1
|
Peng Y, Liu Y, Li J, Zhang K, Jin X, Zheng S, Wang Y, Lü Z, Liu L, Gong L, Liu B. New perspectives on the genetic structure of dotted gizzard shad ( Konosirus punctatus) based on RAD-seq. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:50-67. [PMID: 38433959 PMCID: PMC10901767 DOI: 10.1007/s42995-024-00216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
To maintain, develop and rationally utilize marine organisms, understanding their genetic structure and habitat adaptation pattern is necessary. Konosirus punctatus, which is a commercial fish species inhabiting the Indo-west Pacific Ocean, has shown an obvious annual global capture and aquaculture production decline due to climate changes and human activities. In the present study, restriction-site associated DNA sequencing (RAD-seq) was used to describe its genome-wide single nucleotide polymorphisms panel (SNPs). Among 146 individuals collected at nine locations scattered in China, Korea and Japan, a set of 632,090 SNPs were identified. Population genetic analysis showed that K. punctatus individuals were divided into two significant genetic clusters. Meanwhile, potential genetic differentiation between northern and southern population of K. punctatus was found. Treemix results indicated that gene flow existed among sampling locations of K. punctatus, especially from southern Japan to others. Moreover, candidate genes associated with habitat adaptations of K. punctatus were identified, which are involved in diverse physiological processes of K. punctatus including growth and development (e.g., KIDINS220, PAN3), substance metabolism (e.g., PGM5) and immune response (e.g., VAV3, CCT7, HSPA12B). Our findings may aid in understanding the possible mechanisms for the population genetic structure and local adaptation of K. punctatus, which is beneficial to establish the management and conservation units of K. punctatus, guiding the rational use of resources, with reference significance for a profound understanding of the adaptative mechanisms of other marine organisms to the environment. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00216-2.
Collapse
Affiliation(s)
- Ying Peng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Jiasheng Li
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Kun Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| |
Collapse
|
2
|
He X, Han M, Zhan W, Liu F, Guo D, Zhang Y, Liang X, Wang Y, Lou B. Mixture effects of imidacloprid and difenconazole on enzymatic activity and gene expression in small yellow croakers (Larimichthys polyactis). CHEMOSPHERE 2022; 306:135551. [PMID: 35787886 DOI: 10.1016/j.chemosphere.2022.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Agrochemicals usually exist as mixtures in aqueous ecosystems and have harmful impacts on the natural environment. Nonetheless, the combined effects and underlying mechanisms of agrochemicals on aqueous organisms remain poorly understood. In the present study, the interactive effects of imidacloprid (IMI) and difenconazole (DIF) on the embryos of small yellow croakers (Larimichthys polyactis) were assessed using various toxicological assays, including acute toxicity, enzymatic activity, and gene expression changes. The results showed that DIF (72-h LC50 value of 0.20 mg L-1) had higher toxicity than IMI (72-h LC50 value of 12.5 mgL-1). Simultaneously, combinations of IMI and DIF exerted synergistic acute effects on the embryos of L. polyactis. In addition, the SOD, CAT, GST, and CarE activities were noticeably altered in most single and mixed exposures, relative to the untreated control. The expression of four genes (cyp19a1b, ngln2, klf2a, and socs3a) related to the immune system, endocrine system, and neurodevelopment was also surprisingly altered when the embryos of L. polyactis were subjected to individual and combined exposures relative to the untreated control. Changes in enzymatic activity and gene expression might provide early warning indices for the identification of agrochemical co-exposure. The results of this study provide valuable insights into the comprehensive toxicity of agrochemical mixtures to L. polyactis. Further studies on the long-term effects of agrochemical mixtures on marine fish should be conducted to formulate definitive conclusions concerning hazards.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dandan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
3
|
Zhan W, Weng H, Liu F, Han M, Lou B, Wang Y. Joint toxic effects of phoxim and lambda-cyhalothrin on the small yellow croaker (Larimichthys polyactis). CHEMOSPHERE 2022; 307:136203. [PMID: 36037960 DOI: 10.1016/j.chemosphere.2022.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Although pesticides commonly exist as combinations in real-life situations of the aquatic ecosystem, the impact of the toxicity of their mixtures has remained largely unclear. In this study, we investigated the combined effects of two neurotoxic pesticides, including one organophosphate insecticide phoxim (PHO) and one pyrethroid insecticide lambda-cyhalothrin (LCY), on the embryos of the small yellow croaker (Larimichthys polyactis), and their potential pathways. LCY exhibited higher toxicity relative to PHO, with a 72-h LC50 value of 0.0074 mg a.i. L-1, while the corresponding value for PHO was 0.12 mg a.i. L-1. The mixture of PHO and LCY exerted a synergistic effect on the embryos of L. polyactis. The activities of antioxidant enzyme CAT and apoptotic enzyme caspase 3 were substantially changed in most single and combined exposure groups relative to the baseline value. Under both single and combined exposures, more significant changes were found in the mRNA expression of five genes, including the immunosuppression gene ngln2, the apoptosis gene P53, the endocrine system gene cyp19a1b, as well as neurodevelopment genes of ap and acp2, relative to the baseline value. Furthermore, the non-target metabolomic analysis demonstrated that hundreds of differential metabolites, including two bile acids (taurodeoxycholic acid and tauroursodeoxycholic acid), were significantly increased in the exposure groups. The bile acids were closely associated with the gut microbiota, and 16S rRNA sequencing results demonstrated dysfunction of the gut microbiota after exposure, especially in the combined exposure group. Our findings indicated that there might be a potential risk connected to the co-occurrence of these two pesticides in aquatic vertebrates. Consequently, future ecological risk assessments should incorporate synergistic mixtures because the current risk assessments do not consider them.
Collapse
Affiliation(s)
- Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
4
|
Zheng J, Yan Y, Li Z, Song N. Genetic structure of the small yellow croaker ( Larimichthys polyactis) across the Yellow Sea and the East China Sea by microsatellite DNA variation: implications for the division of management units. PeerJ 2022; 10:e13789. [PMID: 36061743 PMCID: PMC9435522 DOI: 10.7717/peerj.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
The small yellow croaker, Larimichthys polyactis, is a commercial fish of the order Perciformes that mainly inhabit estuaries and coastal waters.In recent years, the resources and catch of L. polyactis have undergone huge fluctuations. To detect genetic variations caused by the fluctuation of resources, genetic diversity of L. polyactis in the coastal waters of China were analyzed in this study using microsatellite DNA marker. The results revealed high genetic diversity of this species. The STRUCTURE, DAPC and F ST results all indicated that there was no genetic structure consistent with the distribution pattern. Overall, our main findings are in agreement with previous studies, indicating that L. polyactis showed high genetic diversity and low genetic differentiation. Our results for high genetic connectivity among L. polyactis localities provide insights into the development of management strategies, that is, to manage this species as a single management unit.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yunrong Yan
- Guangdong Ocean University, Zhanjiang, China
| | - Zhonglu Li
- Guangdong Ocean University, Zhanjiang, China
| | - Na Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
5
|
Wang J, Liu Z, Gao X, Du C, Hou C, Tang D, Lou B, Shen W, Zhu J. The potential function of KIF17 in large yellow croaker (Larimichthys crocea) spermatid remodeling: molecular characterization and expression pattern during spermiogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:603-616. [PMID: 35538183 DOI: 10.1007/s10695-021-01035-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
KIF17, which belongs to the kinesin-2 protein family, plays an indispensable role in mammalian spermiogenesis. However, the role of KIF17 in fish spermatid remodeling during spermiogenesis remains poorly understood. Therefore, we aimed to study the role of KIF17 in spermatid remodeling during Larimichthys crocea (L. crocea) spermiogenesis. The kif17 cDNA sequence, 3247 bp in length, was cloned from L. crocea testis, which consisted of a 347-bp 5'-untranslated region (UTR), 413-bp 3' -UTR, and 2487-bp open reading frame. Bioinformatic analyses revealed that KIF17 obtained from L. crocea (Lc-KIF17) exhibited a high sequence identity compared with those from other teleosts and possessed the structural features of other kinesin-2 proteins. Based on structural similarity, we speculate that the role of Lc-KIF17 may be similar to that of KIF17 in other animals. Lc-kif17 mRNA was diffusely expressed in L. crocea tissues and was highly expressed in the testis, especially at stage IV testicular development. Immunofluorescence analysis revealed that Lc-KIF17 signals colocalized with β-tubulin signals and migrated from the perinuclear cytoplasm to the side of the nucleus where the tail forms during spermiogenesis. These findings revealed that KIF17 may be involved in L. crocea spermiogenesis. In particular, KIF17 may participate in spermatid remodeling by interacting with perinuclear microtubules during L. crocea spermiogenesis. Collectively, this study contributes to an improved understanding of the mechanism underlying L. crocea spermiogenesis and provides a basis for further research on L. crocea reproduction and development.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Zhao Liu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, People's Republic of China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
6
|
Sun Z, Lou F, Zhao X, Song N. Characterization and analysis of transcriptome complexity using SMRT-Seq combined with RNA-Seq for a better understanding of Acanthogobius ommaturus in response to temperature stress. Int J Biol Macromol 2021; 193:1551-1561. [PMID: 34742843 DOI: 10.1016/j.ijbiomac.2021.10.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Acanthogobius ommaturus is a eurythermic fish, which is widely distributed in coastal, estuarine and bay waters of China, Japan and Korea. Due to the lack of whole genomic information, full-length transcriptome of A. ommaturus was firstly generated by single molecule real-time sequencing (SMRT-seq) in this study. A total of 49,833 full-length non-redundant transcripts (FLNRTs), 2255 alternative splices, 46,856 simple sequence repeats, 5094 long non-coding RNAs and 2708 transcription factors were obtained. Additionally, FLNRTs were used as reference sequences for the following transcriptome analysis of the temperature stress (7 °C, 14 °C, 21 °C (control), 28 °C and 35 °C). GO and KEGG enrichment analysis using GSEA were performed on all genes in 10 response modules which were screened out by WGCNA. Enrichment analysis showed that protein degradation, immune response and energy metabolism play an active role in the temperature stress of A. ommaturus. The differentially expressed hub genes (DEHGs) in response modules were closely related to adhesion, vascular remodeling and disease. The results of this study provided the first systematical full-length transcriptome profile of A. ommaturus and characterized its temperature stress responses, which will serve as the foundation for further exploring the molecular mechanism of the temperature stress in fish.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Fangrui Lou
- School of Ocean at Yantai University, Yantai, Shandong, China
| | - Xiang Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Na Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
7
|
Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq. BMC Genomics 2021; 22:573. [PMID: 34311701 PMCID: PMC8314496 DOI: 10.1186/s12864-021-07833-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chinese indigenous rabbits have distinct characteristics, such as roughage resistance, stress resistance and environmental adaptability, which are of great significance to the sustainable development of the rabbit industry in China. Therefore, it is necessary to study the genetic diversity and population structure of this species and develop genomic resources. Results In this study, we used restriction site-associated DNA sequencing (RAD-seq) to obtain 1,006,496 SNP markers from six Chinese indigenous rabbit breeds and two imported rabbit breeds. Jiuyishan and Fujian Yellow rabbits showed the highest nucleotide diversity (π) and decay of linkage disequilibrium (LD), as well as higher observed heterozygosity (Ho) and expected heterozygosity (He), indicating higher genetic diversity than other rabbits. The inbreeding coefficient (FIS) of New Zealand rabbits and Belgian rabbits was higher than that of other rabbits. The neighbour-joining (NJ) tree, principal component analysis (PCA), and population structure analysis of autosomes and Y chromosomes showed that Belgian, New Zealand, Wanzai, Sichuan White, and Minxinan Black rabbits clustered separately, and Fujian Yellow, Yunnan Colourful, and Jiuyishan rabbits clustered together. Wanzai rabbits were clearly separated from other populations (K = 3), which was consistent with the population differentiation index (FST) analysis. The selection signature analysis was performed in two populations with contrasting coat colours. With Sichuan White and New Zealand rabbits as the reference populations and Minxinan Black and Wanzai rabbits as the target populations, 408, 454, 418, and 518 genes with a selection signature, respectively, were obtained. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the genes with a selection signature. The results showed that the genes with a selection signature were enriched in the melanogenesis pathway in all four sets of selection signature analyses. Conclusions Our study provides the first insights into the genetics and genomics of Chinese indigenous rabbit breeds and serves as a valuable resource for the further effective utilization of the species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07833-6.
Collapse
|
8
|
Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
9
|
Xie QP, Li BB, Zhan W, Liu F, Tan P, Wang X, Lou B. A Transient Hermaphroditic Stage in Early Male Gonadal Development in Little Yellow Croaker, Larimichthys polyactis. Front Endocrinol (Lausanne) 2021; 11:542942. [PMID: 33584533 PMCID: PMC7873647 DOI: 10.3389/fendo.2020.542942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tan
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Alabama Agricultural Experiment Station, Auburn, AL, United States
- The HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Li Y, Liu C, Lin L, Li Y, Xiao J, Loh KH. Pleistocene isolation caused by sea-level fluctuations shaped genetic characterization of Pampus minor over a large-scale geographical distribution. Zookeys 2020; 969:137-154. [PMID: 33013170 PMCID: PMC7515929 DOI: 10.3897/zookeys.969.52069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The southern lesser pomfret (Pampusminor) is an economically important fish, and its numbers are declining because of overfishing and environmental pollution. In addition, owing to the similarities of its external morphological characteristics to other species in the genus Pampus, it is often mistaken for grey pomfret (P.cinereus) or silver pomfret (P.argenteus) juveniles. In this study, the genetic diversity and structure of 264 P.minor individuals from 11 populations in China and Malaysia coastal waters were evaluated for the first time, to the best of our knowledge, using mitochondrial cytochrome b fragments. The results showed that P.minor had moderate haplotype diversity and low nucleotide diversity. Furthermore, two divergent lineages were detected within the populations, but the phylogenetic structure corresponded imperfectly with geographical location; thus, the populations may have diverged in different glacial refugia during the Pleistocene low sea levels. Analysis of molecular variation (AMOVA) showed that genetic variation originated primarily from individuals within the population. Pairwise FST results showed significant differentiation between the Chinese and Malaysian populations. Except for the Xiamen population, which was classified as a marginal population, the genetic differentiation among the other Chinese populations was not significant. During the Late Pleistocene, P.minor experienced a population expansion event starting from the South China Sea refugium that expanded outward, and derivative populations quickly occupied and adapted to the new habitat. The results of this study will provide genetic information for the scientific conservation and management of P.minor resources.
Collapse
Affiliation(s)
- Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China
| | - Cheng Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China.,College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China Shanghai Ocean University Shanghai China
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China.,College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China Shanghai Ocean University Shanghai China
| | - Yuanyuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China
| | - Jiaguang Xiao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China
| | - Kar-Hoe Loh
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Liu C, Chen H, Ren Z, Yang X, Zhang C. Development of Genomic Resources and Identification of Genetic Diversity and Genetic Structure of the Domestic Bactrian Camel in China by RAD Sequencing. Front Genet 2020; 11:797. [PMID: 32849801 PMCID: PMC7406665 DOI: 10.3389/fgene.2020.00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/03/2020] [Indexed: 11/24/2022] Open
Abstract
The domestic Bactrian camel is indispensable to agricultural production in the desertification area of China owning to its endurance to hunger and thirst, cold resistance, drought resistance, and good long-distance transportation. Therefore, it is necessary to investigate the genetic diversity, genetic structure, and genes with important roles in the evolution of this species. In this study, 1,568,087 SNPs were identified in 47 domestic Bactrian camels inhabiting four regions of China, namely Inner Mongolia, Gansu, Qinghai, and Xinjiang, by restriction site associated DNA sequencing (RAD-seq). The SNP data were used for nucleotide diversity analysis (π) and linkage disequilibrium (LD) attenuation analysis to elucidate the genetic diversity of the domestic Bactrian camel in the four regions studied. Results showed that Xinjiang camels had the highest nucleotide diversity and the fastest decay rate of the LD coefficient; therefore, Xinjiang camels had the highest genetic diversity. Structure analysis, principal component analysis (PCA), and phylogenetic tree construction by the neighbor-joining (NJ) method showed that Qinghai camels clustered separately, at a larger phylogenetic distance from camels in the other regions. Through analyses of selection signals, it was found that the number of selected genes shared by Inner Mongolia camels, Qinghai camels, Xinjiang camels, and Gansu camels was 7, 24, 25, and 113, respectively. The shared selected genes of the domestic Bactrian camel in the four regions were further analyzed, and three shared genes (GRIA3, XIAP, and THOC2) of the domestic Bactrian camel in China were identified. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the shared selected genes of the domestic Bactrian camel in all four regions studied. Across all regions, genes involved in the cellular process were the most abundant subcategory under biological process. Cell and cell part represented the main proportion of genes under cellular component. Binding represented the main molecular function. In addition, the shared selected genes of the domestic Bactrian camel in the four regions of China were significantly enriched in the long-term depression pathway. The research should enable further study of the genetic resources of the domestic Bactrian camel, as well as the conservation of these resources.
Collapse
Affiliation(s)
- Chenmiao Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huiling Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xuejiao Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengdong Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Lu RS, Chen Y, Tamaki I, Sakaguchi S, Ding YQ, Takahashi D, Li P, Isaji Y, Chen J, Qiu YX. Pre-quaternary diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese Floristic Region. Mol Phylogenet Evol 2019; 143:106693. [PMID: 31778814 DOI: 10.1016/j.ympev.2019.106693] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 11/27/2022]
Abstract
The Sino-Japanese Floristic Region (SJFR) in East Asia is one of the most diverse temperate floras in the world. However, the relative influence of Neogene palaeogeographical changes and Quaternary climatic fluctuations as causal mechanisms on species diversification remains largely controversial, because most divergence time estimates were inferred from single-locus data and have limited geographic or taxonomic sampling. To evaluate these influences, we use SNP markers from restriction site-associated DNA sequencing (RAD-Seq) loci and expressed sequence tags-simple sequence repeat (EST-SSR) markers to investigate the levels of genetic variation, speciation and demographic history of the temperate-deciduous forest (TDF) endemic Cardiocrinum (Endlicher) Lindley (Liliaceae), a genus comprising three species in China (C. giganteum, C. cathayanum) and Japan (C. cordatum). Phylogenomic and population genomic coalescent-based analyses demonstrated that Late Neogene tectonic/climatic events triggered speciation of Cardiocrinum, and Pleistocene climatic fluctuations had limited influence on its divergence history. Population demographic inference using Approximate Bayesian Computation from EST-SSRs and palaeoclimatic niche models both indicated that all three Cardiocrinum species experienced population expansions during the transition from the LIG to the LGM. We also discussed the implications of these results on the conservation of montane TDF species in the SJFR under ongoing environmental change. Our results improve our understanding of how the constituents of montane TDF across the SJFR responded to previous periods of rapid climate and environmental change in terms of speciation and population demographic processes.
Collapse
Affiliation(s)
- Rui-Sen Lu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu 501-3714, Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yan-Qian Ding
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daiki Takahashi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuji Isaji
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying-Xiong Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Wang J, Gao X, Zheng X, Hou C, Xie Q, Lou B, Zhu J. Expression and potential functions of KIF3A/3B to promote nuclear reshaping and tail formation during Larimichthys polyactis spermiogenesis. Dev Genes Evol 2019; 229:161-181. [PMID: 31486889 DOI: 10.1007/s00427-019-00637-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
KIF3A and KIF3B are homologous motor subunits of the Kinesin II protein family. KIF3A, KIF3B, and KAP3 form a heterotrimeric complex and play a significant role in spermatogenesis. Here, we first cloned full-length kif3a/3b cDNAs from Larimichthys polyactis. Lp-kif3a/3b are highly related to their homologs in other animals. The proteins are composed of three domains, an N-terminal head domain, a central stalk domain, and a C-terminus tail domain. Lp-kif3a/3b mRNAs were found to be ubiquitously expressed in the examined tissues, with high expression in the testis. Fluorescence in situ hybridization (FISH) was used to analyze the expression of Lp-kif3a/3b mRNAs during spermiogenesis. The results showed that Lp-kif3a/3b mRNAs had similar expression pattern and were continuously expressed during spermiogenesis. From middle spermatid to mature sperm, Lp-kif3a/3b mRNAs gradually localized to the side of the spermatid where the midpiece and tail form. In addition, we used immunofluorescence (IF) to observe that Lp-KIF3A protein co-localizes with tubulin during spermiogenesis. In early spermatid, Lp-KIF3A protein and microtubule signals were randomly distributed in the cytoplasm. In middle spermatid, however, the protein was detected primarily around the nucleus. In late spermatid, the protein migrated primarily to one side of the nucleus where the tail forms. In mature sperm, Lp-KIF3A and microtubules accumulated in the midpiece. Moreover, Lp-KIF3A co-localized with the mitochondria. In mature sperm, Lp-KIF3A and mitochondria were present in the midpiece. Therefore, Lp-KIF3A/KIF3B may be involved in spermiogenesis in L. polyactis, particularly during nuclear reshaping and tail formation.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Qingping Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, People's Republic of China.,Marine Fisheries Research Institute of Zhejiang, Zhoushan, 316100, Zhejiang Province, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, People's Republic of China. .,Marine Fisheries Research Institute of Zhejiang, Zhoushan, 316100, Zhejiang Province, People's Republic of China.
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Zhou Y, Liu X, Yu H, Li D, Zhang Y. Genetic diversity of the Sichuan snub-nosed monkey (Rhinopithecus roxellana) in Shennongjia National Park, China using RAD-seq analyses. Genetica 2019; 147:327-335. [DOI: 10.1007/s10709-019-00073-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/12/2019] [Indexed: 12/30/2022]
|
15
|
Lou F, Han Z, Gao T. Transcriptomic Responses of Two Ecologically Divergent Populations of Japanese Mantis Shrimp ( Oratosquilla oratoria) under Thermal Stress. Animals (Basel) 2019; 9:ani9070399. [PMID: 31262058 PMCID: PMC6680513 DOI: 10.3390/ani9070399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Rising ocean temperature would change the seawater chemistry and affect the external and internal physiology of crustaceans due to their lack of certain efficient temperature regulators. In addition, the infraspecific populations of crustaceans might also have different response strategies to the rising of temperature. Therefore, we identified the transcriptomic variations to the same thermal stress between ecologically divergent populations of Oratosquilla oratoria. The aim of this study was to investigate the population-specific function genes and relevant pathways in response to thermal stress in O. oratoria. The results showed that gene-expressed variation was in a population-specific pattern, which indicated that the local environment could lead to the evolvement of changes in gene regulation, ultimately leading to adaptive divergences. Additionally, we found several genes with large pleiotropic effects in the Zhoushan population, which might indicate that the regulation mechanisms of the Zhoushan population were more efficient than those of the Qingdao population under same thermal stress. The results provided some novel insights into the local adaptive differences of the infraspecific populations of O. oratoria and other crustaceans. Abstract Crustaceans are generally considered more sensitive to ocean warming due to their lack of certain efficient regulators. However, the alterations in the physiology and behavior of crustaceans in response to thermal stress differ vastly even among the infraspecific populations of heterogeneous landscapes. Consequently, understanding the impact of temperature fluctuation on crustacean infraspecific populations might be essential for maintaining a sustainable persistence of populations at existing locations. In the present study, we chose the Japanese mantis shrimp (Oratosquilla oratoria) as the representative crustacean population, and conducted transcriptome analyses in two divergent O. oratoria populations (the Zhoushan and Qingdao populations) under same thermal stress (20–28 °C) to identify the population-specific expression response to thermal stress. The results showed significant differences in gene expressions, GO terms and metabolic pathways between the two populations. We hypothesized that intraspecific mutations in the same or different genes might lead to thermal adaptive divergences. Temperature increases from 20–28 °C produced significant enrichment in GO terms and altered the metabolic pathways in the Zhoushan population despite the lack of differentially expressed unigenes. Therefore, several functional genes with large pleiotropic effects may underlie the response to thermal stress in the Zhoushan population. Furthermore, the most significantly enriched biological processes of the Qingdao population were associated with the state or activity of cells and its significant enriched pathways with genetic information processing as well as immune and environmental information processing. In contrast, the differentially regulated unigenes of the Zhoushan population were primarily involved in the regulatory cellular and transcription processes and the most significant pathways found were metabolic and digestive. Consequently, the regulatory mechanisms of the Zhoushan population are probably more efficient than those of the Qingdao population under the same thermal stress.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
- Fishery College, Ocean University of China, Qingdao 266003, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
16
|
Gajdzik L, Bernardi G, Lepoint G, Frédérich B. Genetic diversity mirrors trophic ecology in coral reef fish feeding guilds. Mol Ecol 2018; 27:5004-5018. [DOI: 10.1111/mec.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Gajdzik
- Laboratory of Functional and Evolutionary Morphology FOCUS, University of Liège Liège Belgium
| | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California
| | - Gilles Lepoint
- Laboratory of Oceanology FOCUS, University of Liège Liège Belgium
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology FOCUS, University of Liège Liège Belgium
| |
Collapse
|
17
|
Feng JY, Li M, Zhao S, Zhang C, Yang ST, Qiao S, Tan WF, Qu HJ, Wang DY, Pu ZG. Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq. BMC PLANT BIOLOGY 2018; 18:181. [PMID: 30185158 PMCID: PMC6126004 DOI: 10.1186/s12870-018-1399-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/28/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Sweetpotato (Ipomoea batatas (L.) Lam.) is one of the most important crops from the family of Convolvulaceae. It is widely reported that cultivated sweetpotato was originated from Ipomoea trifida. However, diploid, tetraploid and hexaploid I. trifida were found in nature. The relationship, between them, and among them and sweetpotato, is remaining unclear. RESULTS In the present study, we detected the genome diversity and relationship of sweetpotato and different polyploidy types I. trifida using Restriction-site Associated DNA Sequencing (RAD-seq). A total of 38,605 RAD-tags containing 832,204 SNPs had been identified. These tags were annotated using five public databases, about 11,519 tags were aligned to functional genes in various pathways. Based on SNP genotype, phylogenetic relation analysis results confirmed that cultivated sweetpotato has a closer relationship with I. trifida 6× than with I. trifida 4X and I. trifida 2×. Besides, 5042 SSRs were detected in I. trifida 6×, and 3202 pairs of high-quality SSR primers were developed. A total of 68 primers were randomly selected and synthesized, of which 61 were successfully amplified. CONCLUSION These results provided new evidence that cultivated sweetpotato originated from I. trifida 6×, and that I. trifida 6× evolved from I. trifida 4X and I. trifida 2×. Therefore, using I. trifida 6× as the model plant of sweetpotato research should be more practical than using I. trifida 2× in the future. Meanwhile, sequence information and markers from the present study will be helpful for sweetpotato and I. trifida studies in the future.
Collapse
Affiliation(s)
- J Y Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China.
| | - M Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - S Zhao
- Center of Analysis and Testing, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - C Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - S T Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - S Qiao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - W F Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - H J Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - D Y Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Z G Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China.
| |
Collapse
|
18
|
Crane NL, Tariel J, Caselle JE, Friedlander AM, Robertson DR, Bernardi G. Clipperton Atoll as a model to study small marine populations: Endemism and the genomic consequences of small population size. PLoS One 2018; 13:e0198901. [PMID: 29949612 PMCID: PMC6021044 DOI: 10.1371/journal.pone.0198901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023] Open
Abstract
Estimating population sizes and genetic diversity are key factors to understand and predict population dynamics. Marine species have been a difficult challenge in that respect, due to the difficulty in assessing population sizes and the open nature of such populations. Small, isolated islands with endemic species offer an opportunity to groundtruth population size estimates with empirical data and investigate the genetic consequences of such small populations. Here we focus on two endemic species of reef fish, the Clipperton damselfish, Stegastes baldwini, and the Clipperton angelfish, Holacanthus limbaughi, on Clipperton Atoll, tropical eastern Pacific. Visual surveys, performed over almost two decades and four expeditions, and genetic surveys based on genomic RAD sequences, allowed us to estimate kinship and genetic diversity, as well as to compare population size estimates based on visual surveys with effective population sizes based on genetics. We found that genetic and visual estimates of population numbers were remarkably similar. S. baldwini and H. limbaughi had population sizes of approximately 800,000 and 60,000, respectively. Relatively small population sizes resulted in low genetic diversity and the presence of apparent kinship. This study emphasizes the importance of small isolated islands as models to study population dynamics of marine organisms.
Collapse
Affiliation(s)
- Nicole L. Crane
- Department of Biology, Cabrillo College, Aptos, CA, United States of America
| | - Juliette Tariel
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer E. Caselle
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Alan M. Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
- Fisheries Ecology Research Lab, Department of Biology, University of Hawaii, Honolulu, HI, United States of America
| | | | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
19
|
Moran PA, Pascoal S, Cezard T, Risse JE, Ritchie MG, Bailey NW. Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes. Mol Ecol 2018; 27:3905-3924. [DOI: 10.1111/mec.14725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental Sciences; University College Cork; Cork Ireland
| | - Sonia Pascoal
- Department of Zoology; University of Cambridge; Cambridge UK
| | | | - Judith E. Risse
- Bioinformatics; Department of Plant Sciences; Wageningen University; Wageningen The Netherlands
| | - Michael G. Ritchie
- Centre for Biological Diversity; School of Biology; University of St Andrews; St Andrews UK
| | - Nathan W. Bailey
- Centre for Biological Diversity; School of Biology; University of St Andrews; St Andrews UK
| |
Collapse
|
20
|
Cao YN, Wang IJ, Chen LY, Ding YQ, Liu LX, Qiu YX. Inferring spatial patterns and drivers of population divergence of Neolitsea sericea (Lauraceae), based on molecular phylogeography and landscape genomics. Mol Phylogenet Evol 2018; 126:162-172. [PMID: 29678646 DOI: 10.1016/j.ympev.2018.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 11/24/2022]
Abstract
The relative roles of geography, climate and ecology in driving population divergence and (incipient) speciation has so far been largely neglected in studies addressing the evolution of East Asia's island flora. Here, we employed chloroplast and ribosomal DNA sequences and restriction site-associated DNA sequencing (RADseq) loci to investigate the phylogeography and drivers of population divergence of Neolitsea sericea. These data sets support the subdivision of N. sericea populations into the Southern and Northern lineages across the 'Tokara gap'. Two distinct sublineages were further identified for the Northern lineage of N. sericea from the RADseq data. RADseq was also used along with approximate Bayesian computation to show that the current distribution and differentiation of N. sericea populations resulted from a combination of relatively ancient migration and successive vicariant events that likely occurred during the mid to late Pleistocene. Landscape genomic analyses showed that, apart from geographic barriers, barrier, potentially local adaptation to different climatic conditions appears to be one of the major drivers for lineage diversification of N. sericea.
Collapse
Affiliation(s)
- Ya-Nan Cao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Lu-Yao Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan-Qian Ding
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu-Xian Liu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
21
|
Liu J, You X, Xu P, Zhuang P, Zheng Y, Zhang K, Wang M, Lv Y, Xu G, Zhao F, Wu J, Fan H, Xu J, Ruan Z, Bian C, Liu K, Xu D, Chen J, Xu J, Shi Q. Assessing the genetic diversity of the critically endangered Chinese sturgeon Acipenser sinensis using mitochondrial markers and genome-wide single-nucleotide polymorphisms from RAD-seq. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1090-1098. [PMID: 29948902 DOI: 10.1007/s11427-017-9254-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022]
Abstract
As a living fossil, the endangered Chinese sturgeon (Acipenser sinensis) has been considered a national treasure in China. Here, the famous Gezhouba Dam and Three Gorges Dam on the Yangtze River were built in 1988 and 2006, for economic purposes. The natural population of Chinese sturgeon has declined since then, as these dams block its migratory route to the original spawning grounds in the middle reaches of the Yangtze River. In 2013 and 2014, there was an absence of spawning where it typically happened near the Gezhouba Dam. Nevertheless, from April to June in 2015, over 1,000 larvae with different body lengths (10-35 cm) were detected along the Shanghai Yangtze Estuary; but only little is currently known about the population genetic structure of the Chinese sturgeon. Herein, we inferred population genetic parameters from 462 available Chinese sturgeon specimens based on a 421-bp fragment of the mitochondrial DNA (mtDNA) D-loop region and 1,481,620 SNPs (single-nucleotide polymorphisms) generated by restriction site-associated DNA sequencing (RAD-seq). For the D-loop dataset, 15 haplotypes were determined. Randomly picked 23 individuals, representing the 15 D-loop haplotype groups, were subsequently used for further RAD-seq validation. The average nucleotide diversity calculated from the mtDNA and RAD datasets was 0.0086 and 0.000478, respectively. The overall effective female population size was calculated to be 1,255 to 2,607, and the long-term effective population size was estimated to range from 11,950 to 119,500. We observed that the genetic variability and the effective female population size of the current population in the Yangtze River are severely low, which are similar to the data reported over 10 years ago. The deduced relatively small effective population of female fish, limiting the genetic connectivity among Chinese sturgeon, should be considered a serious threat to this endangered species.
Collapse
Affiliation(s)
- Jian Liu
- Superintendency Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai, 200092, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Ping Zhuang
- Key and Open Laboratory of Marine and Estuarine Fisheries Resources and Ecology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yueping Zheng
- Superintendency Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai, 200092, China.,Key and Open Laboratory of Marine and Estuarine Fisheries Resources and Ecology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.,College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China
| | - Min Wang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China.,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, 212000, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China
| | - Gangchun Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Feng Zhao
- Key and Open Laboratory of Marine and Estuarine Fisheries Resources and Ecology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jianhui Wu
- Superintendency Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai, 200092, China.,College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Houyong Fan
- Superintendency Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai, 200092, China
| | - Jianan Xu
- Superintendency Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai, 200092, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China.,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, 212000, China
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Dongpo Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinhui Chen
- Superintendency Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai, 200092, China.
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China. .,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, 212000, China. .,BGI Research Center for Aquatic Genomics, Chinese Academy of Fishery Sciences, Shenzhen, 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, BGI, Shenzhen, 518083, China. .,BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, 212000, China. .,BGI Research Center for Aquatic Genomics, Chinese Academy of Fishery Sciences, Shenzhen, 518083, China. .,Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
22
|
Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri. Genetica 2018; 146:227-234. [PMID: 29476381 DOI: 10.1007/s10709-018-0015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.
Collapse
|
23
|
Li YL, Xue DX, Zhang BD, Liu JX. An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171589. [PMID: 29515871 PMCID: PMC5830760 DOI: 10.1098/rsos.171589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/19/2018] [Indexed: 06/15/2023]
Abstract
Restriction site-associated DNA (RAD) sequencing is revolutionizing studies in ecological, evolutionary and conservation genomics. However, the assembly of paired-end RAD reads with random-sheared ends is still challenging, especially for non-model species with high genetic variance. Here, we present an efficient optimized approach with a pipeline software, RADassembler, which makes full use of paired-end RAD reads with random-sheared ends from multiple individuals to assemble RAD contigs. RADassembler integrates the algorithms for choosing the optimal number of mismatches within and across individuals at the clustering stage, and then uses a two-step assembly approach at the assembly stage. RADassembler also uses data reduction and parallelization strategies to promote efficiency. Compared to other tools, both the assembly results based on simulation and real RAD datasets demonstrated that RADassembler could always assemble the appropriate number of contigs with high qualities, and more read pairs were properly mapped to the assembled contigs. This approach provides an optimal tool for dealing with the complexity in the assembly of paired-end RAD reads with random-sheared ends for non-model species in ecological, evolutionary and conservation studies. RADassembler is available at https://github.com/lyl8086/RADscripts.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
24
|
Stobie CS, Oosthuizen CJ, Cunningham MJ, Bloomer P. Exploring the phylogeography of a hexaploid freshwater fish by RAD sequencing. Ecol Evol 2018; 8:2326-2342. [PMID: 29468047 PMCID: PMC5817159 DOI: 10.1002/ece3.3821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/17/2017] [Indexed: 12/12/2022] Open
Abstract
The KwaZulu‐Natal yellowfish (Labeobarbus natalensis) is an abundant cyprinid, endemic to KwaZulu‐Natal Province, South Africa. In this study, we developed a single‐nucleotide polymorphism (SNP) dataset from double‐digest restriction site‐associated DNA (ddRAD) sequencing of samples across the distribution. We addressed several hidden challenges, primarily focusing on proper filtering of RAD data and selecting optimal parameters for data processing in polyploid lineages. We used the resulting high‐quality SNP dataset to investigate the population genetic structure of L. natalensis. A small number of mitochondrial markers present in these data had disproportionate influence on the recovered genetic structure. The presence of singleton SNPs also confounded genetic structure. We found a well‐supported division into northern and southern lineages, with further subdivision into five populations, one of which reflects north–south admixture. Approximate Bayesian Computation scenario testing supported a scenario where an ancestral population diverged into northern and southern lineages, which then diverged to yield the current five populations. All river systems showed similar levels of genetic diversity, which appears unrelated to drainage system size. Nucleotide diversity was highest in the smallest river system, the Mbokodweni, which, together with adjacent small coastal systems, should be considered as a key catchment for conservation.
Collapse
Affiliation(s)
- Cora Sabriel Stobie
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| | - Carel J Oosthuizen
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| | - Michael J Cunningham
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| |
Collapse
|
25
|
Benestan L, Moore JS, Sutherland BJG, Le Luyer J, Maaroufi H, Rougeux C, Normandeau E, Rycroft N, Atema J, Harris LN, Tallman RF, Greenwood SJ, Clark FK, Bernatchez L. Sex matters in massive parallel sequencing: Evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol Ecol 2017; 26:6767-6783. [DOI: 10.1111/mec.14217] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Laura Benestan
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jean-Sébastien Moore
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Ben J. G. Sutherland
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jérémy Le Luyer
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Clément Rougeux
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Eric Normandeau
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | | | - Jelle Atema
- Department of Biology; Boston University; Boston MA USA
| | - Les N. Harris
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Ross F. Tallman
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Spencer J. Greenwood
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Fraser K. Clark
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Louis Bernatchez
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
26
|
Kang J, Ma X, He S. Population genetics analysis of the Nujiang catfish Creteuchiloglanis macropterus through a genome-wide single nucleotide polymorphisms resource generated by RAD-seq. Sci Rep 2017; 7:2813. [PMID: 28588195 PMCID: PMC5460224 DOI: 10.1038/s41598-017-02853-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Advances in genome scanning using high-throughput sequencing technologies has led to a revolution in studies of non-model organisms. The glyptosternoid fish Creteuchiloglanis macropterus, is widely distributed in the main stem and tributaries of the Nujiang River basin. Here, we analyzed IIB restriction-site-associated DNA (2b-RAD) sequences and mitochondrial DNA sequences, to assess the genomic signature of adaptation by detecting and estimating the degree of genetic differentiation among ten Creteuchiloglanis macropterus populations from the Nujiang River. The analyses revealed significant population differentiation among the up-tributaries, main stem, mid-tributary and low-tributary. Annotation of contigs containing outlier SNPs revealed that the candidate genes showed significant enrichment in several important biological process terms between up-tributaries and low-tributary, and exhibited prominent enrichment in the term macromolecular metabolic process between all tributaries and the main stem. Population dynamics analyses indicated that the Late Pleistocene glaciations strongly influenced the demographic history of C. macropterus. Our results provide strong evidence for the utility of RAD-seq in population genetics studies, and our generated SNP resource should provide a valuable tool for population genomics studies of C. macropterus in the future.
Collapse
Affiliation(s)
- Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuhui Ma
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
27
|
Xu S, Song N, Zhao L, Cai S, Han Z, Gao T. Genomic evidence for local adaptation in the ovoviviparous marine fish Sebastiscus marmoratus with a background of population homogeneity. Sci Rep 2017; 7:1562. [PMID: 28484228 PMCID: PMC5431535 DOI: 10.1038/s41598-017-01742-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 11/09/2022] Open
Abstract
Advances in next-generation sequencing techniques have allowed for the generation of genome-wide sequence data, to gain insight into the dynamics influencing genetic structure and the local adaptation of marine fish. Here, using genotyping-by-sequencing (GBS) technique, we identified 31,119 single nucleotide polymorphisms (SNPs) for Sebastiscus marmoratus in 59 individuals from three populations in Chinese coastal waters. Based on all SNPs, there was little evidence of genetic differentiation among populations. However, outlier tests revealed 329 SNPs putatively under divergent selection across populations. Structural and phylogenetic topology analyses based on the outliers showed clear genetic differentiation among populations. Gene Ontology (GO) annotation results revealed that most of these outliers are known or hypothesized to be involved in metabolic process. Together with previous work using mitochondrial cytochrome b sequences, the present results further suggest that the population structure is strongly influenced by locally adaptive pressure. Overall, adaptive evolution in a heterogeneous environment plays an important role in inducing genetic differentiation among local populations. This study increases understanding of the factors (including gene flow and local adaptation) promoting and constraining population genetic differentiation in marine organisms.
Collapse
Affiliation(s)
- Shengyong Xu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5th Yushan Road, Qingdao, 266003, P.R. China
| | - Na Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5th Yushan Road, Qingdao, 266003, P.R. China
| | - Linlin Zhao
- The First Institute of Oceanography, State Oceanic Administration, 6th Xianxialing Road, Qingdao, 266061, P.R. China
| | - Shanshan Cai
- Fishery College, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, 316022, P.R. China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, 316022, P.R. China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, 316022, P.R. China.
| |
Collapse
|
28
|
Mitochondrial DNA variation and population genetic structure in the small yellow croaker at the coast of Yellow Sea and East China Sea. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Wang J, Xue DX, Zhang BD, Li YL, Liu BJ, Liu JX. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus). PLoS One 2016; 11:e0157809. [PMID: 27336696 PMCID: PMC4919078 DOI: 10.1371/journal.pone.0157809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dong-Xiu Xue
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bai-Dong Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Long Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Jian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|