1
|
Barrera-Chamorro L, Fernandez-Prior Á, Rivero-Pino F, Montserrat-de la Paz S. A comprehensive review on the functionality and biological relevance of pectin and the use in the food industry. Carbohydr Polym 2025; 348:122794. [PMID: 39562070 DOI: 10.1016/j.carbpol.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Pectin is a natural biopolymer, which can be extracted from food by-products, adding value to raw material, with a structure more complex than that of other polysaccharides. The gelling properties of these molecules, together with the bioactivity that these can exert, make them suitable to be used as ingredients and bioactive agents. In this review, the characterization of pectin (structure, sources, techno-functional, and biological properties), the extraction methods, and their use in the food industry (food packaging, as carriers, and as ingredients) are described. Different by-products can be used as substrates to extract pectin, enhancing a sustainable food system as described by the circular economy principles. Pectin is characterized for their techno-functional and biological properties, such as gelling and thickening properties or modulation of microbiota both in animals and humans. Such properties make these molecules suitable for a wide range of applications within the food chain, serving as packaging or carriers in foodstuff, or for direct use as functional ingredients as fiber. Overall, pectin has been shown to exert as promising components to be introduced in the food system, although further research on scaling-up the production process and feasibility has to be done.
Collapse
Affiliation(s)
- Luna Barrera-Chamorro
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - África Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain; European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
2
|
Thirunavukkarasu A, Nithya R, Jeyanthi J. Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review. Diabetes Res Clin Pract 2022; 194:109996. [PMID: 35850300 DOI: 10.1016/j.diabres.2022.109996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Type 2 Diabetes mellitus (T2DM) is characterized by either insufficient insulin production or the inability to take it up for the glycemic regulation in the human body. According to WHO reports, T2DM will be the seventh-largest syndrome resulting in mortality by 2030. To tackle this chronic metabolic disorder, the person with diabetes population depends on subcutaneous administration (Sub-Q) of insulin and certain oral hypoglycemic drugs. However, these current invasive practices suffered from painful injections, needle phobia, multiple doses, risk of infection and poor-patient compliance. Hence, the search for a non-invasive and patient-friendly insulin administration system was high in the past decades leading to the development of Transdermal Drug Delivery Systems (TDDS). These can offer rapid and sustained release of therapeutic compounds at controlled rates with no pain during the administration. In recent years, the usage of such TDDS has been increasing at an exponential rate in Type 2 diabetes management. In the present review, the scholarly works on the different modes of TDDS were comprehensively reported chronlogically to appreciate their developments. Conclusively, this review critically identified prevailing research gaps in the current TDDS research and presented potential research hotspots for the prospect development in T2DM management.
Collapse
Affiliation(s)
| | - Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641013, India.
| | | |
Collapse
|
3
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
4
|
Mohammed MA, Ibrahim BMM, Abdel-Latif Y, Hassan AH, El Raey MA, Hassan EM, El-Gengaihi SE. Pharmacological and metabolomic profiles of Musa acuminata wastes as a new potential source of anti-ulcerative colitis agents. Sci Rep 2022; 12:10595. [PMID: 35732649 PMCID: PMC9218116 DOI: 10.1038/s41598-022-14599-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Musa acuminata (MA) is a popular fruit peels in the world. Non-food parts of the plant have been investigated for their antioxidant and anti-ulcerative colitis activity. Metabolomic approaches were found to be informative as a screening tool. It discovered different metabolites depending on statistical analysis. The antioxidant activity content was measured by colorimetric method. Seventy six investigated metabolites were observed. The identities of some of these markers were confirmed based on their MS2 fragmentation and NMR spectroscopy. These include: cinnamic acid and its dimer 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one beside; gallic acid and flavonoids; quercetin, quercetin-3-O-β-d-glucoside, luteolin-7-O-β-d-glucopyranoside. GC/MS analysis of MA peels essential oil led to identification of 37 compounds. The leaves, pseudostem and fruit peels extracts were tested for their safety and their anti-ulcerative colitis efficacy in rats. Rats were classified into: normal, positive, prednisolone reference group, MA extracts pretreated groups (250–500 mg/kg) for 2 weeks followed by induction of ulcerative colitis by per-rectal infusion of 8% acetic acid. Macroscopic and microscopic examinations were done. Inflammatory markers (ANCA, CRP and Ilβ6) were measured in sera. The butanol extracts showed good antioxidant and anti-inflammatory activities as they ameliorated macroscopic and microscopic signs of ulcerative colitis and lowered the inflammatory markers compared to untreated group. MA wastes can be a potential source of bioactive metabolites for industrial use and future employment as promising anti-ulcerative colitis food supplements.
Collapse
Affiliation(s)
- Mona A Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Bassant M M Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Cairo, 12622, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - Azza H Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Souad E El-Gengaihi
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Wadie W, Ahmed GS, Shafik AN, El-Sayed M. Effects of insulin and sitagliptin on early cardiac dysfunction in diabetic rats. Life Sci 2022; 299:120542. [PMID: 35395243 DOI: 10.1016/j.lfs.2022.120542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac affection is common in diabetic patients. Although insulin exerts a cardioprotective role, it may not be enough to totally prevent this affection. The current study aimed to compare the cardioprotective effect of insulin alone or combined with sitagliptin in a rat model of type 1 diabetes mellitus. MATERIALS AND METHODS Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Diabetic rats were treated with insulin (3 IU), insulin (6 IU), or insulin (3 IU) + sitagliptin (10 mg/kg) for 42 days. KEY FINDINGS Diabetic rats exhibited significant systolic and diastolic cardiac affection with significant elevation of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and brain natriuretic peptide (BNP) levels. Treatment with insulin prevented the deterioration of diabetes-induced cardiac condition, an effect that was significantly potentiated by the combined use of sitagliptin. SIGNIFICANCE The combined use of sitagliptin and insulin significantly improved the cardioprotective effect of insulin and prevented the early cardiac dysfunction in STZ diabetic rats.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Gehad S Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Sayed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Huang Y, Wang T. Pectin Oligosaccharides Enhance α2,6-Sialylation Modification that Promotes Apoptosis of Bladder Cancer Cells by Targeting the Hedgehog Pathway. Cell Biochem Biophys 2021; 79:719-728. [PMID: 34041669 DOI: 10.1007/s12013-021-00996-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Although pectin oligosaccharide (POS) can inhibit the growth and proliferation of gastric, colon, prostate, breast, melanoma, and leukemia cells, its effect on bladder cancer remains unknown. Therefore, screening and identification of factors associated with the sensitivity of bladder cancer to drugs and elucidation of their molecular mechanisms will help provide a theoretical basis for establishing postoperative systemic chemotherapy for patients with bladder cancer. We showed that POS promoted the apoptosis of bladder cancer cells, and this finding was consistent with enhanced α2,6-sialylation post-modification. Moreover, POS activated the Hedgehog pathway, the inhibition of which regulated the tumorigenicity of bladder cancer cells in vivo. These findings were consistent with our results in vitro. We conclude that POS promotes the apoptosis of bladder cancer and offers new insights and evidence for the development of individualized treatment strategies. Schema of molecular events underlying POS-induced inhibition of bladder cancer cell proliferation.
Collapse
Affiliation(s)
- Yinpeng Huang
- Department of Hepatobiliary, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Tianyi Wang
- Physical Examination Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| |
Collapse
|
7
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics 2021; 13:pharmaceutics13010100. [PMID: 33466845 PMCID: PMC7830404 DOI: 10.3390/pharmaceutics13010100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin is used for the treatment of diabetes mellitus, which is characterized by hyperglycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however, this procedure is very often invasive, which hinders patient compliance, particularly for individuals requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypoglycemia occurrences following multidose insulin injections. Such an invasive and intensive approach motivates the quest for alternative, more user-friendly insulin administration approaches. For example, transdermal delivery has numerous advantages, such as prolonged drug release, low variability in the drug plasma level, and improved patient compliance. In this paper, the authors summarize different approaches used in transdermal insulin delivery, including microneedles, chemical permeation enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemulsions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being widely researched. The conclusions presented in this paper are extracted from the literature, notably, that the transdermal route could effectively and reliably deliver insulin into the circulatory system. Consistent progress in this area will ensure that some of the aforementioned transdermal insulin delivery systems will be introduced in clinical practice and commercially available in the near future.
Collapse
|
8
|
Sibiya S, Msibi B, Khathi A, Sibiya N, Booysen I, Ngubane P. The effect of dioxidovanadium complex (V) on hepatic function in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2019; 97:1169-1175. [PMID: 31491333 DOI: 10.1139/cjpp-2019-0369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetics are susceptible to hepatic dysfunction risks due to hyperglycaemia and insulin therapy. Conventional diabetes treatments improve glycaemic control; however, hepatic hazards associated with these agents remains a challenge. Accordingly, this study sought to investigate the effect of a dioxidovanadium complex (V) on the hepatic function in streptozotocin-induced diabetic rats. Sprague-Dawley rats (240-250 g) were divided into 4 groups (n = 6): nondiabetic control, diabetic control, insulin-treated, and vanadium complex groups. The dioxidovanadium (10, 20, and 40 mg/kg) was administered twice every 2nd day for 5 weeks and blood glucose concentration was monitored weekly. At the end of the experimental period, all the experimental groups were sacrificed, and then the lipid profile, liver superoxide dismutase, glutathione peroxidase and malondialdehyde, plasma alanine aminotransferase and aspartate aminotransferase, and C-reactive protein (CRP) concentration were measured. The administration of dioxidovanadium significantly alleviated hyperglycaemia with concomitant attenuation in oxidative stress as evidenced by reduced malondialdehyde concentrations. Furthermore, vanadium complex abolished diabetes-induced dyslipidaemia. Lastly, vanadium complex administration attenuated the increase in alanine aminotransferase, aspartate aminotransferase, and plasma C-reactive protein. These findings suggest that this metallo-compound (dioxidovanadium) may ameliorate liver dysfunction often observed in diabetes.
Collapse
Affiliation(s)
- Samukelisiwe Sibiya
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bonisiwe Msibi
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Irvin Booysen
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Phikelelani Ngubane
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Sibiya N, Mabandla M. The pectin-insulin patch application prevents the onset of peripheral neuropathy-like symptoms in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2018; 96:1286-1292. [PMID: 30326192 DOI: 10.1139/cjpp-2018-0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peripheral neuropathic condition is amongst the classical symptoms of progressed diabetes. An intensive glycemic control with insulin injections has been shown to delay the onset and the progression of this condition in diabetes. In this study, we investigated the effect of pectin-insulin patch application on peripheral neuropathic symptoms in streptozotocin-induced diabetic rats. Pectin-insulin patches (20.0, 40.8, and 82.9 μg/kg) were daily applied thrice in streptozotocin-induced diabetic rats for 45 days. The diabetic animals sham treated with insulin-free patch served as negative control, while diabetic animals receiving subcutaneous insulin served as positive controls. The locomotor activity, gripping strength, and thermal perception were assessed at day 36, day 40, and day 44, respectively. On the 45th day, the animals were sacrificed, after which the plasma insulin, nitric oxide, C-reactive protein, tumor necrosis factor alpha, and malondialdehyde were measured. The patch application attenuated hyperglycemia with an improvement in the locomotor activity, thermal perception, and gripping strength in diabetic animals. Furthermore, the application of the patch augmented plasma nitric oxide while attenuating plasma malondialdehyde and tumor necrosis factor alpha. The application of pectin-insulin patch delays the onset of peripheral neuropathic-like symptoms in diabetic animals.
Collapse
Affiliation(s)
| | - Musa Mabandla
- b School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
11
|
Hypoglycemic effect and mechanism of a pectic polysaccharide with hexenuronic acid from the fruits of Ficus pumila L. in C57BL/KsJ db/db mice. Carbohydr Polym 2017; 178:209-220. [DOI: 10.1016/j.carbpol.2017.09.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
|