceptionally virulent and devastating fungal pathogen that induces blast disease on over 50 monocot plant species, including economically important crops. Rice-M. oryzae pathosystem serves as a prime model for functional dissection of AVR effectors and their interactions with R proteins and other target proteins in rice due to its scientific advantages and economic importance. Significant progress has been made in elucidating the potential roles of AVR effectors in the interaction between rice and M. oryzae over the past two decades. This review comprehensively discusses recent advancements in the field of M. oryzae AVR effectors, with a specific focus on their multifaceted roles through interactions with corresponding R/target proteins in rice during infection. Furthermore, we deliberated on the emerging strategies for engineering R proteins by leveraging the structural insights gained from M. oryzae AVR effectors.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Xiaochun Hu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Zhouyi Tu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Zhenbiao Sun
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Peng Qin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yikang Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Xinwei Chen
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
3
|
Liu Y, Liang D, Xing J, Xue Z, Zhang Z. Interactions between Sugarcane Leaf Return and Fertilizer Reduction in Soil Bacterial Network in Southern China Red Soil. Microorganisms 2024; 12:1788. [PMID: 39338463 PMCID: PMC11434266 DOI: 10.3390/microorganisms12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Microbes may play an important role in the sugarcane leaf degradation and nutrient conversion process. Soil bacterial communities are more or less involved in material transformation and nutrient turnover. In order to make better use of the vast sugarcane leaf straw resources and reduce the overuse of chemical fertilizers in the subtropical red soil region of Guangxi, a pot experiment, with three sugarcane leaf return (SLR) amounts [full SLR (FS), 120 g/pot; half SLR (HS), 60 g/pot; and no SLR (NS)] and three fertilizer reduction (FR) levels [full fertilizer (FF), 4.50 g N/pot, 3.00 g P2O5/pot, and 4.50 g K2O/pot; half fertilizer (HF), 2.25 g N/pot, 1.50 g P2O5/pot, and 2.25 g K2O/pot; and no fertilizer (NF)], was conducted to assess the interactions of different SLR amounts and chemical FR levels in the soil bacterial network and the relationship between the soil properties and bacterial network by using Illumina Miseq high-throughput sequencing technology. According to the results of the soil bacterial community compositions and diversity, the soil bacterial network was changed during maize growth. SLR exerted a stronger effect on soil bacterial function than FR. Returning the sugarcane leaf to the field increased the diversity of the soil bacteria network. The bacterial communities were consistently dominated by Acidobacteria, Actinobacteria, and Bacteroidetes across all treatments, among which Actinobacteria was the most abundant bacteria type by almost 50% at the phylum level. The analysis results of the experimental factor on maize growth showed that the effect of SLR was lower than that of FR; however, this was opposite in the soil bacterial community structure and diversity. The soil bacterial network was significantly correlated with the soil total K, available N and organic matter contents, and EC. The soil bacteria community showed different responses to SLR and FR, and the FF in combination with FS partly increased the complexity of the soil bacteria network, which can further benefit crop production and soil health in the red soil region.
Collapse
Affiliation(s)
- Yufeng Liu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China;
| | - Dan Liang
- Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Jincheng Xing
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
| | - Ziyan Xue
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
| | - Zhenhua Zhang
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
- The School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Bu Y, Dong X, Zhang R, Shen X, Liu Y, Wang S, Takano T, Liu S. Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana. eLife 2024; 13:e96797. [PMID: 39037769 PMCID: PMC11364434 DOI: 10.7554/elife.96797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.
Collapse
Affiliation(s)
- Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xingye Dong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Rongrong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xianglian Shen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Yan Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Shu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ASNESC), University of TokyoTokyoJapan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
5
|
Wen Z, Yang M, Fazal A, Han H, Lin H, Yin T, Zhu Y, Yang S, Niu K, Sun S, Qi J, Lu G, Yang Y. Harnessing the power of microbes: Enhancing soybean growth in an acidic soil through AMF inoculation rather than P-fertilization. HORTICULTURE RESEARCH 2024; 11:uhae067. [PMID: 38725460 PMCID: PMC11079484 DOI: 10.1093/hr/uhae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 05/12/2024]
Abstract
The low phosphorus (P) availability of acidic soils severely limits leguminous plant growth and productivity. Improving the soil P nutritional status can be achieved by increasing the P-content through P-fertilization or stimulating the mineralization of organic P via arbuscular mycorrhizal fungi (AMF) application; however, their corresponding impacts on plant and soil microbiome still remain to be explored. Here, we examined the effects of AMF-inoculation and P-fertilization on the growth of soybean with different P-efficiencies, as well as the composition of rhizo-microbiome in an acidic soil. The growth of recipient soybean NY-1001, which has a lower P-efficiency, was not significantly enhanced by AMF-inoculation or P-fertilization. However, the plant biomass of higher P-efficiency transgenic soybean PT6 was significantly increased by 46.74%-65.22% through AMF-inoculation. Although there was no discernible difference in plant biomass between PT6 and NY-1001 in the absence of AMF-inoculation and P-fertilization, PT6 had approximately 1.9-2.5 times the plant biomass of NY-1001 after AMF-inoculation. Therefore, the growth advantage of higher P-efficiency soybean was achieved through the assistance of AMF rather than P-fertilization in available P-deficient acidic soil. Most nitrogen (N)-fixing bacteria and some functional genes related to N-fixation were abundant in endospheric layer, as were the P-solubilizing Pseudomonas plecoglossicida, and annotated P-metabolism genes. These N-fixing and P-solubilizing bacteria were positive correlated with each other. Lastly, the two most abundant phytopathogenic fungi species accumulated in endospheric layer, they exhibited positive correlations with N-fixing bacteria, but displayed negative interactions with the majority of the other dominant non-pathogenic genera with potential antagonistic activity.
Collapse
Affiliation(s)
- Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongwei Han
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 210013, China
| | - Hongyan Lin
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuelin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shouping Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zenteno‐Alegría CO, Yarzábal Rodríguez LA, Ciancas Jiménez J, Álvarez Gutiérrez PE, Gunde‐Cimerman N, Batista‐García RA. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol 2024; 17:e14439. [PMID: 38478382 PMCID: PMC10936741 DOI: 10.1111/1751-7915.14439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 10/17/2024] Open
Abstract
Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.
Collapse
Affiliation(s)
- Claribel Orquídea Zenteno‐Alegría
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | | | | | | | - Nina Gunde‐Cimerman
- Departament of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Ramón Alberto Batista‐García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain
| |
Collapse
|
7
|
Sliti A, Singh V, Ibal JC, Jeong M, Shin JH. Impact of propiconazole fungicide on soil microbiome (bacterial and fungal) diversity, functional profile, and associated dehydrogenase activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8240-8253. [PMID: 38175519 DOI: 10.1007/s11356-023-31643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Pesticides, protect crops but can harm the environment and human health when used without caution. This study evaluated the impact of propiconazole, a fungicide that acts on fungal cell membranes, on soil microbiome abundance, diversity, and functional profile, as well as soil dehydrogenase activity (DHA). The study conducted microcosm experiments using soil samples treated with propiconazole and employed next-generation sequencing (MiSeq) and chromatographic approaches (GC-MS/MS) to analyze the shift in microbial communities and propiconazole level, respectively. The results showed that propiconazole significantly altered the distribution of microbial communities, with notable changes in the abundance of various bacterial and fungal taxa. Among soil bacterial communities, the relative abundance of Proteobacteria and Planctomycetota increased, while that of Acidobacteria decreased after propiconazole treatment. In the fungal communities, propiconazole increased the abundance of Ascomycota and Basidiomycota in the treated soil, while that of Mortierellomycota was reduced. Fungicide application further triggered a significant decrease in DHA over time. Analysis of the functional profile of bacterial communities showed that propiconazole significantly affected bacterial cellular and metabolic pathways. The carbon degradation pathway was upregulated, indicating the microbial detoxification of the contaminant in the treated soil. Our findings suggest that propiconazole application has a discernible impact on soil microbial communities, which could have long-term consequences for soil health, quality, and function.
Collapse
Affiliation(s)
- Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jerald Conrad Ibal
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Jiménez‐Guerrero I, López‐Baena FJ, Borrero‐de Acuña JM, Pérez‐Montaño F. Membrane vesicle engineering with "à la carte" bacterial-immunogenic molecules for organism-free plant vaccination. Microb Biotechnol 2023; 16:2223-2235. [PMID: 37530752 PMCID: PMC10686165 DOI: 10.1111/1751-7915.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
The United Nations heralds a world population exponential increase exceeding 9.7 billion by 2050. This poses the challenge of covering the nutritional needs of an overpopulated world by the hand of preserving the environment. Extensive agriculture practices harnessed the employment of fertilizers and pesticides to boost crop productivity and prevent economic and harvest yield losses attributed to plagues and diseases. Unfortunately, the concomitant hazardous effects stemmed from such agriculture techniques are cumbersome, that is, biodiversity loss, soils and waters contaminations, and human and animal poisoning. Hence, the so-called 'green agriculture' research revolves around designing novel biopesticides and plant growth-promoting bio-agents to the end of curbing the detrimental effects. In this field, microbe-plant interactions studies offer multiple possibilities for reshaping the plant holobiont physiology to its benefit. Along these lines, bacterial extracellular membrane vesicles emerge as an appealing molecular tool to capitalize on. These nanoparticles convey a manifold of molecules that mediate intricate bacteria-plant interactions including plant immunomodulation. Herein, we bring into the spotlight bacterial extracellular membrane vesicle engineering to encase immunomodulatory effectors into their cargo for their application as biocontrol agents. The overarching goal is achieving plant priming by deploying its innate immune responses thereby preventing upcoming infections.
Collapse
|
9
|
Fazal A, Wen Z, Yang M, Wang C, Hao C, Lai X, Jie W, Yang L, He Z, Yang H, Cai J, Qi J, Lu G, Niu K, Sun S, Yang Y. Triple-transgenic soybean in conjunction with glyphosate drive patterns in the rhizosphere microbial community assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122337. [PMID: 37562532 DOI: 10.1016/j.envpol.2023.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyi Wang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenyu Hao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Lai
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liu Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhuoyu He
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huan Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Anand S, Hallsworth JE, Timmis J, Verstraete W, Casadevall A, Ramos JL, Sood U, Kumar R, Hira P, Dogra Rawat C, Kumar A, Lal S, Lal R, Timmis K. Weaponising microbes for peace. Microb Biotechnol 2023; 16:1091-1111. [PMID: 36880421 PMCID: PMC10221547 DOI: 10.1111/1751-7915.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
There is much human disadvantage and unmet need in the world, including deficits in basic resources and services considered to be human rights, such as drinking water, sanitation and hygiene, healthy nutrition, access to basic healthcare, and a clean environment. Furthermore, there are substantive asymmetries in the distribution of key resources among peoples. These deficits and asymmetries can lead to local and regional crises among peoples competing for limited resources, which, in turn, can become sources of discontent and conflict. Such conflicts have the potential to escalate into regional wars and even lead to global instability. Ergo: in addition to moral and ethical imperatives to level up, to ensure that all peoples have basic resources and services essential for healthy living and to reduce inequalities, all nations have a self-interest to pursue with determination all available avenues to promote peace through reducing sources of conflicts in the world. Microorganisms and pertinent microbial technologies have unique and exceptional abilities to provide, or contribute to the provision of, basic resources and services that are lacking in many parts of the world, and thereby address key deficits that might constitute sources of conflict. However, the deployment of such technologies to this end is seriously underexploited. Here, we highlight some of the key available and emerging technologies that demand greater consideration and exploitation in endeavours to eliminate unnecessary deprivations, enable healthy lives of all and remove preventable grounds for competition over limited resources that can escalate into conflicts in the world. We exhort central actors: microbiologists, funding agencies and philanthropic organisations, politicians worldwide and international governmental and non-governmental organisations, to engage - in full partnership - with all relevant stakeholders, to 'weaponise' microbes and microbial technologies to fight resource deficits and asymmetries, in particular among the most vulnerable populations, and thereby create humanitarian conditions more conducive to harmony and peace.
Collapse
Affiliation(s)
- Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya College, University of DelhiDelhiIndia
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - James Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Arturo Casadevall
- Department of MedicineJohns Hopkins School of Public Health and School of MedicineBaltimoreMarylandUSA
| | | | - Utkarsh Sood
- Department of ZoologyKirori Mal College, University of DelhiDelhiIndia
| | - Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBiharIndia
| | - Princy Hira
- Department of ZoologyMaitreyi College, University of DelhiNew DelhiIndia
| | | | - Abhilash Kumar
- Department of ZoologyRamjas College, University of DelhiDelhiIndia
| | - Sukanya Lal
- PhiXgen Pvt. LtdGurugram, GurgaonHaryanaIndia
| | - Rup Lal
- Acharya Narendra Dev College, University of DelhiGovindpuri, Kalkaji, New DelhiIndia
| | - Kenneth Timmis
- Institute of Microbiology, Technical University BraunschweigBraunschweigGermany
| |
Collapse
|
11
|
Ren P, Sun A, Jiao X, Shen JP, Yu DT, Li F, Wu B, He JZ, Hu HW. Predatory protists play predominant roles in suppressing soil-borne fungal pathogens under organic fertilization regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160986. [PMID: 36528948 DOI: 10.1016/j.scitotenv.2022.160986] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Soil-borne fungal pathogens pose a major threat to global agricultural production and food security. Pathogen-suppressive bacteria and plant beneficial protists are important components of soil microbiomes and essential to plant health and performance, but it remains largely unknown regarding how agricultural management practices influence the relative importance of protists and bacteria in plant disease suppression. Here, we characterized soil microbiomes (including fungi, protists, and bacteria) in bulk and sorghum rhizosphere soils with various long-term inorganic and organic fertilization regimes, and linked the changes in fungal plant pathogens with the protistan and bacterial communities. We found that the relative abundances of fungal pathogens were significantly decreased by organic fertilization regimes, and there was a significant difference in the community composition of fungal pathogens between inorganic and organic fertilization regimes. Organic fertilization significantly enhanced predatory protists but reduced the proportions of protistan phototrophs. Co-occurrence network analysis revealed more intensive connections between fungal plant pathogens with protists, especially predatory protists, than with bacterial taxa, which was further supported by stronger associations between the community structure of fungal pathogens and predatory protists. We identified more protist consumer taxa than bacterial taxa as predictors of fungal plant pathogens, and structural equation modelling revealed a more important impact of protist consumers than bacteria on fungal pathogens. Altogether, we provide new evidence that the disease inhibitory effects of long-term organic fertilization regimes could be best explained by the potential predation pressure of protists. Our findings advance the mechanistic understanding of the role of predator-prey interactions in controlling fungal diseases, and have implications for novel biocontrol strategies to mitigate the consequences of fungal infections for plant performance.
Collapse
Affiliation(s)
- Peixin Ren
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Jiao
- College of Resource and Environment, Shanxi Agricultural University, Taiyuan, China
| | - Ju-Pei Shen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Dan-Ting Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Bingxue Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Victoria, Australia.
| |
Collapse
|
12
|
Majeed Z, Nawazish S, Baig A, Akhtar W, Iqbal A, Muhammad Khan W, Majid Bukhari S, Zaidi A, Loke Show P, Mansoor N. Effect of varying thickness properties of the slow release fertilizer films on morphology, biodegradability, urea release, soil health, and plant growth. PLoS One 2023; 18:e0278568. [PMID: 36848343 PMCID: PMC9970067 DOI: 10.1371/journal.pone.0278568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 03/01/2023] Open
Abstract
Green biomass is a renewable and biodegradable material that has the potential use to trap urea to develop a high-efficiency urea fertilizer for crops' better performance. Current work examined the morphology, chemical composition, biodegradability, urea release, soil health, and plant growth effects of the SRF films subjected to changes in the thickness of 0.27, 0.54, and 1.03 mm. The morphology was examined by Scanning Electron Microscopy, chemical composition was analyzed by Infrared Spectroscopy, and biodegradability was assessed through evolved CO2 and CH4 quantified through Gas Chromatography. The chloroform fumigation technique was used for microbial growth assessment in the soil. The soil pH and redox potential were also measured using a specific probe. CHNS analyzer was used to calculate the total carbon and total nitrogen of the soil. A plant growth experiment was conducted on the Wheat plant (Triticum sativum). The thinner the films, the more they supported the growth and penetration of the soil's microorganisms mainly the species of fungus possibly due to the presence of lignin in films. The fingerprint regions of the infrared spectrum of SRF films showed all films in soil changed in their chemical composition due to biodegradation but the increase in the thickness possibly provides resistance to the films' losses. The higher thickness of the film delayed the rate and time for biodegradation and the release of methane gas in the soil. The 1.03 mm film (47% in 56 days) and 0.54 mm film (35% in 91 days) showed the slowest biodegradability as compared to the 0.27 mm film with the highest losses (60% in 35 days). The slow urea release is more affected by the increase in thickness. The Korsymer Pappas model with release exponent value of < 0.5 explained the release from the SRF films followed the quasi-fickian diffusion and also reduced the diffusion coefficient for urea. An increase in the pH and decrease in the redox potential of the soil is correlated with higher total organic content and total nitrogen in the soil in response to amending SRF films with variable thickness. Growth of the wheat plant showed the highest average plant length, leaf area index and grain per plant in response to the increase in the film's thickness. This work developed an important knowledge to enhance the efficiency of film encapsulated urea that can better slow the urea release if the thickness is optimized.
Collapse
Affiliation(s)
- Zahid Majeed
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- * E-mail:
| | - Shamyla Nawazish
- Department of Environmental Sciences, COMSATS University, Islamabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | - Wisal Muhammad Khan
- Department of Botany, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Syed Majid Bukhari
- Department of Chemistry, COMSATS University, Islamabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Asma Zaidi
- Department of Chemistry, COMSATS University, Islamabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Nurlidia Mansoor
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
13
|
Li K, Chen L, Shi W, Hu C, Sha Y, Feng G, Wang E, Chen W, Sui X, Mi G. Impacts of maize hybrids with different nitrogen use efficiency on root-associated microbiota based on distinct rhizosphere soil metabolites. Environ Microbiol 2023; 25:473-492. [PMID: 36451600 DOI: 10.1111/1462-2920.16293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Plant genotypes shape root-associated microbiota that affect plant nutrient acquisition and productivity. It is unclear how maize hybrids modify root-associated microbiota and their functions and relationship with nitrogen use efficiency (NUE) by regulating rhizosphere soil metabolites. Here, two N-efficient (NE) (ZD958, DMY3) and two N-inefficient (NIE) maize hybrids (YD9953, LY99) were used to investigate this issue under low N (60 kg N ha-1 , LN) and high N (180 kg N ha-1 , HN) field conditions. NE hybrids had higher yield than NIE hybrids under LN but not HN. NE and NIE hybrids recruited only distinct root-associated bacterial microbiota in LN. The bacterial network stability was stronger in NE than NIE hybrids. Compared with NIE hybrids, NE hybrids recruited more bacterial taxa that have been described as plant growth-promoting rhizobacteria (PGPR), and less related to denitrification and N competition; this resulted in low N2 O emission and high rhizosphere NO3 - -N accumulation. NE and NIE hybrids had distinct rhizosphere soil metabolite patterns, and their specific metabolites were closely related to microbiota and specific genera under LN. Our findings reveal the relationships among plant NUE, rhizosphere soil metabolites, root-associated microbiota, and soil nutrient cycling, and this information is informative for breeding NE crops.
Collapse
Affiliation(s)
- Keke Li
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - La Chen
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenjun Shi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Conghui Hu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ye Sha
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guozhong Feng
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun, China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | | | - Xinhua Sui
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Nguyen BT, Dumack K, Trivedi P, Islam Z, Hu H. Plant associated protists-Untapped promising candidates for agrifood tools. Environ Microbiol 2023; 25:229-240. [PMID: 36482161 PMCID: PMC10108267 DOI: 10.1111/1462-2920.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The importance of host-associated microorganisms and their biotic interactions for plant health and performance has been increasingly acknowledged. Protists, main predators and regulators of bacteria and fungi, are abundant and ubiquitous eukaryotes in terrestrial ecosystems. Protists are considered to benefit plant health and performance, but the community structure and functions of plant-associated protists remain surprisingly underexplored. Harnessing plant-associated protists and other microbes can potentially enhance plant health and productivity and sustain healthy food and agriculture systems. In this review, we summarize the knowledge of multifunctionality of protists and their interactions with other microbes in plant hosts, and propose a future framework to study plant-associated protists and utilize protists as agrifood tools for benefiting agricultural production.
Collapse
Affiliation(s)
- Bao‐Anh Thi Nguyen
- School of Agriculture and Food, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Kenneth Dumack
- Terrestrial EcologyInstitute of Zoology, University of CologneKölnGermany
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Zahra Islam
- School of Agriculture and Food, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- ARC Hub for Smart FertilisersThe University of MelbourneParkvilleVictoriaAustralia
| | - Hang‐Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- ARC Hub for Smart FertilisersThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
15
|
Yang M, Luo F, Song Y, Ma S, Ma Y, Fazal A, Yin T, Lu G, Sun S, Qi J, Wen Z, Li Y, Yang Y. The host niches of soybean rather than genetic modification or glyphosate application drive the assembly of root-associated microbial communities. Microb Biotechnol 2022; 15:2942-2957. [PMID: 36336802 PMCID: PMC9733649 DOI: 10.1111/1751-7915.14164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil-plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.
Collapse
Affiliation(s)
- Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Fuhe Luo
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yuchen Song
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Shenglin Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yudi Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Tongming Yin
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- School of Life SciencesHuaiyin Normal UniversityHuaianChina
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource SciencesZhejiang A&F UniversityHangzhouChina
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
16
|
Xing B, Zheng Y, Zhang M, Liu X, Li L, Mou C, Wu Q, Guo H, Shao Q. Biocontrol: Endophytic bacteria could be crucial to fight soft rot disease in the rare medicinal herb, Anoectochilus roxburghii. Microb Biotechnol 2022; 15:2929-2941. [PMID: 36099393 PMCID: PMC9733646 DOI: 10.1111/1751-7915.14142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial destabilization induced by pathogen infection has severely affected plant quality and output, such as Anoectochilus roxburghii, an economically important herb. Soft rot is the main disease that occurs during A. roxburghii culturing. However, the key members of pathogens and their interplay with non-detrimental microorganisms in diseased plants remain largely unsolved. Here, by utilizing a molecular ecological network approach, the interactions within bacterial communities in endophytic compartments and the surrounding soils during soft rot infection were investigated. Significant differences in bacterial diversity and community composition between healthy and diseased plants were observed, indicating that the endophytic communities were strongly influenced by pathogen invasion. Endophytic stem communities of the diseased plants were primarily derived from roots and the root endophytes were largely derived from rhizosphere soils, which depicts a possible pathogen migration image from soils to roots and finally the stems. Furthermore, interactions among microbial members indicated that pathogen invasion might be aided by positively correlated native microbial members, such as Enterobacter and Microbacterium, who may assist in colonization and multiplication through a mutualistic relationship in roots during the pathogen infection process. Our findings will help open new avenues for developing more accurate strategies for biological control of A. roxburghii bacterial soft rot disease.
Collapse
Affiliation(s)
- Bingcong Xing
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Ying Zheng
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Man Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Xinting Liu
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Lihong Li
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Chenhao Mou
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Qichao Wu
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, School of Marine SciencesNingbo UniversityNingboChina
| | - Qingsong Shao
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| |
Collapse
|