1
|
Chen Y, Jiang Q, Xing X, Yuan T, Li P. Clinical research progress on β-cell dysfunction in T2DM development in the Chinese population. Rev Endocr Metab Disord 2025; 26:31-53. [PMID: 39382753 DOI: 10.1007/s11154-024-09914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of type-2 diabetes mellitus (T2DM) has increased over 10-fold in the past 40 years in China, which now has the largest T2DM population in the world. Insulin resistance and β-cell dysfunction are the typical features of T2DM. Although both factors play a role, decreased β-cell function and β-cell mass are the predominant factors for progression to T2DM. Considering the differences between Chinese T2DM patients and those of other ethnicities, it is important to characterize β-cell dysfunction in Chinese patients during T2DM progression. Herein, we reviewed the studies on the relationships between β-cell function and T2DM progression in the Chinese population and discussed the differences among individuals of varying ethnicities. Meanwhile, we summarized the risk factors and current treatments of T2DM in Chinese individuals and discussed their impacts on β-cell function with the hope of identifying a better T2DM therapy.
Collapse
Affiliation(s)
- Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Xiaowei Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China.
| |
Collapse
|
2
|
Pei J, Liu C, Yang Z, Lai Y, Zhang S, Guan T, Shen Y. Association of KATP variants with CMD and RAP in CAD patients with increased serum lipoprotein(a) levels. J Clin Endocrinol Metab 2022; 108:1061-1074. [PMID: 36469795 DOI: 10.1210/clinem/dgac709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT Refractory angina pectoris (RAP) is a specific subtype of coronary artery disease (CAD). Lipoprotein(a) [Lp(a)] and its induced coronary microvascular dysfunction (CMD) play an important role in pathogenesis of RAP, but its metabolism was mostly genetically determined. ATP-sensitive potassium channels (KATP) is involved in lipid metabolism and microvascular homeostasis, and becomes a promising target for the management of Lp(a) and its related RAP. OBJECTIVE To investigate associations of KATP variants with hyperlipoprotein(a)emia, CMD and RAP in CAD patients. DESIGN, PATIENTS, SETTINGS A total of 1,148 newly diagnosed CAD patients were prospectively selected, and divided into control [Lp(a) < 180 mg/dL] and case [Lp(a) ≥ 180 mg/dL, hyperlipoprotein(a)emia] group. METHODS 9 KATP variants were genotyped by MassARRAY system. The expression profile of exosome-derived microRNAs (exo-miRs) was identified by next-generation sequencing, and the expression levels of differentially expressed exo-miRs were evaluated by qRT-PCR in verification cohort. RESULTS Three KATP variants were associated with increased risk of hyperlipoprotein(a)emia in CAD patients as follows: rs2285676 (AA + GA genotype, adjusted OR = 1.44, 95% CI: 1.10-1.88, P = 0.008), rs1799858 (CC genotype, adjusted OR = 1.33, 95% CI: 1.03-1.73, P = 0.030), and rs141294036 (CC genotype, adjusted OR = 1.43, 95% CI: 1.10-1.87, P = 0.008). Only rs141294036 was associated with increased risk of CMD (CC genotype, adjusted OR = 1.62, 95% CI: 1.23-2.13, P = 0.001), and further with increased RAP risk (CC genotype, adjusted HR = 2.05, 95% CI: 1.22-3.43, P = 0.007) after median follow-up of 50.6-months. Between the two genotypes of rs141294036, 152 exo-miRs were significantly differentially expressed, only 10 exo-miRs (miR-7110-3p, miR-548az-5p, miR-214-3p, let-7i-5p, miR-218-5p, miR-128-3p, miR-378i, miR-625-3p, miR-128-1-5p and miR-3187-3p) were further confirmed in RAP patients with hyperlipoprotein(a)emia and CMD. CONCLUSION KATP rs141294036 may serve a potential genetic marker for hyperlipoprotein(a)emia, CMD and RAP in CAD patients.
Collapse
Affiliation(s)
- Jingxian Pei
- Department of Cardiology, the second affiliated hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Zhengxia Yang
- Department of Electronic Business, School of Economics and Finance, South China University of Technology, Guangzhou 510006, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Shenghui Zhang
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
3
|
Liu C, Lai Y, Guan T, Zhan J, Pei J, Wu D, Ying S, Shen Y. Associations of ATP-Sensitive Potassium Channel’s Gene Polymorphisms With Type 2 Diabetes and Related Cardiovascular Phenotypes. Front Cardiovasc Med 2022; 9:816847. [PMID: 35402560 PMCID: PMC8984103 DOI: 10.3389/fcvm.2022.816847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by increased levels of blood glucose but is increasingly recognized as a heterogeneous disease, especially its multiple discrete cardiovascular phenotypes. Genetic variations play key roles in the heterogeneity of diabetic cardiovascular phenotypes. This study investigates possible associations of ATP-sensitive potassium channel (KATP) variants with cardiovascular phenotypes among the Chinese patients with T2D. Six hundred thirty-six patients with T2D and 634 non-diabetic individuals were analyzed in the study. Nine KATP variants were determined by MassARRAY. The KATP rs2285676 (AA + GA, OR = 1.43, 95% CI: 1.13–1.81, P = 0.003), rs1799858 (CC, OR = 1.42, 95% CI: 1.12–1.78, P = 0.004), and rs141294036 (CC, OR = 1.45, 95% CI: 1.15–1.83, P = 0.002) are associated with increased T2D risk. A follow-up of at least 45.8-months (median) indicates further association between the 3 variants and risks of diabetic-related cardiovascular conditions. The associations are categorized as follows: new-onset/recurrent acute coronary syndrome (ACS) (rs2285676/AA + GA, HR = 1.37, 95% CI: 1.10–1.70, P = 0.005; rs141294036/TT + CT, HR = 1.59, 95% CI: 1.28–1.99, P < 0.001), new-onset stroke (rs1799858/CC, HR = 2.58, 95% CI: 1.22–5.43, P = 0.013; rs141294036/CC, HR = 2.30, 95% CI: 1.16–4.55, P = 0.017), new-onset of heart failure (HF) (rs1799858/TT + CT, HR = 2.78, 95% CI: 2.07–3.74, P < 0.001; rs141294036/TT + CT, HR = 1.45, 95% CI: 1.07–1.96, P = 0.015), and new-onset atrial fibrillation (AF) (rs1799858/TT + CT, HR = 2.05, 95% CI: 1.25–3.37, P = 0.004; rs141294036/CC, HR = 2.31, 95% CI: 1.40–3.82, P = 0.001). In particular, the CC genotype of rs1799858 (OR = 2.38, 95% CI: 1.11–5.10, P = 0.025) and rs141294036 (OR = 1.95, 95% CI: 1.04–3.66, P = 0.037) are only associated with the risk of ischemic stroke while its counterpart genotype (TT + CT) is associated with the risks of HF with preserved ejection fraction (HFpEF) (rs1799858, OR = 3.46, 95% CI: 2.31–5.18, P < 0.001) and HF with mildly reduced ejection fraction (HFmrEF) (rs141294036, OR = 2.74, 95% CI: 1.05–7.15, P = 0.039). Furthermore, the 3 variants are associated with increased risks of abnormal serum levels of triglyceride (TIRG) (≥ 1.70 mmol/L), low-density lipoprotein cholesterol (LDL-C) (≥ 1.40 mmol/L), apolipoprotein B (ApoB) (≥ 80 mg/dL), apolipoprotein A-I (ApoA-I) level (< 120 mg/dL), lipoprotein(a) Lp(a) (≥ 300 mg/dL) and high-sensitivity C-reactive protein (HsCRP) (≥ 3.0 mg/L) but exhibited heterogeneity (all P < 0.05). The KATP rs2285676, rs1799858, and rs141294036 are associated with increased risks of T2D and its related cardiovascular phenotypes (ACS, stroke, HF, and AF), but show heterogeneity. The 3 KATP variants may be promising markers for diabetic cardiovascular events favoring “genotype-phenotype” oriented prevention and treatment strategies.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Cheng Liu,
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingxian Pei
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Songsong Ying
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Liu C, Lai Y, Pei J, Huang H, Zhan J, Ying S, Shen Y. Clinical and Genetic Analysis of KATP Variants With Heart Failure Risk in Patients With Decreased Serum ApoA-I Levels. J Clin Endocrinol Metab 2021; 106:2264-2278. [PMID: 33982099 DOI: 10.1210/clinem/dgab336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Lower serum concentration of apolipoprotein A-I (ApoA-I) is causally associated with heart failure (HF) risk. Adenosine triphosphate-sensitive potassium channels (KATP), as gating channels coupling vascular reactivity and metabolism with ischemic protection, become a new potential target of management for HF. The KATP gene sequence is highly polymorphic and has a high degree of genetic heterogeneity. OBJECTIVE This work aimed to determine whether KATP variants predict the risks of decreased ApoA-I concentration and its related HF. METHODS A total of 634 individuals, including 317 patients with decreased ApoA-I concentration (< 120 mg/dL) and 317 counterpart participants (≥ 120 mg/dL), were retrospectively selected. Five KATP variants were genotyped through the MassARRAY platform. Exosome-derived microRNAs (exo-miRs) expression profiles were identified by next-generation sequencing, and the top 10 differentially expressed (DE) exo-miRs were verified using quantitative polymerase chain reaction in a validation cohort of 240 individuals with decreased ApoA-I concentration. RESULTS KATP rs141294036 was related to an increased risk of lower ApoA-I levels (adjusted odds ratio [OR] = 1.95, P = .002) and HF incidence (adjusted OR = 2.38, P = .009), especially heart failure with preserved ejection fraction (HFpEF; adjusted OR = 2.13, P = .015). After a median 48.6-month follow-up, participants carrying the CC genotype of rs141294036 were associated with an elevated HF rehospitalization risk (adjusted hazard ratio = 1.91, P = .005). Thirty-six exo-miRs were significantly DE between different genotypes of rs141294036 in participants with lower ApoA-I levels, but only 5 exo-miRs (miR-31-5p, miR-126-5p, miR-106a-5p, miR-378i, and miR-181c-5p) were further confirmed. CONCLUSION KATP rs141294036 was associated with increased risks of lower ApoA-I levels, HF incidence (especially HFpEF), and HF rehospitalization in those with the 5 confirmed exo-miRs and its related metabolic pathways.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Jingxian Pei
- Department of Cardiology, the second affiliated hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Huiling Huang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Songsong Ying
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
5
|
Liu C, Guan T, Lai Y, Zhan J, Shen Y. Genetic predisposition and bioinformatics analysis of ATP-sensitive potassium channels polymorphisms with the risks of elevated apolipoprotein B serum levels and its related arteriosclerosis cardiovascular disease. Aging (Albany NY) 2021; 13:8177-8203. [PMID: 33686948 PMCID: PMC8034914 DOI: 10.18632/aging.202628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Serum concentration of apolipoprotein B (Apo B) is causally associated with arteriosclerosis cardiovascular disease (ASCVD) risk. Whether ATP-sensitive potassium channels (KATP) variants predict the risk of increased Apo B concentration (≥ 80 mg/dL) and related ASCVD remain less clear. We recruited 522 subjects with elevated Apo B concentration (≥ 80 mg/dL) and 522 counterpart subjects (< 80 mg/dL) from South China to assess the associations of KATP variants (rs11046182, rs78148713, rs145456027 and rs147265929) with the risks of increased Apo B serum concentration (≥ 80 mg/dL), carotid artery stenosis (CAS) ≥ 50% and new-onset ischemic stroke (IS). Our results showed that only KATP SNP rs11046182 (GG genotype) was associated with increased risk of Apo B ≥ 80 mg/dL (adjusted OR=2.17, P<0.001) and CAS ≥ 50% (adjusted OR=2.63, P=0.011). After median 50.6-months follow-up, subjects carrying GG genotype of rs11046182 were associated with higher risk of new-onset IS (adjusted HR=2.24, P=0.024). Further, the exosome-derived microRNAs (exo-miRs) expression profile was identified by next-generation sequencing. 41 exo-miRs were significantly differentially expressed under cross-talk status between high Apo B level (≥ 80 mg/dL) and KATP rs11046182. Our study demonstrated that KATP variant rs11046182 was associated with higher risks of elevated serum Apo B levels and its related ASCVD, and the possible mechanism was related to specific exo-miRs expression profile of KATP rs11046182.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
6
|
Liu C, Guan T, Lai Y, Shen Y. Association of KATP Gene Polymorphisms with Dyslipidemia and Ischemic Stroke Risks Among Hypertensive Patients in South China. J Mol Neurosci 2021; 71:2142-2151. [PMID: 33400071 DOI: 10.1007/s12031-020-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
ATP-sensitive potassium channels (KATP) couple vascular reactivity and metabolism with ischemic protection which makes them potential targets for prevention and management of ischemic stroke (IS). This study investigates the potential association between KATP polymorphisms and hypertension (HTN), dyslipidemia, and consequently ischemic stroke (IS). Nine hundred and fourteen (914) patients genotyped for KATP polymorphisms (rs2285676, rs1799858, rs4148671, rs61928479, and rs141294036) were analyzed. KATP rs141294036 (CC, adjusted OR = 1.59, 95%CI: 1.17-2.14, P = 0.003) was related to higher HTN risk. Meanwhile, rs2285676 (AA + GA, adjusted OR = 1.53, 95%CI: 1.08-2.19, P = 0.018) was associated with increased triglyceride level (≥ 1.7 mmol/L). rs2285676 (AA + GA, adjusted OR = 1.80, 95% CI: 1.24-2.61, P = 0.002), rs1799858 (TT + CT, adjusted OR = 1.68, 95% CI: 1.17-2.42, P = 0.005), and rs141294036 (TT + CT, adjusted OR = 1.90, 95% CI: 1.30-2.78, P = 0.001) were related to increased low-density lipoprotein cholesterol (≥ 1.8 mmol/L). rs2285676 (AA + GA, adjusted OR = 2.57, 95% CI: 1.74-3.82, P < 0.001) and rs141294036 (TT + CT, adjusted OR = 1.93, 95% CI: 1.27-2.93, P = 0.002) were related to increased apolipoprotein B (≥ 65 mg/dL). In addition, the 5 KATP polymorphisms were non-correlated with three types of dyslipidemia (total cholesterol, high-density lipoprotein cholesterol, and apolipoprotein AI). After median 50.6 month of follow-up, participants carrying CC genotype of rs141294036 showed correlation with elevated risk of new onset IS (adjusted HR = 2.55, 95% CI: 1.23-5.27, P = 0.012). These novel findings suggest that KATP rs141294036 is associated with increased risk of HTN, dyslipidemia, and IS. Based on these correlations, KATP rs141294036 could be a promising target for early and personalized therapeutics as well as prevention strategies for the aforementioned clinical pathologies.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, #1 Panfu road, Guangzhou, 510180, China. .,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, #1 Panfu road, Guangzhou, 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| |
Collapse
|
7
|
Liu C, Guan T, Lai Y, Zhu J, Kuang J, Shen Y. ATP-sensitive potassium channels gene polymorphism rs1799858 affects the risk of macro-/micro-vascular arteriosclerotic event in patients with increased low-density lipoprotein cholesterol levels. Lipids Health Dis 2020; 19:147. [PMID: 32576189 PMCID: PMC7313205 DOI: 10.1186/s12944-020-01315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background Plasma concentration of low-density lipoprotein cholesterol (LDL-C) is causally related to the risk of arteriosclerotic events. Whether ATP-sensitive potassium channels (KATP) genetic variants predict increased LDL-C concentration (≥1.8 mmol/L) and risk of macro-/micro-vascular arteriosclerotic event remain elusive. Methods A total of 320 subjects with increased LDL-C concentration (≥1.8 mmol/L) and 320 counterpart subjects (< 1.8 mmol/L) from the South China were enrolled in this study. Three KATP polymorphisms (rs1799858, rs4148671 and rs78148713) were genotyped by the Sequenom MassARRAY system. Binary logistic regression analysis was used to evaluate the association of the 3 KATP variants with increased LDL-C concentration and carotid artery stenosis (CAS) ≥50%. Two-way ANOVA was used to analyze the association of the 3 KATP variants with microalbumin in urine (MAU) and high-sensitivity C-reactive protein (HsCRP) levels. Cox proportional hazards regression analysis was used to retrospectively analyse the association of the optimal variant with the risk of new onset/recurrent acute myocardial infarction (AMI). Results Among the 3 studied KATP gene single nucleotide polymorphisms (SNPs), only rs1799858 (TT + CT genotype) was associated with elevated risk of LDL-C ≥ 1.8 mmol/L (adjusted OR = 2.25, 95% CI: 1.31–3.85, P = 0.003) and CAS ≥50% (adjusted OR = 2.80, 95% CI: 1.12–6.98, P = 0.028). KATP SNP rs1799858 was also associated with increased MAU (P = 0.013) and HsCRP (P = 0.027) levels. The follow-up for an average of 51.1-months revealed that participants carrying the T-allele (TT + CT) of rs1799858 was associated with high risk of new onset/recurrent AMI (adjusted HR = 2.90, 95% CI: 1.06–7.94, P = 0.038). Conclusion The KATP SNP rs1799858 may be an optimal genetic predisposition marker for increased LDL-C concentration (≥1.8 mmol/L) and its related macro-/micro-vascular arteriosclerotic event risk. The KATP variant rs1799858 was associated with higher risk of macro-/micro-vascular arteriosclerotic events in patients with elevated serum LDL-C levels.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu road, Guangzhou, 510180, China. .,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu road, Guangzhou, 510180, China
| | - Jieming Zhu
- Department of Cardiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Kuang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| |
Collapse
|
8
|
Ye P, Zhu Y, Gu Y, Zhang D, Chen S. Functional protection against cardiac diseases depends on ATP-sensitive potassium channels. J Cell Mol Med 2018; 22:5801-5806. [PMID: 30596400 PMCID: PMC6237599 DOI: 10.1111/jcmm.13893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/12/2018] [Indexed: 12/20/2022] Open
Abstract
ATP-sensitive potassium channels (KATP) channels are widely distributed in various tissues, including pancreatic beta cells, muscle tissue and brain tissue. KATP channels play an important role in cardioprotection in physiological/pathological situations. KATP channels are inhibited by an increase in the intracellular ATP concentration and are stimulated by an increase in the intracellular MgADP concentration. Activation of KATP channels decreases ischaemia/reperfusion injury, protects cardiomyocytes from heart failure, and reduces the occurrence of arrhythmias. KATP channels are involved in various signalling pathways, and their participation in protective processes is regulated by endogenous signalling molecules, such as nitric oxide and hydrogen sulphide. KATP channels may act as a new drug target to fight against cardiovascular disease in the development of related drugs in the future. This review highlights the potential mechanisms correlated with the protective role of KATP channels and their therapeutic value in cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Yan‐Rong Zhu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Yue Gu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Dai‐Min Zhang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| | - Shao‐Liang Chen
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityJiangsuChina
| |
Collapse
|
9
|
Severino P, D'Amato A, Netti L, Pucci M, De Marchis M, Palmirotta R, Volterrani M, Mancone M, Fedele F. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels. Int J Mol Sci 2018. [PMID: 29534462 PMCID: PMC5877663 DOI: 10.3390/ijms19030802] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is one the strongest risk factors for cardiovascular disease and, in particular, for ischemic heart disease (IHD). The pathophysiology of myocardial ischemia in diabetic patients is complex and not fully understood: some diabetic patients have mainly coronary stenosis obstructing blood flow to the myocardium; others present with coronary microvascular disease with an absence of plaques in the epicardial vessels. Ion channels acting in the cross-talk between the myocardial energy state and coronary blood flow may play a role in the pathophysiology of IHD in diabetic patients. In particular, some genetic variants for ATP-dependent potassium channels seem to be involved in the determinism of IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Andrea D'Amato
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Lucrezia Netti
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariateresa Pucci
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marialaura De Marchis
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Clinical Oncology Oncogenomic Research Center, 'Aldo Moro' University of Bari, 70124 Bari, Italy.
| | - Maurizio Volterrani
- Department of Cardiac Rehabilitation, IRCCS San Raffaele, 00163 Rome, Italy.
| | - Massimo Mancone
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|