1
|
Zhou C, Wang Z, Wang X, Qu H, Song Z. Chromosome-Level Genome Assembly and Genetic Maker System of the Endangered Largemouth Bronze Gudgeon (Coreius guichenoti) with Focus on Conservation Applications. Integr Zool 2024. [PMID: 39690135 DOI: 10.1111/1749-4877.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024]
Abstract
The largemouth bronze gudgeon (Coreius guichenoti), an endemic fish species, is distributed in the upper Yangtze River drainage. Due to anthropogenetic factors such as water pollution, overfishing, and dam construction, the wild populations of C. guichenoti have dramatically declined in recent decades. In this study, we generated a reference chromosomal-level genome assembly of C. guichenoti on the basis of PacBio HiFi sequencing and Hi-C scaffolding technologies. The final genome assembly was 1.10 Gb in length (contig N50: 28.64 Mb; scaffold N50: 42.39 Mb) with 25 chromosomes. The completeness score of the C. guichenoti genome was 96.4%, and high synteny was detected compared with Danio rerio and Ictalurus punctatus genomes. A total of 24 325 PCGs were annotated for the C. guichenoti genome. Comparative genomics analysis identified 986 expanded gene families in C. guichenoti, which were significantly enriched in GO items associated with the development and interaction of sperm and egg as well as immunity. Furthermore, positively selected genes (PSGs) detected in C. guichenoti were mainly associated with DNA repair, ATP binding, mitochondrion, and lipid homeostasis. Based on the reference genome and resequencing data, the polymorphic microsatellite (SSR) loci were comprehensively analyzed for C. guichenoti, and the top 15 tetra-nucleotide SSR loci were selected for the construction of the genetic maker system after validation through PCR and genotyping. All of these 15 tetra-nucleotide SSR loci without Hardy-Weinberg equilibrium (HWE) deviation showed high polymorphism, good amplification stability, and selective neutrality. The PID (sibs) curves revealed that the subset of four tetra-nucleotide SSR loci (cgui1, cgui5, cgui3, cgui13) was sufficient for accurate identification of C. guichenoti individuals (PIDsib < 0.01). These 15 tetra-nucleotide SSR loci could also serve as genetic markers in subsequent parentage identification and genetic diversity analysis. The chromosome-level genome assembly and findings laid solid foundations for molecular breeding, genomic research, and biological conservation of C. guichenoti.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Faculty of Agriculture, Forest and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Huantao Qu
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Schmitt S, Tysklind N, Heuertz M, Hérault B. Selection in space and time: Individual tree growth is adapted to tropical forest gap dynamics. Mol Ecol 2022. [PMID: 35152482 DOI: 10.1111/mec.16392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Tropical forest dynamics are driven by growth and survival strategies of tree species in relation to treefall gaps; however, the ecological and evolutionary roles of intraspecific variation in the response to forest gaps remain unexplored. Here, we associated genomic data of three related tree species of the genus Symphonia in a French Guiana forest with (1) each individual tree's growth potential, and (2) with its light and competition environment estimated based on 33 years of forest monitoring in plots covering 120 ha. We show that individual trees within species have genetically determined growth strategies that are adapted to the local light and competition environments, which are shaped by the time since the last treefall. Within species, fast-growing genotypes are more frequent in light-enriched environments and slow-growing genotypes in more shaded environments. Forest gap dynamics is thus a strong selection driver that shapes adaptive strategies and maintains genetic variation within tropical tree species.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, CIRAD, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
- Univ Bordeaux, INRAE, BIOGECO, Cestas, France
| | - Niklas Tysklind
- INRAE, UMR EcoFoG (Agroparistech, CNRS, CIRAD, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | | | - Bruno Hérault
- CIRAD, UR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
- CIRAD, Univ Montpellier, UR Forêts et Sociétés, Montpellier, France
- Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire
| |
Collapse
|
3
|
Schmitt S, Tysklind N, Hérault B, Heuertz M. Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes. Mol Ecol 2021; 30:5080-5093. [PMID: 34387001 DOI: 10.1111/mec.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Closely related tree species that grow in sympatry are abundant in rainforests. However, little is known of the eco-evolutionary processes that govern their niches and local coexistence. We assessed genetic species delimitation in closely related sympatric species belonging to two Neotropical tree species complexes and investigated their genomic adaptation to a fine-scale topographic gradient with associated edaphic and hydrologic features. Combining LiDAR-derived topography, tree inventories, and single nucleotide polymorphisms (SNPs) from gene capture experiments, we explored genome-wide population genetic structure, covariation of environmental variables, and genotype-environment association to assess microgeographic adaptations to topography within the species complexes Symphonia (Clusiaceae), and Eschweilera (Lecythidaceae) with three species per complex and 385 and 257 individuals genotyped, respectively. Within species complexes, closely related tree species had different realized optima for topographic niches defined through the topographic wetness index or the relative elevation, and species displayed genetic signatures of adaptations to these niches. Symphonia species were genetically differentiated along water and nutrient distribution particularly in genes responding to water deprivation, whereas Eschweilera species were genetically differentiated according to soil chemistry. Our results suggest that varied topography represents a powerful driver of processes modulating tropical forest biodiversity with differential adaptations that stabilize local coexistence of closely related tree species.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, Cirad, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana, France.,Univ. Bordeaux, INRAE, BIOGECO, 69 route d'Arcachon, 33610, Cestas, France
| | - Niklas Tysklind
- INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana, France
| | - Bruno Hérault
- CIRAD, UR Forêts et Sociétés, Yamoussoukro Côte d'Ivoire, France.,Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France.,Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro Côte d'Ivoire, France
| | - Myriam Heuertz
- Univ. Bordeaux, INRAE, BIOGECO, 69 route d'Arcachon, 33610, Cestas, France
| |
Collapse
|
4
|
Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG. Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree. Gigascience 2018; 7:1-16. [PMID: 29253216 PMCID: PMC5905499 DOI: 10.1093/gigascience/gix125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background Handroanthus impetiginosus (Mart. ex DC.) Mattos is a keystone Neotropical hardwood tree widely distributed in seasonally dry tropical forests of South and Mesoamerica. Regarded as the “new mahogany,” it is the second most expensive timber, the most logged species in Brazil, and currently under significant illegal trading pressure. The plant produces large amounts of quinoids, specialized metabolites with documented antitumorous and antibiotic effects. The development of genomic resources is needed to better understand and conserve the diversity of the species, to empower forensic identification of the origin of timber, and to identify genes for important metabolic compounds. Findings The genome assembly covers 503.7 Mb (N50 = 81 316 bp), 90.4% of the 557-Mbp genome, with 13 206 scaffolds. A repeat database with 1508 sequences was developed, allowing masking of ∼31% of the assembly. Depth of coverage indicated that consensus determination adequately removed haplotypes assembled separately due to the extensive heterozygosity of the species. Automatic gene prediction provided 31 688 structures and 35 479 messenger RNA transcripts, while external evidence supported a well-curated set of 28 603 high-confidence models (90% of total). Finally, we used the genomic sequence and the comprehensive gene content annotation to identify genes related to the production of specialized metabolites. Conclusions This genome assembly is the first well-curated resource for a Neotropical forest tree and the first one for a member of the Bignoniaceae family, opening exceptional opportunities to empower molecular, phytochemical, and breeding studies. This work should inspire the development of similar genomic resources for the largely neglected forest trees of the mega-diverse tropical biomes.
Collapse
Affiliation(s)
- Orzenil Bonfim Silva-Junior
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia - Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia - Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
| | - Evandro Novaes
- Escola de Agronomia, Universidade Federal de Goiás, CP 131. Goiânia, GO. 74001-970, Brazil
| | - Rosane G Collevatti
- Laboratório de Genética and Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Goiânia, GO. 74001-970, Brazil
| |
Collapse
|
5
|
Vanden Abeele S, Hardy OJ, Janssens SB. Isolation of microsatellite loci in the African tree species Staudtia kamerunensis (Myristicaceae) using high-throughput sequencing. Mol Biol Rep 2018; 45:1539-1544. [PMID: 30073590 DOI: 10.1007/s11033-018-4239-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Staudtia kamerunensis (Myristicaceae) or 'Niové' is an evergreen tree widespread in Central African moist forests. The bark and seeds are used in traditional medicine, yet the tree is mainly harvested for its high quality, multi-purpose timber. To facilitate sustainable harvesting and conservation of the species, we aim to develop microsatellite markers that can be used to study the mating system, gene flow, genetic diversity and population structure. Genomic DNA of S. kamerunensis was sequenced on an Illumina MiSeq platform, generating 195,720 paired-end reads with 3671 sequences containing microsatellites. Amplification tests resulted in the development of 16 highly polymorphic microsatellite loci of which 14 were tested in 183 individuals of S. kamerunensis from three populations. The number of detected alleles per locus ranged from 15 to 39 and the average observed and expected heterozygosity across loci and populations were Ho = 0.713 (0.14-0.97) and He = 0.879 (0.19-0.95) respectively. The high levels of polymorphism observed in the newly developed microsatellite markers demonstrate their usefulness to study gene flow, population structure and spatial distribution of genetic diversity in S. kamerunensis.
Collapse
Affiliation(s)
- Samuel Vanden Abeele
- Botanic Garden Meise, Nieuwelaan 38, 1860, Meise, Belgium. .,Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Olivier J Hardy
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, 1050, Brussels, Belgium
| | | |
Collapse
|
6
|
Torroba-Balmori P, Budde KB, Heer K, González-Martínez SC, Olsson S, Scotti-Saintagne C, Casalis M, Sonké B, Dick CW, Heuertz M. Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS One 2017; 12:e0182515. [PMID: 28771629 PMCID: PMC5542443 DOI: 10.1371/journal.pone.0182515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.
Collapse
Affiliation(s)
- Paloma Torroba-Balmori
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Palencia, Spain
| | | | - Katrin Heer
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
- Conservation Biology and Ecology, University of Marburg, Marburg, Germany
| | - Santiago C. González-Martínez
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Palencia, Spain
- UMR BIOGECO, INRA, University of Bordeaux, Cestas, France
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
| | | | | | - Bonaventure Sonké
- Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Christopher W. Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Smithsonian Tropical Research Institute, Republic of Panama
| | - Myriam Heuertz
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- UMR BIOGECO, INRA, University of Bordeaux, Cestas, France
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
7
|
Holliday JA, Aitken SN, Cooke JEK, Fady B, González-Martínez SC, Heuertz M, Jaramillo-Correa JP, Lexer C, Staton M, Whetten RW, Plomion C. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Mol Ecol 2017; 26:706-717. [PMID: 27997049 DOI: 10.1111/mec.13963] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
Abstract
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.
Collapse
Affiliation(s)
- Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 304 Cheatham Hall, Blacksburg, VA 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, 5-108 Centennial Centre for Interdisciplinary Science, Edmonton, AB T6G2E9, Canada
| | - Bruno Fady
- Mediterranean Forest Ecology (URFM), Institut National de la Recherche Agronomique (INRA), Domaine St Paul, Site Agroparc, 84914 Avignon, France
| | | | - Myriam Heuertz
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Juan-Pablo Jaramillo-Correa
- Institute of Ecology, Universidad Nacional Autonoma de Mexico (UNAM) Circuito Exterior s/n, Apartado Postal 70-275, 04510 Ciudad de México, Mexico City, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna Faculty of Life SciencesRennweg 14, Room 217, A-1030, Vienna, Austria
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 EJ Chapman Drive, Knoxville, TN 37996, USA
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University Jordan Hall Addition 5231, Raleigh, NC 27695, USA
| | - Christophe Plomion
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| |
Collapse
|