1
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
2
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
3
|
Reyes VP, Kitony JK, Nishiuchi S, Makihara D, Doi K. Utilization of Genotyping-by-Sequencing (GBS) for Rice Pre-Breeding and Improvement: A Review. Life (Basel) 2022; 12:1752. [PMID: 36362909 PMCID: PMC9694628 DOI: 10.3390/life12111752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/29/2023] Open
Abstract
Molecular markers play a crucial role in the improvement of rice. To benefit from these markers, genotyping is carried out to identify the differences at a specific position in the genome of individuals. The advances in sequencing technologies have led to the development of different genotyping techniques such as genotyping-by-sequencing. Unlike PCR-fragment-based genotyping, genotyping-by-sequencing has enabled the parallel sequencing and genotyping of hundreds of samples in a single run, making it more cost-effective. Currently, GBS is being used in several pre-breeding programs of rice to identify beneficial genes and QTL from different rice genetic resources. In this review, we present the current advances in the utilization of genotyping-by-sequencing for the development of rice pre-breeding materials and the improvement of existing rice cultivars. The challenges and perspectives of using this approach are also highlighted.
Collapse
Affiliation(s)
- Vincent Pamugas Reyes
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Daigo Makihara
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuyuki Doi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Yu Y, Aitken SN, Rieseberg LH, Wang T. Using landscape genomics to delineate seed and breeding zones for lodgepole pine. THE NEW PHYTOLOGIST 2022; 235:1653-1664. [PMID: 35569109 PMCID: PMC9545436 DOI: 10.1111/nph.18223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Seed and breeding zones traditionally are delineated based on local adaptation of phenotypic traits associated with climate variables, an approach requiring long-term field experiments. In this study, we applied a landscape genomics approach to delineate seed and breeding zones for lodgepole pine. We used a gradient forest (GF) model to select environment-associated single nucleotide polymorphisms (SNPs) using three SNP datasets (full, neutral and candidate) and 20 climate variables for 1906 lodgepole pine (Pinus contorta) individuals in British Columbia and Alberta, Canada. The two GF models built with the full (28 954) and candidate (982) SNPs were compared. The GF models identified winter-related climate as major climatic factors driving genomic patterns of lodgepole pine's local adaptation. Based on the genomic gradients predicted by the full and candidate GF models, lodgepole pine distribution range in British Columbia and Alberta was delineated into six seed and breeding zones. Our approach is a novel and effective alternative to traditional common garden approaches for delineating seed and breeding zone, and could be applied to tree species lacking data from provenance trials or common garden experiments.
Collapse
Affiliation(s)
- Yue Yu
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| | - Sally N. Aitken
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British Columbia6270 University BoulevardVancouverBCV6T 1Z4Canada
| | - Tongli Wang
- Department of Forest Sciences, Centre for Forest Conservation GeneticsUniversity of British Columbia3041‐2424 Main MallVancouverBCV6T 1Z4Canada
| |
Collapse
|
5
|
Development and Validation of a 36K SNP Array for Radiata Pine (Pinus radiata D.Don). FORESTS 2022. [DOI: 10.3390/f13020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key economic species in New Zealand. Thus, the development of genomic resources for radiata pine has been a high priority for both research and commercial breeding. Leveraging off a previously developed exome capture panel, we tested the performance of 438,744 single nucleotide polymorphisms (SNPs) on a screening array (NZPRAD01) and then selected 36,285 SNPs for a final genotyping array (NZPRAD02). These SNPs aligned to 15,372 scaffolds from the Pinus taeda L. v. 1.01e assembly, and 20,039 contigs from the radiata pine transcriptome assembly. The genotyping array was tested on more than 8000 samples, including material from archival progenitors, current breeding trials, nursery material, clonal lines, and material from Australia. Our analyses indicate that the array is performing well, with sample call rates greater than 98% and a sample reproducibility of 99.9%. Genotyping in two linkage mapping families indicated that the SNPs are well distributed across the 12 linkage groups. Using genotypic data from this array, we were also able to differentiate representatives of the five recognized provenances of radiata pine, Año Nuevo, Monterey, Cambria, Cedros and Guadalupe. Furthermore, principal component analysis of genotyped trees revealed clear patterns of population structure, with the primary axis of variation driven by provenance ancestry and the secondary axis reflecting breeding activities. This represents the first commercial use of genomics in a radiata pine breeding program.
Collapse
|
6
|
Esposito S, D'Agostino N, Taranto F, Sonnante G, Sestili F, Lafiandra D, De Vita P. Whole-exome sequencing of selected bread wheat recombinant inbred lines as a useful resource for allele mining and bulked segregant analysis. Front Genet 2022; 13:1058471. [PMID: 36482886 PMCID: PMC9723387 DOI: 10.3389/fgene.2022.1058471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 03/22/2023] Open
Abstract
Although wheat (Triticum aestivum L.) is the main staple crop in the world and a major source of carbohydrates and proteins, functional genomics and allele mining are still big challenges. Given the advances in next-generation sequencing (NGS) technologies, the identification of causal variants associated with a target phenotype has become feasible. For these reasons, here, by combining sequence capture and target-enrichment methods with high-throughput NGS re-sequencing, we were able to scan at exome-wide level 46 randomly selected bread wheat individuals from a recombinant inbred line population and to identify and classify a large number of single nucleotide polymorphisms (SNPs). For technical validation of results, eight randomly selected SNPs were converted into Kompetitive Allele-Specific PCR (KASP) markers. This resource was established as an accessible and reusable molecular toolkit for allele data mining. The dataset we are making available could be exploited for novel studies on bread wheat genetics and as a foundation for starting breeding programs aimed at improving different key agronomic traits.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, Foggia, Italy
| |
Collapse
|
7
|
Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer. Proc Natl Acad Sci U S A 2021; 118:2016900118. [PMID: 33649218 PMCID: PMC7958292 DOI: 10.1073/pnas.2016900118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Temperate trees originating from warmer localities usually grow faster and acclimate to winter later than trees of the same species from colder localities. However, when trees are selected for faster growth, are climatically adaptive genes and traits affected? Our research demonstrates a simple, sensitive, broadly applicable, and elusive approach to integrating complex polygenic variation into applied environmental management. We show that selective breeding increases allele frequencies of many trait-associated genes, and that alleles that increase most display strong genetic linkage and potential trade-offs among traits. Increasing tree growth while maintaining adaptation is essential to reforestation in a changing climate, but this may be challenging because trait-associated genetic variation that underpins climate adaptation is responsive to selection for tree growth. Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.
Collapse
|
8
|
Lind BM, Lu M, Obreht Vidakovic D, Singh P, Booker TR, Aitken SN, Yeaman S. Haploid, diploid, and pooled exome capture recapitulate features of biology and paralogy in two non-model tree species. Mol Ecol Resour 2021; 22:225-238. [PMID: 34270863 PMCID: PMC9292622 DOI: 10.1111/1755-0998.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Despite their suitability for studying evolution, many conifer species have large and repetitive giga‐genomes (16–31 Gbp) that create hurdles to producing high coverage SNP data sets that capture diversity from across the entirety of the genome. Due in part to multiple ancient whole genome duplication events, gene family expansion and subsequent evolution within Pinaceae, false diversity from the misalignment of paralog copies creates further challenges in accurately and reproducibly inferring evolutionary history from sequence data. Here, we leverage the cost‐saving benefits of pool‐seq and exome‐capture to discover SNPs in two conifer species, Douglas‐fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco, Pinaceae) and jack pine (Pinus banksiana Lamb., Pinaceae). We show, using minimal baseline filtering, that allele frequencies estimated from pooled individuals show a strong, positive correlation with those estimated by sequencing the same population as individuals (r > .948), on par with such comparisons made in model organisms. Further, we highlight the utility of haploid megagametophyte tissue for identifying sites that are probably due to misaligned paralogs. Together with additional minor filtering, we show that it is possible to remove many of the loci with large frequency estimate discrepancies between individual and pooled sequencing approaches, improving the correlation further (r > .973). Our work addresses bioinformatic challenges in non‐model organisms with large and complex genomes, highlights the use of megagametophyte tissue for the identification of paralogous artefacts, and suggests the combination of pool‐seq and exome capture to be robust for further evolutionary hypothesis testing in these systems.
Collapse
Affiliation(s)
- Brandon M Lind
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Tom R Booker
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
George J, Schueler S, Grabner M, Karanitsch‐Ackerl S, Mayer K, Stierschneider M, Weissenbacher L, van Loo M. Looking for the needle in a downsized haystack: Whole-exome sequencing unravels genomic signals of climatic adaptation in Douglas-fir ( Pseudotsuga menziesii). Ecol Evol 2021; 11:8238-8253. [PMID: 34188883 PMCID: PMC8216971 DOI: 10.1002/ece3.7654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Abstract
Conifers often occur along steep gradients of diverse climates throughout their natural ranges, which is expected to result in spatially varying selection to local climate conditions. However, signals of climatic adaptation can often be confounded, because unraveled clines covary with signals caused by neutral evolutionary processes such as gene flow and genetic drift. Consequently, our understanding of how selection and gene flow have shaped phenotypic and genotypic differentiation in trees is still limited.A 40-year-old common garden experiment comprising 16 Douglas-fir (Pseudotsuga menziesii) provenances from a north-to-south gradient of approx. 1,000 km was analyzed, and genomic information was obtained from exome capture, which resulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. We used a restrictive and conservative filtering approach, which permitted us to include only SNPs and individuals in environmental association analysis (EAA) that were free of potentially confounding effects (LD, relatedness among trees, heterozygosity deficiency, and deviations from Hardy-Weinberg proportions). We used four conceptually different genome scan methods based on FST outlier detection and gene-environment association in order to disentangle truly adaptive SNPs from neutral SNPs.We found that a relatively small proportion of the exome showed a truly adaptive signal (0.01%-0.17%) when population substructuring and multiple testing was accounted for. Nevertheless, the unraveled SNP candidates showed significant relationships with climate at provenance origins, which strongly suggests that they have featured adaptation in Douglas-fir along a climatic gradient. Two SNPs were independently found by three of the employed algorithms, and one of them is in close proximity to an annotated gene involved in circadian clock control and photoperiodism as was similarly found in Populus balsamifera. Synthesis. We conclude that despite neutral evolutionary processes, phenotypic and genomic signals of adaptation to climate are responsible for differentiation, which in particular explain disparity between the well-known coastal and interior varieties of Douglas-fir.
Collapse
Affiliation(s)
- Jan‐Peter George
- Faculty of Science & TechnologyTartu ObservatoryUniversity of TartuTartuEstonia
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| | - Silvio Schueler
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsViennaAustria
| | - Michael Grabner
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Sandra Karanitsch‐Ackerl
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Konrad Mayer
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | | | - Lambert Weissenbacher
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| |
Collapse
|
10
|
Caballero M, Lauer E, Bennett J, Zaman S, McEvoy S, Acosta J, Jackson C, Townsend L, Eckert A, Whetten RW, Loopstra C, Holliday J, Mandal M, Wegrzyn JL, Isik F. Toward genomic selection in Pinus taeda: Integrating resources to support array design in a complex conifer genome. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11439. [PMID: 34268018 PMCID: PMC8272584 DOI: 10.1002/aps3.11439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 05/13/2023]
Abstract
PREMISE An informatics approach was used for the construction of an Axiom genotyping array from heterogeneous, high-throughput sequence data to assess the complex genome of loblolly pine (Pinus taeda). METHODS High-throughput sequence data, sourced from exome capture and whole genome reduced-representation approaches from 2698 trees across five sequence populations, were analyzed with the improved genome assembly and annotation for the loblolly pine. A variant detection, filtering, and probe design pipeline was developed to detect true variants across and within populations. From 8.27 million variants, a total of 642,275 were evaluated and 423,695 of those were screened across a range-wide population. RESULTS The final informatics and screening approach delivered an Axiom array representing 46,439 high-confidence variants to the forest tree breeding and genetics community. Based on the annotated reference genome, 34% were located in or directly upstream or downstream of genic regions. DISCUSSION The Pita50K array represents a genome-wide resource developed from sequence data for an economically important conifer, loblolly pine. It uniquely integrates independent projects that assessed trees sampled across the native range. The challenges associated with the large and repetitive genome are addressed in the development of this resource.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Edwin Lauer
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Jeremy Bennett
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Susan McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Juan Acosta
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Colin Jackson
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Laura Townsend
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Andrew Eckert
- Department of BiologyVirginia Commonwealth UniversityRichmondVirginia23284USA
| | - Ross W. Whetten
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Carol Loopstra
- Department of Ecology and Conservation BiologyTexas A&M UniversityCollege StationTexas77843USA
| | - Jason Holliday
- Department of Forest Resources and Environmental ConservationVirginia Polytechnic Institute and State UniversityBlacksburgVirginia24061USA
| | - Mihir Mandal
- Department of BiologyClaflin UniversityOrangeburgSouth Carolina29115USA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Fikret Isik
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| |
Collapse
|
11
|
Calleja-Rodriguez A, Pan J, Funda T, Chen Z, Baison J, Isik F, Abrahamsson S, Wu HX. Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics 2020; 21:796. [PMID: 33198692 PMCID: PMC7667760 DOI: 10.1186/s12864-020-07188-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genomic selection (GS) or genomic prediction is a promising approach for tree breeding to obtain higher genetic gains by shortening time of progeny testing in breeding programs. As proof-of-concept for Scots pine (Pinus sylvestris L.), a genomic prediction study was conducted with 694 individuals representing 183 full-sib families that were genotyped with genotyping-by-sequencing (GBS) and phenotyped for growth and wood quality traits. 8719 SNPs were used to compare different genomic with pedigree prediction models. Additionally, four prediction efficiency methods were used to evaluate the impact of genomic breeding value estimations by assigning diverse ratios of training and validation sets, as well as several subsets of SNP markers. RESULTS Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian Ridge Regression (BRR) combined with expectation maximization (EM) imputation algorithm showed slightly higher prediction efficiencies than Pedigree Best Linear Unbiased Prediction (PBLUP) and Bayesian LASSO, with some exceptions. A subset of approximately 6000 SNP markers, was enough to provide similar prediction efficiencies as the full set of 8719 markers. Additionally, prediction efficiencies of genomic models were enough to achieve a higher selection response, that varied between 50-143% higher than the traditional pedigree-based selection. CONCLUSIONS Although prediction efficiencies were similar for genomic and pedigree models, the relative selection response was doubled for genomic models by assuming that earlier selections can be done at the seedling stage, reducing the progeny testing time, thus shortening the breeding cycle length roughly by 50%.
Collapse
Affiliation(s)
- Ainhoa Calleja-Rodriguez
- Skogforsk (The Forestry Research Institute of Sweden), Box 3, Sävar, SE 918 21 Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE - 901 83 Sweden
| | - Jin Pan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE - 901 83 Sweden
| | - Tomas Funda
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE - 901 83 Sweden
- Department of Genetics and Breeding, Faculty of Agrobiology and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00 Czech Republic
- Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037 China
| | - Zhiqiang Chen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE - 901 83 Sweden
| | - John Baison
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE - 901 83 Sweden
- RAGT Seeds, Essex, CB 101TA United Kingdom
| | - Fikret Isik
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695 USA
| | - Sara Abrahamsson
- Skogforsk (The Forestry Research Institute of Sweden), Box 3, Sävar, SE 918 21 Sweden
| | - Harry X. Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE - 901 83 Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- National Research Collection Australia, CSIRO, Canberra, ACT 2601 Australia
| |
Collapse
|
12
|
Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. FORESTS 2020. [DOI: 10.3390/f11111190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The breeding of forest trees is only a few decades old, and is a much more complicated, longer, and expensive endeavor than the breeding of agricultural crops. One breeding cycle for forest trees can take 20–30 years. Recent advances in genomics and molecular biology have revolutionized traditional plant breeding based on visual phenotype assessment: the development of different types of molecular markers has made genotype selection possible. Marker-assisted breeding can significantly accelerate the breeding process, but this method has not been shown to be effective for selection of complex traits on forest trees. This new method of genomic selection is based on the analysis of all effects of quantitative trait loci (QTLs) using a large number of molecular markers distributed throughout the genome, which makes it possible to assess the genomic estimated breeding value (GEBV) of an individual. This approach is expected to be much more efficient for forest tree improvement than traditional breeding. Here, we review the current state of the art in the application of genomic selection in forest tree breeding and discuss different methods of genotyping and phenotyping. We also compare the accuracies of genomic prediction models and highlight the importance of a prior cost-benefit analysis before implementing genomic selection. Perspectives for the further development of this approach in forest breeding are also discussed: expanding the range of species and the list of valuable traits, the application of high-throughput phenotyping methods, and the possibility of using epigenetic variance to improve of forest trees.
Collapse
|
13
|
Capblancq T, Butnor JR, Deyoung S, Thibault E, Munson H, Nelson DM, Fitzpatrick MC, Keller SR. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce ( Picea rubens). Evol Appl 2020; 13:2190-2205. [PMID: 33005218 PMCID: PMC7513712 DOI: 10.1111/eva.12985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.
Collapse
Affiliation(s)
| | - John R Butnor
- USDA Forest Service Southern Research Station University of Vermont Burlington VT USA
| | - Sonia Deyoung
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Ethan Thibault
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Helena Munson
- Department of Plant Biology University of Vermont Burlington VT USA
| | - David M Nelson
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Matthew C Fitzpatrick
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Stephen R Keller
- Department of Plant Biology University of Vermont Burlington VT USA
| |
Collapse
|
14
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
15
|
Piot A, Prunier J, Isabel N, Klápště J, El-Kassaby YA, Villarreal Aguilar JC, Porth I. Genomic Diversity Evaluation of Populus trichocarpa Germplasm for Rare Variant Genetic Association Studies. Front Genet 2020; 10:1384. [PMID: 32047512 PMCID: PMC6997551 DOI: 10.3389/fgene.2019.01384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies are powerful tools to elucidate the genome-to-phenome relationship. In order to explain most of the observed heritability of a phenotypic trait, a sufficient number of individuals and a large set of genetic variants must be examined. The development of high-throughput technologies and cost-efficient resequencing of complete genomes have enabled the genome-wide identification of genetic variation at large scale. As such, almost all existing genetic variation becomes available, and it is now possible to identify rare genetic variants in a population sample. Rare genetic variants that were usually filtered out in most genetic association studies are the most numerous genetic variations across genomes and hold great potential to explain a significant part of the missing heritability observed in association studies. Rare genetic variants must be identified with high confidence, as they can easily be confounded with sequencing errors. In this study, we used a pre-filtered data set of 1,014 pure Populus trichocarpa entire genomes to identify rare and common small genetic variants across individual genomes. We compared variant calls between Platypus and HaplotypeCaller pipelines, and we further applied strict quality filters for improved genetic variant identification. Finally, we only retained genetic variants that were identified by both variant callers increasing calling confidence. Based on these shared variants and after stringent quality filtering, we found high genomic diversity in P. trichocarpa germplasm, with 7.4 million small genetic variants. Importantly, 377k non-synonymous variants (5% of the total) were uncovered. We highlight the importance of genomic diversity and the potential of rare defective genetic variants in explaining a significant portion of P. trichocarpa's phenotypic variability in association genetics. The ultimate goal is to associate both rare and common alleles with poplar's wood quality traits to support selective breeding for an improved bioenergy feedstock.
Collapse
Affiliation(s)
- Anthony Piot
- Department of Wood and Forest Sciences, Université Laval, Quebec, QC, Canada.,Institute for System and Integrated Biology (IBIS), Université Laval, Quebec, QC, Canada.,Centre for Forest Research, Université Laval, Quebec, QC, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Université Laval, Quebec, QC, Canada.,Institute for System and Integrated Biology (IBIS), Université Laval, Quebec, QC, Canada.,Centre for Forest Research, Université Laval, Quebec, QC, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada
| | | | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Juan Carlos Villarreal Aguilar
- Centre for Forest Research, Université Laval, Quebec, QC, Canada.,Smithsonian Tropical Research Institute (STRI), Ancon, Panama.,Department of Biology, Université Laval, Quebec, QC, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Université Laval, Quebec, QC, Canada.,Institute for System and Integrated Biology (IBIS), Université Laval, Quebec, QC, Canada.,Centre for Forest Research, Université Laval, Quebec, QC, Canada
| |
Collapse
|
16
|
Choo LQ, Bal TMP, Choquet M, Smolina I, Ramos-Silva P, Marlétaz F, Kopp M, Hoarau G, Peijnenburg KTCA. Novel genomic resources for shelled pteropods: a draft genome and target capture probes for Limacina bulimoides, tested for cross-species relevance. BMC Genomics 2020; 21:11. [PMID: 31900119 PMCID: PMC6942316 DOI: 10.1186/s12864-019-6372-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pteropods are planktonic gastropods that are considered as bio-indicators to monitor impacts of ocean acidification on marine ecosystems. In order to gain insight into their adaptive potential to future environmental changes, it is critical to use adequate molecular tools to delimit species and population boundaries and to assess their genetic connectivity. We developed a set of target capture probes to investigate genetic variation across their large-sized genome using a population genomics approach. Target capture is less limited by DNA amount and quality than other genome-reduced representation protocols, and has the potential for application on closely related species based on probes designed from one species. RESULTS We generated the first draft genome of a pteropod, Limacina bulimoides, resulting in a fragmented assembly of 2.9 Gbp. Using this assembly and a transcriptome as a reference, we designed a set of 2899 genome-wide target capture probes for L. bulimoides. The set of probes includes 2812 single copy nuclear targets, the 28S rDNA sequence, ten mitochondrial genes, 35 candidate biomineralisation genes, and 41 non-coding regions. The capture reaction performed with these probes was highly efficient with 97% of the targets recovered on the focal species. A total of 137,938 single nucleotide polymorphism markers were obtained from the captured sequences across a test panel of nine individuals. The probes set was also tested on four related species: L. trochiformis, L. lesueurii, L. helicina, and Heliconoides inflatus, showing an exponential decrease in capture efficiency with increased genetic distance from the focal species. Sixty-two targets were sufficiently conserved to be recovered consistently across all five species. CONCLUSION The target capture protocol used in this study was effective in capturing genome-wide variation in the focal species L. bulimoides, suitable for population genomic analyses, while providing insights into conserved genomic regions in related species. The present study provides new genomic resources for pteropods and supports the use of target capture-based protocols to efficiently characterise genomic variation in small non-model organisms with large genomes.
Collapse
Affiliation(s)
- Le Qin Choo
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| | - Thijs M P Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Marvin Choquet
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Paula Ramos-Silva
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Katja T C A Peijnenburg
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Pyhäjärvi T, Kujala ST, Savolainen O. 275 years of forestry meets genomics in Pinus sylvestris. Evol Appl 2020; 13:11-30. [PMID: 31988655 PMCID: PMC6966708 DOI: 10.1111/eva.12809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pinus sylvestris has a long history of basic and applied research that is relevant for both forestry and evolutionary studies. Its patterns of adaptive variation and role in forest economic and ecological systems have been studied extensively for nearly 275 years, detailed demography for a 100 years and mating system more than 50 years. However, its reference genome sequence is not yet available and genomic studies have been lagging compared to, for example, Pinus taeda and Picea abies, two other economically important conifers. Despite the lack of reference genome, many modern genomic methods are applicable for a more detailed look at its biological characteristics. For example, RNA-seq has revealed a complex transcriptional landscape and targeted DNA sequencing displays an excess of rare variants and geographically homogenously distributed molecular genetic diversity. Current DNA and RNA resources can be used as a reference for gene expression studies, SNP discovery, and further targeted sequencing. In the future, specific consequences of the large genome size, such as functional effects of regulatory open chromatin regions and transposable elements, should be investigated more carefully. For forest breeding and long-term management purposes, genomic data can help in assessing the genetic basis of inbreeding depression and the application of genomic tools for genomic prediction and relatedness estimates. Given the challenges of breeding (long generation time, no easy vegetative propagation) and the economic importance, application of genomic tools has a potential to have a considerable impact. Here, we explore how genomic characteristics of P. sylvestris, such as rare alleles and the low extent of linkage disequilibrium, impact the applicability and power of the tools.
Collapse
Affiliation(s)
- Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | | | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
18
|
Mahony CR, MacLachlan IR, Lind BM, Yoder JB, Wang T, Aitken SN. Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study. Evol Appl 2020; 13:116-131. [PMID: 31892947 PMCID: PMC6935591 DOI: 10.1111/eva.12871] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/29/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
We evaluate genomic data, relative to phenotypic and climatic data, as a basis for assisted gene flow and genetic conservation. Using a seedling common garden trial of 281 lodgepole pine (Pinus contorta) populations from across western Canada, we compare genomic data to phenotypic and climatic data to assess their effectiveness in characterizing the climatic drivers and spatial scale of local adaptation in this species. We find that phenotype-associated loci are equivalent or slightly superior to climate data for describing local adaptation in seedling traits, but that climate data are superior to genomic data that have not been selected for phenotypic associations. We also find agreement between the climate variables associated with genomic variation and with 20-year heights from a long-term provenance trial, suggesting that genomic data may be a viable option for identifying climatic drivers of local adaptation where phenotypic data are unavailable. Genetic clines associated with the experimental traits occur at broad spatial scales, suggesting that standing variation of adaptive alleles for this and similar species does not require management at scales finer than those indicated by phenotypic data. This study demonstrates that genomic data are most useful when paired with phenotypic data, but can also fill some of the traditional roles of phenotypic data in management of species for which phenotypic trials are not feasible.
Collapse
Affiliation(s)
- Colin R. Mahony
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Ian R. MacLachlan
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Brandon M. Lind
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Jeremy B. Yoder
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Tongli Wang
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Sally N. Aitken
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
19
|
Utilization of Tissue Ploidy Level Variation in de Novo Transcriptome Assembly of Pinus sylvestris. G3-GENES GENOMES GENETICS 2019; 9:3409-3421. [PMID: 31427456 PMCID: PMC6778806 DOI: 10.1534/g3.119.400357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared to angiosperms, gymnosperms lag behind in the availability of assembled and annotated genomes. Most genomic analyses in gymnosperms, especially conifer tree species, rely on the use of de novo assembled transcriptomes. However, the level of allelic redundancy and transcript fragmentation in these assembled transcriptomes, and their effect on downstream applications have not been fully investigated. Here, we assessed three assembly strategies for short-reads data, including the utility of haploid megagametophyte tissue during de novo assembly as single-allele guides, for six individuals and five different tissues in Pinus sylvestris. We then contrasted haploid and diploid tissue genotype calls obtained from the assembled transcriptomes to evaluate the extent of paralog mapping. The use of the haploid tissue during assembly increased its completeness without reducing the number of assembled transcripts. Our results suggest that current strategies that rely on available genomic resources as guidance to minimize allelic redundancy are less effective than the application of strategies that cluster redundant assembled transcripts. The strategy yielding the lowest levels of allelic redundancy among the assembled transcriptomes assessed here was the generation of SuperTranscripts with Lace followed by CD-HIT clustering. However, we still observed some levels of heterozygosity (multiple gene fragments per transcript reflecting allelic redundancy) in this assembled transcriptome on the haploid tissue, indicating that further filtering is required before using these assemblies for downstream applications. We discuss the influence of allelic redundancy when these reference transcriptomes are used to select regions for probe design of exome capture baits and for estimation of population genetic diversity.
Collapse
|
20
|
Hanlon VCT, Otto SP, Aitken SN. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol Lett 2019; 3:348-358. [PMID: 31388445 PMCID: PMC6675141 DOI: 10.1002/evl3.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
The rates and biological significance of somatic mutations have long been a subject of debate. Somatic mutations in plants are expected to accumulate with vegetative growth and time, yet rates of somatic mutations are unknown for conifers, which can reach exceptional sizes and ages. We investigated somatic mutation rates in the conifer Sitka spruce (Picea sitchensis (Bong.) Carr.) by analyzing a total of 276 Gb of nuclear DNA from the tops and bottoms of 20 old‐growth trees averaging 76 m in height. We estimate a somatic base substitution rate of 2.7 × 10−8 per base pair within a generation. To date, this is one of the highest estimated per‐generation rates of mutation among eukaryotes, indicating that somatic mutations contribute substantially to the total per‐generation mutation rate in conifers. Nevertheless, as the sampled trees are centuries old, the per‐year rate is low in comparison with nontree taxa. We argue that although somatic mutations raise genetic load in conifers, they generate important genetic variation and enable selection both among cell lineages within individual trees and among offspring.
Collapse
Affiliation(s)
- Vincent C T Hanlon
- Faculty of Forestry Department of Forest and Conservation Sciences University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Sarah P Otto
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Sally N Aitken
- Faculty of Forestry Department of Forest and Conservation Sciences University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
21
|
Liu J, Sun Z, Mao X, Gerken H, Wang X, Yang W. Multiomics analysis reveals a distinct mechanism of oleaginousness in the emerging model alga Chromochloris zofingiensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:745-758. [PMID: 30828893 DOI: 10.1111/tpj.14270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/24/2018] [Accepted: 01/28/2019] [Indexed: 05/03/2023]
Abstract
Chromochloris zofingiensis, featured due to its capability to simultaneously synthesize triacylglycerol (TAG) and astaxanthin, is emerging as a leading candidate alga for production uses. To better understand the oleaginous mechanism of this alga, we conducted a multiomics analysis by systematically integrating time-resolved transcriptomes, lipidomes and metabolomes in response to nitrogen deprivation. The data analysis unraveled the distinct mechanism of TAG accumulation, which involved coordinated stimulation of multiple biological processes including supply of energy and reductants, carbon reallocation from protein and starch, and 'pushing' and 'pulling' carbon to TAG synthesis. Unlike the model alga Chlamydomonas, de novo fatty acid synthesis in C. zofingiensis was promoted, together with enhanced turnover of both glycolipids and phospholipids, supporting the drastic need of acyls for TAG assembly. Moreover, genomewide analysis identified many key functional enzymes and transcription factors that had engineering potential for TAG modulation. Two genes encoding glycerol-3-phosphate acyltransferase (GPAT), the first committed enzyme for TAG assembly, were found in the C. zofingiensis genome; in vivo functional characterization revealed that extrachloroplastic GPAT instead of chloroplastic GPAT played a central role in TAG synthesis. These findings illuminate distinct oleaginousness mechanisms in C. zofingiensis and pave the way towards rational manipulation of this alga to becone an emerging model for trait improvements.
Collapse
Affiliation(s)
- Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Zheng Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuemei Mao
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Henri Gerken
- School of Sustainable Engineering and the Built Environment, Arizona State University Polytechnic campus, Mesa, AZ, 85212, USA
| | - Xiaofei Wang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
22
|
Lu M, Hodgins KA, Degner JC, Yeaman S. Purifying selection does not drive signatures of convergent local adaptation of lodgepole pine and interior spruce. BMC Evol Biol 2019; 19:110. [PMID: 31138118 PMCID: PMC6537219 DOI: 10.1186/s12862-019-1438-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lodgepole pine (Pinus contorta) and interior spruce (Picea glauca, Picea engelmannii, and their hybrids) are distantly related conifer species. Previous studies identified 47 genes containing variants associated with environmental variables in both species, providing evidence of convergent local adaptation. However, if the intensity of purifying selection varies with the environment, clines in nucleotide diversity could evolve through linked (background) selection that would yield allele frequency-environment signatures resembling local adaptation. If similar geographic patterns in the strength of purifying selection occur in these species, this could result in the convergent signatures of local adaptation, especially if the landscape of recombination is conserved. In the present study, we investigated whether spatially/environmentally varying purifying selection could give rise to the convergent signatures of local adaptation that had previously reported. RESULTS We analyzed 86 lodgepole pine and 50 interior spruce natural populations spanning heterogeneous environments in western Canada where previous analyses had found signatures of convergent local adaptation. We estimated nucleotide diversity and Tajima's D for each gene within each population and calculated the strength of correlations between nucleotide diversity and environmental variables. Overall, these estimates in the genes with previously identified convergent local adaptation signatures had no similar pattern between pine and spruce. Clines in nucleotide diversity along environmental variables were found for interior spruce, but not for lodgepole pine. In spruce, genes with convergent adaption signatures showed a higher strength of correlations than genes without convergent adaption signatures, but there was no such disparity in pine, which suggests the pattern in spruce may have arisen due to a combination of selection and hybridization. CONCLUSIONS The results rule out purifying/background selection as a driver of convergent local adaption signatures in lodgepole pine and interior spruce.
Collapse
Affiliation(s)
- Mengmeng Lu
- Department of Biological Sciences, University of Calgary, 507 Campus Drive NW, Calgary, T2N 4S8, Canada.
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University - Clayton Campus, Building 17, Wellington Road, Melbourne, 3800, Australia
| | - Jon C Degner
- Department of Forest and Conservation Sciences, Forest Sciences Centre 3041, University of British Columbia, 2424 Main Mall, Vancouver, V6T 1Z4, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, 507 Campus Drive NW, Calgary, T2N 4S8, Canada
| |
Collapse
|
23
|
Acosta JJ, Fahrenkrog AM, Neves LG, Resende MFR, Dervinis C, Davis JM, Holliday JA, Kirst M. Exome Resequencing Reveals Evolutionary History, Genomic Diversity, and Targets of Selection in the Conifers Pinus taeda and Pinus elliottii. Genome Biol Evol 2019; 11:508-520. [PMID: 30689841 PMCID: PMC6385631 DOI: 10.1093/gbe/evz016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) are ecologically and economically important pine species that dominate many forest ecosystems in the southern United States, but like all conifers, the study of their genetic diversity and demographic history has been hampered by their large genome size. A small number of studies mainly based on candidate-gene sequencing have been reported for P. taeda to date, whereas none are available for P. elliottii. Targeted exome resequencing has recently enabled population genomics studies for conifers, approach used here to assess genomic diversity, signatures of selection, population structure, and demographic history of P. elliottii and P. taeda. Extensive similarities were revealed between these species: both species feature rapid linkage disequilibrium decay and high levels of genetic diversity. Moreover, genome-wide positive correlations for measures of genetic diversity between the species were also observed, likely due to shared structural genomic constraints. Also, positive selection appears to be targeting a common set of genes in both pines. Demographic history differs between both species, with only P. taeda being affected by a dramatic bottleneck during the last glacial period. The ability of P. taeda to recover from a dramatic reduction in population size while still retaining high levels of genetic diversity shows promise for other pines facing environmental stressors associated with climate change, indicating that these too may be able to adapt successfully to new future conditions even after a drastic population size contraction.
Collapse
Affiliation(s)
- Juan J Acosta
- School of Forest Resources and Conservation, University of Florida.,University of Florida Genetics Institute, University of Florida.,Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC
| | - Annette M Fahrenkrog
- School of Forest Resources and Conservation, University of Florida.,Plant Molecular and Cellular Biology Graduate Program, University of Florida
| | - Leandro G Neves
- School of Forest Resources and Conservation, University of Florida.,Plant Molecular and Cellular Biology Graduate Program, University of Florida.,RAPiD Genomics, Gainesville, FL
| | | | | | - John M Davis
- School of Forest Resources and Conservation, University of Florida
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida.,Plant Molecular and Cellular Biology Graduate Program, University of Florida.,University of Florida Genetics Institute, University of Florida
| |
Collapse
|
24
|
Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Mol Phylogenet Evol 2019; 136:241-253. [PMID: 30885830 DOI: 10.1016/j.ympev.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family's phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias - formerly placed in the Capromyidae family - as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae.
Collapse
|
25
|
Rellstab C, Dauphin B, Zoller S, Brodbeck S, Gugerli F. Using transcriptome sequencing and pooled exome capture to study local adaptation in the giga‐genome of
Pinus cembra. Mol Ecol Resour 2019; 19:536-551. [DOI: 10.1111/1755-0998.12986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Stefan Zoller
- ETH Zürich Genetic Diversity Centre Zürich Switzerland
| | - Sabine Brodbeck
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| |
Collapse
|
26
|
de La Harpe M, Hess J, Loiseau O, Salamin N, Lexer C, Paris M. A dedicated target capture approach reveals variable genetic markers across micro- and macro-evolutionary time scales in palms. Mol Ecol Resour 2019; 19:221-234. [PMID: 30240120 DOI: 10.1111/1755-0998.12945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Understanding the genetics of biological diversification across micro- and macro-evolutionary time scales is a vibrant field of research for molecular ecologists as rapid advances in sequencing technologies promise to overcome former limitations. In palms, an emblematic, economically and ecologically important plant family with high diversity in the tropics, studies of diversification at the population and species levels are still hampered by a lack of genomic markers suitable for the genotyping of large numbers of recently diverged taxa. To fill this gap, we used a whole genome sequencing approach to develop target sequencing for molecular markers in 4,184 genome regions, including 4,051 genes and 133 non-genic putatively neutral regions. These markers were chosen to cover a wide range of evolutionary rates allowing future studies at the family, genus, species and population levels. Special emphasis was given to the avoidance of copy number variation during marker selection. In addition, a set of 149 well-known sequence regions previously used as phylogenetic markers by the palm biological research community were included in the target regions, to open the possibility to combine and jointly analyse already available data sets with genomic data to be produced with this new toolkit. The bait set was effective for species belonging to all three palm sub-families tested (Arecoideae, Ceroxyloideae and Coryphoideae), with high mapping rates, specificity and efficiency. The number of high-quality single nucleotide polymorphisms (SNPs) detected at both the sub-family and population levels facilitates efficient analyses of genomic diversity across micro- and macro-evolutionary time scales.
Collapse
Affiliation(s)
- Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Oriane Loiseau
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Margot Paris
- Department of Biology, Unit Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
27
|
Azaiez A, Pavy N, Gérardi S, Laroche J, Boyle B, Gagnon F, Mottet MJ, Beaulieu J, Bousquet J. A catalog of annotated high-confidence SNPs from exome capture and sequencing reveals highly polymorphic genes in Norway spruce (Picea abies). BMC Genomics 2018; 19:942. [PMID: 30558528 PMCID: PMC6296092 DOI: 10.1186/s12864-018-5247-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Norway spruce [Picea abies (L.) Karst.] is ecologically and economically one of the most important conifer worldwide. Our main goal was to develop a large catalog of annotated high confidence gene SNPs that should sustain the development of genomic tools for the conservation of natural and domesticated genetic diversity resources, and hasten tree breeding efforts in this species. RESULTS Targeted sequencing was achieved by capturing P. abies exome with probes previously designed from the sequenced transcriptome of white spruce (Picea glauca (Moench) Voss). Capture efficiency was high (74.5%) given a high level of exome conservation between the two species. Using stringent criteria, we delimited a set of 61,771 high-confidence SNPs across 13,543 genes. To validate SNPs, a high-throughput genotyping array was developed for a subset of 5571 predicted SNPs representing as many different gene loci, and was used to genotype over 1000 trees. The estimated true positive rate of the resource was 84.2%, which was comparable with the genotyping success rate obtained for P. abies control SNPs recycled from previous genotyping efforts. We also analyzed SNP abundance across various gene functional categories. Several GO terms and gene families involved in stress response were found over-represented in highly polymorphic genes. CONCLUSION The annotated high-confidence SNP catalog developed herein represents a valuable genomic resource, being representative of over 13 K genes distributed across the P. abies genome. This resource should serve a variety of population genomics and breeding applications in Norway spruce.
Collapse
Affiliation(s)
- Aïda Azaiez
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Jérôme Laroche
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Brian Boyle
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Marie-Josée Mottet
- Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs du Québec, 2700 Einstein, Québec, Québec G1P 3W8 Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| |
Collapse
|
28
|
Lotterhos KE, Yeaman S, Degner J, Aitken S, Hodgins KA. Modularity of genes involved in local adaptation to climate despite physical linkage. Genome Biol 2018; 19:157. [PMID: 30290843 PMCID: PMC6173883 DOI: 10.1186/s13059-018-1545-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Linkage among genes experiencing different selection pressures can make natural selection less efficient. Theory predicts that when local adaptation is driven by complex and non-covarying stresses, increased linkage is favored for alleles with similar pleiotropic effects, with increased recombination favored among alleles with contrasting pleiotropic effects. Here, we introduce a framework to test these predictions with a co-association network analysis, which clusters loci based on differing associations. We use this framework to study the genetic architecture of local adaptation to climate in lodgepole pine, Pinus contorta, based on associations with environments. RESULTS We identify many clusters of candidate genes and SNPs associated with distinct environments, including aspects of aridity and freezing, and discover low recombination rates among some candidate genes in different clusters. Only a few genes contain SNPs with effects on more than one distinct aspect of climate. There is limited correspondence between co-association networks and gene regulatory networks. We further show how associations with environmental principal components can lead to misinterpretation. Finally, simulations illustrate both benefits and caveats of co-association networks. CONCLUSIONS Our results support the prediction that different selection pressures favor the evolution of distinct groups of genes, each associating with a different aspect of climate. But our results went against the prediction that loci experiencing different sources of selection would have high recombination among them. These results give new insight into evolutionary debates about the extent of modularity, pleiotropy, and linkage in the evolution of genetic architectures.
Collapse
Affiliation(s)
- Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Jon Degner
- Department of Forest and Conservation Sciences, Faculty of Forestry, Vancouver, BC, V6T 1Z4, Canada
| | - Sally Aitken
- Department of Forest and Conservation Sciences, Faculty of Forestry, Vancouver, BC, V6T 1Z4, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
29
|
Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 2018; 11:1035-1052. [PMID: 30026796 PMCID: PMC6050180 DOI: 10.1111/eva.12569] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Identifying and monitoring locally adaptive genetic variation can have direct utility for conserving species at risk, especially when management may include actions such as translocations for restoration, genetic rescue, or assisted gene flow. However, genomic studies of local adaptation require careful planning to be successful, and in some cases may not be a worthwhile use of resources. Here, we offer an adaptive management framework to help conservation biologists and managers decide when genomics is likely to be effective in detecting local adaptation, and how to plan assessment and monitoring of adaptive variation to address conservation objectives. Studies of adaptive variation using genomic tools will inform conservation actions in many cases, including applications such as assisted gene flow and identifying conservation units. In others, assessing genetic diversity, inbreeding, and demographics using selectively neutral genetic markers may be most useful. And in some cases, local adaptation may be assessed more efficiently using alternative approaches such as common garden experiments. Here, we identify key considerations of genomics studies of locally adaptive variation, provide a road map for successful collaborations with genomics experts including key issues for study design and data analysis, and offer guidelines for interpreting and using results from genomic assessments to inform monitoring programs and conservation actions.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleTNUSA
| | - Brenna R. Forester
- Duke University, Nicholas School of the EnvironmentDurhamNCUSA
- Present address:
Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Sally N. Aitken
- Faculty of ForestryUniversity of British ColumbiaVancouverBCCanada
| | | |
Collapse
|
30
|
Förster DW, Bull JK, Lenz D, Autenrieth M, Paijmans JLA, Kraus RHS, Nowak C, Bayerl H, Kuehn R, Saveljev AP, Sindičić M, Hofreiter M, Schmidt K, Fickel J. Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species. Mol Ecol Resour 2018; 18:1356-1373. [PMID: 29978939 DOI: 10.1111/1755-0998.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022]
Abstract
Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species' European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species.
Collapse
Affiliation(s)
- Daniel W Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - James K Bull
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marijke Autenrieth
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Robert H S Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Helmut Bayerl
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany
| | - Ralph Kuehn
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieza, Poland
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
31
|
Puritz JB, Lotterhos KE. Expressed exome capture sequencing: A method for cost‐effective exome sequencing for all organisms. Mol Ecol Resour 2018; 18:1209-1222. [DOI: 10.1111/1755-0998.12905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jonathan B. Puritz
- Department of Marine and Environmental Sciences Northeastern Marine Science Center Nahant Massachusetts
| | - Katie E. Lotterhos
- Department of Marine and Environmental Sciences Northeastern Marine Science Center Nahant Massachusetts
| |
Collapse
|
32
|
Ogutcen E, Ramsay L, von Wettberg EB, Bett KE. Capturing variation in Lens (Fabaceae): Development and utility of an exome capture array for lentil. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01165. [PMID: 30131907 PMCID: PMC6055568 DOI: 10.1002/aps3.1165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/16/2018] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Lentil is an important legume crop with reduced genetic diversity caused by domestication bottlenecks. Due to its large and complex genome, tools for reduced representation sequencing are needed. We developed an exome capture array for use in various genetic diversity studies. METHODS Based on the CDC Redberry draft genome, we developed an exome capture array using multiple sources of transcript resources. The probes were designed to target not only the cultivated lentil, but also wild species. We assessed the utility of the developed method by applying the generated data set to population structure and phylogenetic analyses. RESULTS The data set includes 16 wild lentils and 22 cultivar accessions of lentil. Alignment rates were over 90%, and the genic regions were well represented in the capture array. After stringent filtering, 6.5 million high-quality variants were called, and the data set was used to assess the interspecific relationships within the genus Lens. DISCUSSION The developed exome capture array provides large amounts of genomic data to be used in many downstream analyses. The method will have useful applications in marker-assisted breeding programs aiming to improve the quality of cultivated lentil.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSaskatchewanS7N 5A8Canada
| | - Larissa Ramsay
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSaskatchewanS7N 5A8Canada
| | - Eric Bishop von Wettberg
- Department of Plant and Soil ScienceUniversity of Vermont63 Carrigan DriveBurlingtonVermont05405USA
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSaskatchewanS7N 5A8Canada
| |
Collapse
|
33
|
Genotyping and Sequencing Technologies in Population Genetics and Genomics. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2017_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Lesur I, Alexandre H, Boury C, Chancerel E, Plomion C, Kremer A. Development of Target Sequence Capture and Estimation of Genomic Relatedness in a Mixed Oak Stand. FRONTIERS IN PLANT SCIENCE 2018; 9:996. [PMID: 30057586 PMCID: PMC6053538 DOI: 10.3389/fpls.2018.00996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/19/2018] [Indexed: 05/19/2023]
Abstract
Anticipating the evolutionary responses of long-lived organisms, such as trees, to environmental changes, requires the assessment of genetic variation of adaptive traits in natural populations. To this end, high-density markers are needed to calculate genomic relatedness between individuals allowing to estimate the genetic variance of traits in wild populations. We designed a targeted capture-based, next-generation sequencing assay based on the highly heterozygous pedunculate oak (Quercus robur) reference genome, for the sequencing of 3 Mb of genic and intergenic regions. Using a mixed stand of 293 Q. robur and Q. petraea genotypes we successfully captured over 97% of the target sequences, corresponding to 0.39% of the oak genome, with sufficient depth (97×) for the detection of about 190,000 SNPs evenly spread over the targeted regions. We validated the technique by evaluating its reproducibility, and comparing the genomic relatedness of trees with their known pedigree relationship. We explored the use of the technique on other related species and highlighted the advantages and limitations of this approach. We found that 92.07% of target sequences in Q. suber and 70.36% of sequences in Fagus sylvatica were captured. We used this SNP resource to estimate genetic relatedness in the mixed oak stand. Mean pairwise genetic relatedness was low within each species with a few values exceeding 0.25 (half-sibs) or 0.5 (full-sibs). Finally, we applied the technique to a long-standing issue in population genetics of trees regarding the relationship between inbreeding and components of fitness. We found very weak signals for inbreeding depression for reproductive success and no signal for growth within both species.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
- HelixVenture, Mérignac, France
- *Correspondence: Isabelle Lesur,
| | - Hermine Alexandre
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Christophe Boury
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Emilie Chancerel
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Christophe Plomion
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| | - Antoine Kremer
- INRA, UMR 1202, Biodiversité Gènes et Communautés, Université Bordeaux, Pessac, France
| |
Collapse
|
35
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Conte GL, Hodgins KA, Yeaman S, Degner JC, Aitken SN, Rieseberg LH, Whitlock MC. Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics 2017; 18:970. [PMID: 29246191 PMCID: PMC5731209 DOI: 10.1186/s12864-017-4344-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mutation load is expected to be reduced in hybrids via complementation of deleterious alleles. While local adaptation of hybrids confounds phenotypic tests for reduced mutation load, it may be possible to assess variation in load by analyzing the distribution of putatively deleterious alleles. Here, we use this approach in the interior spruce (Picea glauca x P. engelmannii) hybrid complex, a group likely to suffer from high mutation load and in which hybrids exhibit local adaptation to intermediate conditions. We used PROVEAN to bioinformatically predict whether non-synonymous alleles are deleterious, based on conservation of the position and abnormality of the amino acid change. RESULTS As expected, we found that predicted deleterious alleles were at lower average allele frequencies than alleles not predicted to be deleterious. We were unable to detect a phenotypic effect on juvenile growth rate of the many rare alleles predicted to be deleterious. Both the proportion of alleles predicted to be deleterious and the proportion of loci homozygous for predicted deleterious alleles were higher in P. engelmannii (Engelmann spruce) than in P. glauca (white spruce), due to higher diversity and frequencies of rare alleles in Engelmann. Relative to parental species, the proportion of alleles predicted to be deleterious was intermediate in hybrids, and the proportion of loci homozygous for predicted deleterious alleles was lowest. CONCLUSION Given that most deleterious alleles are recessive, this suggests that mutation load is reduced in hybrids due to complementation of deleterious alleles. This effect may enhance the fitness of hybrids.
Collapse
Affiliation(s)
- Gina L Conte
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Botany, University of British Columbia, 3200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Kathryn A Hodgins
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Present Address: School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| | - Sam Yeaman
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Present Address: Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Jon C Degner
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, 3200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
37
|
Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, El-Kassaby YA. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics 2017; 18:930. [PMID: 29197325 PMCID: PMC5712148 DOI: 10.1186/s12864-017-4258-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022] Open
Abstract
Background Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full-sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait). Results The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79–0.91 and GRR: 0.80–0.91), and were generally similar to the multi-site (RR-BLUP: 0.83–0.91, GRR: 0.83–0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.79–0.92, GRR: 0.79–0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range (RR-BLUP: 0.79–0.92, GRR: 0.78–0.91). Height at 12 years was deemed the earliest acceptable age at which accurate predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family means), rather than marker-QTL LD. Conclusions While GS models’ prediction accuracies were high, the main driving force was the pedigree tracking rather than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal genes and markers.
Collapse
Affiliation(s)
- Frances R Thistlethwaite
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Whakarewarewa, Rotorua, 3046, New Zealand.,Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Praha 6, Czech Republic
| | - Ilga Porth
- Département des sciences du bois et de la forêt, Université Laval, QC, Québec, G1V 0A6, Canada
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078-3035, USA
| | - Michael U Stoehr
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
38
|
Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/13836_2017_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
MacLachlan IR, Yeaman S, Aitken SN. Growth gains from selective breeding in a spruce hybrid zone do not compromise local adaptation to climate. Evol Appl 2017; 11:166-181. [PMID: 29387153 PMCID: PMC5775489 DOI: 10.1111/eva.12525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
Hybrid zones contain extensive standing genetic variation that facilitates rapid responses to selection. The Picea glauca × Picea engelmannii hybrid zone in western Canada is the focus of tree breeding programs that annually produce ~90 million reforestation seedlings. Understanding the direct and indirect effects of selective breeding on adaptive variation is necessary to implement assisted gene flow (AGF) polices in Alberta and British Columbia that match these seedlings with future climates. We decomposed relationships among hybrid ancestry, adaptive traits, and climate to understand the implications of selective breeding for climate adaptations and AGF strategies. The effects of selection on associations among hybrid index estimated from ~6,500 SNPs, adaptive traits, and provenance climates were assessed for ~2,400 common garden seedlings. Hybrid index differences between natural and selected seedlings within breeding zones were small in Alberta (average +2%), but larger and more variable in BC (average −7%, range −24% to +1%), slightly favoring P. glauca ancestry. The average height growth gain of selected seedlings over natural seedlings within breeding zones was 36% (range 12%–86%). Clines in growth with temperature‐related variables were strong, but differed little between selected and natural populations. Seedling hybrid index and growth trait associations with evapotranspiration‐related climate variables were stronger in selected than in natural seedlings, indicating possible preadaptation to drier future climates. Associations among cold hardiness, hybrid ancestry, and cold‐related climate variables dominated signals of local adaptation and were preserved in breeding populations. Strong hybrid ancestry–phenotype–climate associations suggest that AGF will be necessary to match interior spruce breeding populations with shifting future climates. The absence of antagonistic selection responses among traits and maintenance of cold adaptation in selected seedlings suggests breeding populations can be safely redeployed using AGF prescriptions similar to those of natural populations.
Collapse
Affiliation(s)
- Ian R MacLachlan
- Department of Forest and Conservation Sciences Faculty of Forestry University of British Columbia Vancouver BC Canada
| | - Sam Yeaman
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences Faculty of Forestry University of British Columbia Vancouver BC Canada
| |
Collapse
|
40
|
Burghardt LT, Young ND, Tiffin P. A Guide to Genome-Wide Association Mapping in Plants. ACTA ACUST UNITED AC 2017; 2:22-38. [PMID: 31725973 DOI: 10.1002/cppb.20041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have developed into a valuable approach for identifying the genetic basis of phenotypic variation. In this article, we provide an overview of the design, analysis, and interpretation of GWAS. First, we present results from simulations that explore key elements of experimental design as well as considerations for collecting the relevant genomic and phenotypic data. Next, we outline current statistical methods and tools used for GWA analyses and discuss the inclusion of covariates to account for population structure and the interpretation of results. Given that many false positive associations will occur in any GWA analysis, we highlight strategies for prioritizing GWA candidates for further statistical and empirical validation. While focused on plants, the material we cover is also applicable to other systems. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
41
|
Holliday JA, Aitken SN, Cooke JEK, Fady B, González-Martínez SC, Heuertz M, Jaramillo-Correa JP, Lexer C, Staton M, Whetten RW, Plomion C. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Mol Ecol 2017; 26:706-717. [PMID: 27997049 DOI: 10.1111/mec.13963] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
Abstract
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.
Collapse
Affiliation(s)
- Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 304 Cheatham Hall, Blacksburg, VA 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, 5-108 Centennial Centre for Interdisciplinary Science, Edmonton, AB T6G2E9, Canada
| | - Bruno Fady
- Mediterranean Forest Ecology (URFM), Institut National de la Recherche Agronomique (INRA), Domaine St Paul, Site Agroparc, 84914 Avignon, France
| | | | - Myriam Heuertz
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Juan-Pablo Jaramillo-Correa
- Institute of Ecology, Universidad Nacional Autonoma de Mexico (UNAM) Circuito Exterior s/n, Apartado Postal 70-275, 04510 Ciudad de México, Mexico City, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna Faculty of Life SciencesRennweg 14, Room 217, A-1030, Vienna, Austria
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 EJ Chapman Drive, Knoxville, TN 37996, USA
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University Jordan Hall Addition 5231, Raleigh, NC 27695, USA
| | - Christophe Plomion
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| |
Collapse
|
42
|
Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe KJ, Hamann A, Holliday JA, Whitlock MC, Rieseberg LH, Aitken SN. Convergent local adaptation to climate in distantly related conifers. Science 2016; 353:1431-1433. [DOI: 10.1126/science.aaf7812] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023]
|
43
|
Glenn TC, Faircloth BC. Capturing Darwin's dream. Mol Ecol Resour 2016; 16:1051-8. [PMID: 27454358 PMCID: PMC5318190 DOI: 10.1111/1755-0998.12574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/28/2023]
Abstract
Evolutionary biologists from Darwin forward have dreamed of having data that would elucidate our understanding of evolutionary history and the diversity of life. Sequence capture is a relatively old DNA technology, but its use is growing rapidly due to advances in (i) massively parallel DNA sequencing approaches and instruments, (ii) massively parallel bait construction, (iii) methods to identify target regions and (iv) sample preparation. We give a little historical context to these developments, summarize some of the important advances reported in this special issue and point to further advances that can be made to help fulfill Darwin's dream.
Collapse
Affiliation(s)
- Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|