1
|
Pressley SR, McGill AS, Luu B, Atsumi S. Recent Advances in the Microbial Production of Human Milk Oligosaccharides. Curr Opin Food Sci 2024; 57:101154. [PMID: 39399461 PMCID: PMC11469638 DOI: 10.1016/j.cofs.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are naturally occurring, non-digestible sugars found in human milk. They have recently become a popular target for industrial synthesis due to their positive effects on the developing gut microbiome and immune system of infants. Microbial synthesis has shown great promise in driving down the cost of these sugars and making them more available for consumers and researchers. The application of common metabolic engineering techniques such as gene knockouts, gene overexpression, and expression of exogenous genes has enabled the rational design of whole-cell biocatalysts which can produce increasingly complex HMOs. Herein, we discuss how these strategies have been applied to produce a variety of sugars from sialylated to complex fucosylated HMOs. With increased availability of HMOs, more research can be done to understand their beneficial effects.
Collapse
Affiliation(s)
- Shannon R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Alex S. McGill
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Bryant Luu
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Efficient Biosynthesis of Difucosyllactose via De Novo GDP-l-Fucose Pathway in Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4367-4375. [PMID: 38374607 DOI: 10.1021/acs.jafc.3c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Difucosyllactose (DFL) is an important component of human milk oligosaccharides (HMOs) and has significant benefits for the growth and development of infants. So far, a few microbial cell factories have been constructed for the production of DFL, which still have problems of low production and high cost. Herein, a high-level de novo pathway DFL-producing strain was constructed by multistep optimization strategies in Escherichia coli BL21star(DE3). We first efficiently synthesized the intermediate 2'-fucosyllactose (2'-FL) in E. coli BL21star(DE3) by the advisable stepwise strategy. The truncated α-1,3/4-fucosyltransferase (Hp3/4FT) was then introduced into the engineered strain to achieve de novo biosynthesis of DFL. ATP-dependent protease (Lon) and GDP-mannose hydrolase (NudK) were deleted, and mannose-6-phosphate isomerase (ManA) was overexpressed to improve GDP-l-fucose accumulation. The regulator RcsA was overexpressed to fine-tune the expression level of pathway genes, thereby increasing the synthesis of DFL. The final strain produced 6.19 g/L of DFL in the shake flask and 33.45 g/L of DFL in the 5 L fermenter, which were the highest reported titers so far. This study provides a more economical, sustainable, and effective strategy to produce the fucosylated human milk oligosaccharides (HMOs).
Collapse
Affiliation(s)
- Shanquan Liang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Zi He
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
3
|
Li M, Zhang T, Li C, Gao W, Liu Z, Miao M. Semi-rationally designed site-saturation mutation of Helicobacter pylori α-1,2-fucosyltransferase for improved catalytic activity and thermostability. Int J Biol Macromol 2024; 259:129316. [PMID: 38218286 DOI: 10.1016/j.ijbiomac.2024.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Helicobacter pylori HpfutC, a glycosyltransferase (GT) 11 family glycoprotein, has great potential for industrial 2'-fucosyllactose (2'-FL) production. However, its limited catalytic activity, low expression, and poor thermostability hinder practical applications. Herein, a semi-rationally designed site-saturation mutation was applied to engineer the catalytic activity and thermostability of HpfutC. The 6 single point mutants (K102T, R105C, D115S, Y251F, A255G and K282E) and 6 combined mutants (V1, V2, V3, V4, V5, and V6) with enhanced enzyme activity were obtained by mutant library screening and ordered recombination mutation. The optimal mutant V6, with an optimum temperature of 40 °C, was not a metal-dependent enzyme, yet the reaction was facilitated by Mn2+. Compared to wild-type HpfutC, mutant V6 exhibited a 2.3-fold increase in specific activity and a 2.18-fold increase in half-life at 40 °C, respectively. Kinetic parameters indicated that the Km values of mutant V6 were 34.5 % (lactose) and 25.0 % (GDP-L-fucose) lower than those of the wild enzyme, whereas the kcat/Km values were 1.20 and 1.25-fold higher than those of the wild enzyme. Further, 3D-structure analysis revealed that the highly rigid structure, formation of new hydrogen bonds, increased hydrophobic residues and redistribution of electrostatic charges on the surface may be responsible for the elevated enzyme activity and thermostability. The strategy adopted in this study is of great significance to the solution of the technical bottleneck of HpfutC and the industrial application of 2'-FL.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
You R, Wang L, Hu M, Tao Y. Efficient production of 2'-fucosyllactose from fructose through metabolically engineered recombinant Escherichia coli. Microb Cell Fact 2024; 23:38. [PMID: 38303005 PMCID: PMC10835893 DOI: 10.1186/s12934-024-02312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The biosynthesis of human milk oligosaccharides (HMOs) using several microbial systems has garnered considerable interest for their value in pharmaceutics and food industries. 2'-Fucosyllactose (2'-FL), the most abundant oligosaccharide in HMOs, is usually produced using chemical synthesis with a complex and toxic process. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce 2'-FL, but the low stoichiometric yields (2'-FL/glucose or glycerol) are still far from meeting the requirements of industrial production. The sufficient carbon flux for 2'-FL biosynthesis is a major challenge. As such, it is of great significance for the construction of recombinant strains with a high stoichiometric yield. RESULTS In the present study, we designed a 2'-FL biosynthesis pathway from fructose with a theoretical stoichiometric yield of 0.5 mol 2'-FL/mol fructose. The biosynthesis of 2'-FL involves five key enzymes: phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-D-mannose 4,6-dehydratase (Gmd), and GDP-L-fucose synthase (WcaG), and α-1,2-fucosyltransferase (FucT). Based on starting strain SG104, we constructed a series of metabolically engineered E. coli strains by deleting the key genes pfkA, pfkB and pgi, and replacing the original promoter of lacY. The co-expression systems for ManB, ManC, Gmd, WcaG, and FucT were optimized, and nine FucT enzymes were screened to improve the stoichiometric yields of 2'-FL. Furthermore, the gene gapA was regulated to further enhance 2'-FL production, and the highest stoichiometric yield (0.498 mol 2'-FL/mol fructose) was achieved by using recombinant strain RFL38 (SG104ΔpfkAΔpfkBΔpgi119-lacYΔwcaF::119-gmd-wcaG-manC-manB, 119-AGGAGGAGG-gapA, harboring plasmid P30). In the scaled-up reaction, 41.6 g/L (85.2 mM) 2'-FL was produced by a fed-batch bioconversion, corresponding to a stoichiometric yield of 0.482 mol 2'-FL/mol fructose and 0.986 mol 2'-FL/mol lactose. CONCLUSIONS The biosynthesis of 2'-FL using recombinant E. coli from fructose was optimized by metabolic engineering strategies. This is the first time to realize the biological production of 2'-FL production from fructose with high stoichiometric yields. This study also provides an important reference to obtain a suitable distribution of carbon flux between 2'-FL synthesis and glycolysis.
Collapse
Affiliation(s)
- Ran You
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| | - Meirong Hu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| |
Collapse
|
5
|
Boob AG, Chen J, Zhao H. Enabling pathway design by multiplex experimentation and machine learning. Metab Eng 2024; 81:70-87. [PMID: 38040110 DOI: 10.1016/j.ymben.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The remarkable metabolic diversity observed in nature has provided a foundation for sustainable production of a wide array of valuable molecules. However, transferring the biosynthetic pathway to the desired host often runs into inherent failures that arise from intermediate accumulation and reduced flux resulting from competing pathways within the host cell. Moreover, the conventional trial and error methods utilized in pathway optimization struggle to fully grasp the intricacies of installed pathways, leading to time-consuming and labor-intensive experiments, ultimately resulting in suboptimal yields. Considering these obstacles, there is a pressing need to explore the enzyme expression landscape and identify the optimal pathway configuration for enhanced production of molecules. This review delves into recent advancements in pathway engineering, with a focus on multiplex experimentation and machine learning techniques. These approaches play a pivotal role in overcoming the limitations of traditional methods, enabling exploration of a broader design space and increasing the likelihood of discovering optimal pathway configurations for enhanced production of molecules. We discuss several tools and strategies for pathway design, construction, and optimization for sustainable and cost-effective microbial production of molecules ranging from bulk to fine chemicals. We also highlight major successes in academia and industry through compelling case studies.
Collapse
Affiliation(s)
- Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junyu Chen
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
| |
Collapse
|
6
|
Zhang Y, Zhang X, Liu H, Hou J, Liu M, Qi Q. Efficient production of 2'-fucosyllactose in unconventional yeast Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:716-723. [PMID: 38053583 PMCID: PMC10694633 DOI: 10.1016/j.synbio.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
2'-Fucosyllactose (2'-FL) has great application value as a nutritional component and the whole cell biosynthesis of 2'-FL has become the focus of current research. Yarrowia lipolytica has great potential in oligosaccharide synthesis and large-scale fermentation. In this study, systematic engineering of Y. lipolytica for efficient 2'-FL production was performed. By fusing different protein tags, the synthesis of 2'-FL was optimized and the ubiquitin tag was demonstrated to be the best choice to increase the 2'-FL production. By iterative integration of the related genes, increasing the precursor supply, and promoting NADPH regeneration, the 2'-FL synthesis was further improved. The final 2'-FL titer, 41.10 g/L, was obtained in the strain F5-1. Our work reports the highest 2'-FL production in Y. lipolytica, and demonstrates that Y. lipolytica is an efficient microbial chassis for the synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuejing Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Li C, Li M, Hu M, Zhang T. Metabolic Engineering of De Novo Pathway for the Production of 2'-Fucosyllactose in Escherichia coli. Mol Biotechnol 2023; 65:1485-1497. [PMID: 36652181 DOI: 10.1007/s12033-023-00657-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
2'-Fucosyllactose (2'-FL), one of the most abundant oligosaccharides in human milk, has gained increased attention owing to its nutraceutical and pharmaceutical potential. However, limited availability and high-cost of preparation have limited its widespread application and in-depth investigation of its potential functions. Here, a modular pathway engineering was implemented to construct an Escherichia coli strain to improve the biosynthesis titer of 2'-FL. Before overexpression of manB, manC, gmd, wcaG, and heterologous expression of futC, genes wcaJ and lacZ encoding UDP-glucose lipid carrier transferase and β-galactosidase, respectively, were inactivated from E. coli BL21 (DE3) with the CRISPR-Cas9 system, which inhibited the production of 2'-FL. The results showed that final shake flask culture yielded a 3.8-fold increase in 2'-FL (0.98 g/L) from the engineered strain ELC07. Fed-batch fermentation conditions were optimized in a 3-L bioreactor. The highest titer of 2'-FL (18.22 g/L) was obtained, corresponding to a yield of 0.25 g/g glycerol and a substrate conversion of 0.88 g/g lactose.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
8
|
Chen Y, Zhu Y, Wang H, Chen R, Liu Y, Zhang W, Mu W. De novo biosynthesis of 2'-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ1,2-fucosyltransferase from Azospirillum lipoferum. BIORESOURCE TECHNOLOGY 2023; 374:128818. [PMID: 36868425 DOI: 10.1016/j.biortech.2023.128818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Human milk oligosaccharides are complex, indigestible oligosaccharides that provide ideal nutrition for infant development. Here, 2'-fucosyllactose was efficiently produced in Escherichia coli by using a biosynthetic pathway. For this, both lacZ and wcaJ (encoding β-galactosidase and UDP-glucose lipid carrier transferase, respectively) were deleted to enhance the 2'-fucosyllactose biosynthesis. To further enhance 2'-fucosyllactose production, SAMT from Azospirillum lipoferum was inserted into the chromosome of the engineered strain, and the native promoter was replaced with a strong constitutive promoter (PJ23119). The titer of 2'-fucosyllactose was increased to 8.03 g/L by introducing the regulators rcsA and rcsB into the recombinant strains. Compared to wbgL-based strains, only 2'-fucosyllactose was produced in SAMT-based strains without other by-products. Finally, the highest titer of 2'-fucosyllactose reached 112.56 g/L in a 5 L bioreactor by fed-batch cultivation, with a productivity of 1.10 g/L/h and a yield of 0.98 mol/mol lactose, indicating a strong potential in industrial production.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
9
|
Microbial Production of Human Milk Oligosaccharides. Molecules 2023; 28:molecules28031491. [PMID: 36771155 PMCID: PMC9921495 DOI: 10.3390/molecules28031491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are complex nonnutritive sugars present in human milk. These sugars possess prebiotic, immunomodulatory, and antagonistic properties towards pathogens and therefore are important for the health and well-being of newborn babies. Lower prevalence of breastfeeding around the globe, rising popularity of nutraceuticals, and low availability of HMOs have inspired efforts to develop economically feasible and efficient industrial-scale production platforms for HMOs. Recent progress in synthetic biology and metabolic engineering tools has enabled microbial systems to be a production system of HMOs. In this regard, the model organism Escherichia coli has emerged as the preferred production platform. Herein, we summarize the remarkable progress in the microbial production of HMOs and discuss the challenges and future opportunities in unraveling the scope of production of complex HMOs. We focus on the microbial production of five HMOs that have been approved for their commercialization.
Collapse
|
10
|
Hu M, Li M, Li C, Miao M, Zhang T. Effects of Human Milk Oligosaccharides in Infant Health Based on Gut Microbiota Alteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:994-1001. [PMID: 36602115 DOI: 10.1021/acs.jafc.2c05734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The primary active components of breast milk are human milk oligosaccharides (HMOs). HMOs provide many benefits to infants, including regulating their metabolism, immune system, and brain development. Recent studies have emphasized that HMOs act as prebiotics by the metabolism of intestinal microorganisms to produce short-chain fatty acids, which are crucial for infant development. In addition, HMOs with different structural characteristics can form different microbial compositions. HMOs-induced predominant microbes, including Bifidobacterium infantis, B. bifidum, B. breve, and B. longum, and their metabolites demonstrated pertinent health-promoting properties. Meanwhile, HMOs could also directly reduce the occurrence of diseases through the effects of preventing pathogen infection. In this review, we address the probable function of HMOs inside the HMOs-gut microbiota-infant network, by describing the physiological functions of HMOs and the implications of diet on the HMOs-gut microbiota-infant network.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol 2022; 78:102841. [PMID: 36371892 DOI: 10.1016/j.copbio.2022.102841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid component in human milk. HMOs have drawn increasing attention because of their beneficial effects to infant health. Of the more than 200 HMOs, only less than 10 have been used in medical or food industries. Although HMO research has been becoming increasingly intensive and booming, the limited availability of HMOs still cannot meet the demand in health effect research and large-scale application. Therefore, efficient synthetic approaches and strategies for HMO production are urgently needed. The goal of this review is to highlight recent advances in microbial cell factory development for HMO biosynthesis. Key challenges in representative HMO production are also highlighted. The further perspectives in general HMO biosynthesis are discussed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Li M, Li C, Luo Y, Hu M, Liu Z, Zhang T. Multi-level metabolic engineering of Escherichia coli for high-titer biosynthesis of 2'-fucosyllactose and 3-fucosyllactose. Microb Biotechnol 2022; 15:2970-2981. [PMID: 36134689 PMCID: PMC9733645 DOI: 10.1111/1751-7915.14152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Fucosyllactoses (FL), including 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high-titer FL biosynthesis by introducing multi-level metabolic engineering strategies, including (1) individual construction of the 2'/3-FL-producing strains through gene combination optimization of the GDP-L-fucose module; (2) screening of rate-limiting enzymes (α-1,2-fucosyltransferase and α-1,3-fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate-limiting enzymes by the RBS screening, fusion peptides and multi-copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2'-FL and 6.28 g/L for 3-FL in shake flasks with a modified-M9CA medium. Fed-batch cultivations of the two strains generated 64.62 g/L of 2'-FL and 40.68 g/L of 3-FL in the 3-L bioreactors, with yields of 0.65 mol 2'-FL/mol lactose and 0.67 mol 3-FL/mol lactose, respectively. This research provides a viable platform for other high-value-added compounds production in microbial cell factories.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Chenchen Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Yejiao Luo
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Miaomiao Hu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
| | - Zhu Liu
- Zhejiang Institute for Food and Drug ControlHangzhouChina
| | - Tao Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsuChina
- International Joint Laboratory on Food Science and SafetyJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
13
|
Li M, Luo Y, Hu M, Li C, Liu Z, Zhang T. Module-Guided Metabolic Rewiring for Fucosyllactose Biosynthesis in Engineered Escherichia coli with Lactose De Novo Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14761-14770. [PMID: 36375030 DOI: 10.1021/acs.jafc.2c05909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fucosyllactose (FL) has garnered considerable attention for its benefits on infant health. In this study, we report an efficient E. coli cell factory to produce 2'/3-fucosyllactose (2'/3-FL) with lactose de novo pathway through metabolic network remodeling, including (1) modification of the PTSGlc system to enhance glucose internalization efficiency; (2) screening for β-1,4-galactosyltransferase (β-1,4-GalT) and introduction of lactose synthesis pathway; (3) eliminating inhibition of byproduct pathways; (4) constructing antibiotic-free and inducer-free FL strains; and (5) up-regulating the expression of genes in the GDP-l-fucose module. The final engineered strains BP10-3 and BP11-3 produced 4.36 g/L for 2'-FL and 3.23 g/L for 3-FL in shake flasks. In 3 L bioreactors, fed-batch cultivations of the two strains produced 40.44 g/L for 2'-FL and 30.42 g/L for 3-FL, yielding 0.63 and 0.69 g/g glucose, respectively. The strategy described in this work will help to engineer E. coli as a safe chassis for other lactose-independent HMOs production.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yejiao Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Production of colanic acid hydrolysate and its use in the production of fucosylated oligosaccharides by engineered Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Liu Y, Zhu Y, Wang H, Wan L, Zhang W, Mu W. Strategies for Enhancing Microbial Production of 2'-Fucosyllactose, the Most Abundant Human Milk Oligosaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11481-11499. [PMID: 36094047 DOI: 10.1021/acs.jafc.2c04539] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human milk oligosaccharides (HMOs), a group of structurally diverse unconjugated glycans in breast milk, act as important prebiotics and have plenty of unique health effects for growing infants. 2'-Fucosyllactose (2'-FL) is the most abundant HMO, accounting for approximately 30%, among approximately 200 identified HMOs with different structures. 2'-FL can be enzymatically produced by α1,2-fucosyltransferase, using GDP-l-fucose as donor and lactose as acceptor. Metabolic engineering strategies have been widely used for enhancement of GDP-l-fucose supply and microbial production of 2'-FL with high productivity. GDP-l-fucose supply can be enhanced by two main pathways, including de novo and salvage pathways. 2'-FL-producing α1,2-fucosyltransferases have widely been identified from various microorganisms. Metabolic pathways for 2'-FL synthesis can be basically constructed by enhancing GDP-l-fucose supply and introducing α1,2-fucosyltransferase. Various strategies have been attempted to enhance 2'-FL production, such as acceptor enhancement, donor enhancement, and improvement of the functional expression of α1,2-fucosyltransferase. In this review, current progress in GDP-l-fucose synthesis and bacterial α1,2-fucosyltransferases is described in detail, various metabolic engineering strategies for enhancing 2'-FL production are comprehensively reviewed, and future research focuses in biotechnological production of 2'-FL are suggested.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
16
|
Hu M, Li M, Li C, Zhang T. Biosynthesis of Lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational design. Carbohydr Polym 2022; 297:120017. [DOI: 10.1016/j.carbpol.2022.120017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
17
|
Liu Y, Zhu Y, Wan L, Chen R, Zhang W, Mu W. High-Level De Novo Biosynthesis of 2'-Fucosyllactose by Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9017-9025. [PMID: 35834320 DOI: 10.1021/acs.jafc.2c02484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2'-Fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk. In this study, a highly efficient biosynthetic route for 2'-FL production was designed via the de novo pathway of GDP-l-fucose using engineered Escherichia coli BL21(DE3). Specifically, plasmid-based strains with previously deleted lacZ and wcaJ were further reconstructed by introducing de novo pathway genes and α1,2-fucosyltransferase-encoding wbgL to realize 2'-FL synthesis. The 2'-FL titer was enhanced to 3.92 g/L by further introducing rcsA and rcsB. Subsequently, the additional wbgL expression cassette was chromosomally integrated into recA locus to strengthen fucosylation reaction and a strong constitutive promoter (PJ23119) was used to replace the original promoters of manC-manB and gmd-wcaG to improve 2'-FL synthesis. The maximal 2'-FL titer reached 9.06 and 79.23 g/L in shake-flask and fed-batch cultivation, respectively. The 2'-FL productivity reached 1.45 g/L/h, showing remarkable production potential in large-scale industrial application.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|