1
|
Ferrer Obiol J, Bounas A, Brambilla M, Lombardo G, Secomandi S, Paris JR, Iannucci A, Whiting JR, Formenti G, Bonisoli-Alquati A, Ficetola GF, Galimberti A, Balacco J, Batbayar N, Bragin AE, Caprioli M, Catry I, Cecere JG, Davaasuren B, De Pascalis F, Efrat R, Erciyas-Yavuz K, Gameiro J, Gradev G, Haase B, Katzner TE, Mountcastle J, Mikulic K, Morganti M, Pârâu LG, Rodríguez A, Sarà M, Toli EA, Tsiopelas N, Ciofi C, Gianfranceschi L, Jarvis ED, Olivieri A, Sotiropoulos K, Wink M, Trucchi E, Torroni A, Rubolini D. Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change. Nat Commun 2025; 16:3503. [PMID: 40221430 PMCID: PMC11993763 DOI: 10.1038/s41467-025-58617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Accurately predicting species' responses to anthropogenic climate change is hampered by limited knowledge of their spatiotemporal ecological and evolutionary dynamics. We combine landscape genomics, demographic reconstructions, and species distribution models to assess the eco-evolutionary responses to past climate fluctuations and to future climate of an Afro-Palaearctic migratory raptor, the lesser kestrel (Falco naumanni). We uncover two evolutionarily and ecologically distinct lineages (European and Asian), whose demographic history, evolutionary divergence, and historical distribution range were profoundly shaped by past climatic fluctuations. Using future climate projections, we find that the Asian lineage is at higher risk of range contraction, increased migration distance, climate maladaptation, and consequently greater extinction risk than the European lineage. Our results emphasise the importance of providing historical context as a baseline for understanding species' responses to contemporary climate change, and illustrate how incorporating intraspecific genetic variation improves the ecological realism of climate change vulnerability assessments.
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| | - Anastasios Bounas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Mattia Brambilla
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gianluca Lombardo
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Simona Secomandi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Josephine R Paris
- Dipartimento di Medicina clinica, Sanità pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, Coppito, Italy
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessio Iannucci
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | | | - Andrea Galimberti
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Jennifer Balacco
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Nyambayar Batbayar
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar, Mongolia
| | | | - Manuela Caprioli
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Inês Catry
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano dell'Emilia, Italy
| | | | - Federico De Pascalis
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano dell'Emilia, Italy
| | - Ron Efrat
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | | | - João Gameiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratorio Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratorio Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gradimir Gradev
- Green Balkans - Stara Zagora NGO, Stara Zagora, Bulgaria
- Department of Agroecology, Agricultural University - Plovdiv, Plovdiv, Bulgaria
| | - Bettina Haase
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | | | - Michelangelo Morganti
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Ricerca Sulle Acque (CNR-IRSA), Brugherio, Italy
| | - Liviu G Pârâu
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Airam Rodríguez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain
| | - Maurizio Sarà
- Dipartimento STEBICEF, Università degli Studi di Palermo, Palermo, Italy
| | - Elisavet-Aspasia Toli
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | | | - Claudio Ciofi
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | | | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Emiliano Trucchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
2
|
Lorenzana GP, Figueiró HV, Coutinho LL, Villela PMS, Eizirik E. Comparative assessment of genotyping-by-sequencing and whole-exome sequencing for estimating genetic diversity and geographic structure in small sample sizes: insights from wild jaguar populations. Genetica 2024; 152:133-144. [PMID: 39322785 DOI: 10.1007/s10709-024-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Biologists currently have an assortment of high-throughput sequencing techniques allowing the study of population dynamics in increasing detail. The utility of genetic estimates depends on their ability to recover meaningful approximations while filtering out noise produced by artifacts. In this study, we empirically compared the congruence of two reduced representation approaches (genotyping-by-sequencing, GBS, and whole-exome sequencing, WES) in estimating genetic diversity and population structure using SNP markers typed in a small number of wild jaguar (Panthera onca) samples from South America. Due to its targeted nature, WES allowed for a more straightforward reconstruction of loci compared to GBS, facilitating the identification of true polymorphisms across individuals. We therefore used WES-derived metrics as a benchmark against which GBS-derived indicators were compared, adjusting parameters for locus assembly and SNP filtering in the latter. We observed significant variation in SNP call rates across samples in GBS datasets, leading to a recurrent miscalling of heterozygous sites. This issue was further amplified by small sample sizes, ultimately impacting the consistency of summary statistics between genotyping methods. Recognizing that the genetic markers obtained from GBS and WES are intrinsically different due to varying evolutionary pressures, particularly selection, we consider that our empirical comparison offers valuable insights and highlights critical considerations for estimating population genetic attributes using reduced representation datasets. Our results emphasize the critical need for careful evaluation of missing data and stringent filtering to achieve reliable estimates of genetic diversity and differentiation in elusive wildlife species.
Collapse
Affiliation(s)
- Gustavo P Lorenzana
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil.
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA.
| | - Henrique V Figueiró
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, Brazil
| | | | - Priscilla M S Villela
- Centro de Genômica Funcional, ESALQ-USP, Piracicaba, Brazil
- EcoMol Consultoria e Projetos, Piracicaba, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Instituto Pró-Carnívoros, Atibaia, Brazil
| |
Collapse
|
3
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Bringloe TT, Bourret A, Cote D, Marie-Julie R, Herbig J, Robert D, Geoffroy M, Parent GJ. Genomic architecture and population structure of Boreogadus saida from Canadian waters. Sci Rep 2024; 14:19331. [PMID: 39164428 PMCID: PMC11336163 DOI: 10.1038/s41598-024-69782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
The polar cod, Boreogadus saida, is an abundant and ubiquitous forage fish and a crucial link in Arctic marine trophic dynamics. Our objective was to unravel layers of genomic structure in B. saida from Canadian waters, specifically screening for potential hybridization with the Arctic cod, Arctogadus glacialis, large chromosomal inversions, and sex-linked regions, prior to interpreting population structure. Our analysis of 53,384 SNPs in 522 individuals revealed hybridization and introgression between A. glacialis and B. saida. Subsequent population level analyses of B. saida using 12,305 SNPs in 511 individuals revealed three large (ca. 7.4-16.1 Mbp) chromosomal inversions, and a 2 Mbp region featuring sex-linked loci. We showcase population structuring across the Western and Eastern North American Arctic, and subarctic regions ranging from the Hudson Bay to the Canadian Atlantic maritime provinces. Genomic signal for the inferred population structure was highly aggregated into a handful of SNPs (13.8%), pointing to potentially important adaptive evolution across the Canadian range. Our study provides a high-resolution perspective on the genomic structure of B. saida, providing a foundation for work that could be expanded to the entire circumpolar range for the species.
Collapse
Affiliation(s)
- Trevor T Bringloe
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada.
| | - Audrey Bourret
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - David Cote
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, A0G 2M0, Canada
| | - Roux Marie-Julie
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - Jennifer Herbig
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, A1C 5R3, Canada
| | - Dominique Robert
- Institut Des Sciences de La Mer, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, A1C 5R3, Canada
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9036, Tromsø, Norway
| | - Geneviève J Parent
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada.
| |
Collapse
|
5
|
Schiebelhut LM, Guillaume AS, Kuhn A, Schweizer RM, Armstrong EE, Beaumont MA, Byrne M, Cosart T, Hand BK, Howard L, Mussmann SM, Narum SR, Rasteiro R, Rivera-Colón AG, Saarman N, Sethuraman A, Taylor HR, Thomas GWC, Wellenreuther M, Luikart G. Genomics and conservation: Guidance from training to analyses and applications. Mol Ecol Resour 2024; 24:e13893. [PMID: 37966259 DOI: 10.1111/1755-0998.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, California, USA
| | - Annie S Guillaume
- Geospatial Molecular Epidemiology group (GEOME), Laboratory for Biological Geochemistry (LGB), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arianna Kuhn
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Virginia Museum of Natural History, Martinsville, Virginia, USA
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Mark A Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Margaret Byrne
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Perth, Western Australia, Australia
| | - Ted Cosart
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| | - Brian K Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Leif Howard
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| | - Steven M Mussmann
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish & Wildlife Service, Dexter, New Mexico, USA
| | - Shawn R Narum
- Hagerman Genetics Lab, University of Idaho, Hagerman, Idaho, USA
| | - Rita Rasteiro
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Norah Saarman
- Department of Biology and Ecology Center, Utah State University, Logan, Utah, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Helen R Taylor
- Royal Zoological Society of Scotland, Edinburgh, Scotland
| | - Gregg W C Thomas
- Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Maren Wellenreuther
- Plant and Food Research, Nelson, New Zealand
- University of Auckland, Auckland, New Zealand
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Flathead Lake Biology Station, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
7
|
Babik W, Dudek K, Marszałek M, Palomar G, Antunes B, Sniegula S. The genomic response to urbanization in the damselfly Ischnura elegans. Evol Appl 2023; 16:1805-1818. [PMID: 38029064 PMCID: PMC10681423 DOI: 10.1111/eva.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
The complex and rapid environmental changes brought about by urbanization pose significant challenges to organisms. The multifaceted effects of urbanization often make it difficult to define and pinpoint the very nature of adaptive urban phenotypes. In such situations, scanning genomes for regions differentiated between urban and non-urban populations may be an attractive approach. Here, we investigated the genomic signatures of adaptation to urbanization in the damselfly Ischnura elegans sampled from 31 rural and urban localities in three geographic regions: southern and northern Poland, and southern Sweden. Genome-wide variation was assessed using more than 370,000 single nucleotide polymorphisms (SNPs) genotyped by ddRADseq. Associations between SNPs and the level of urbanization were tested using two genetic environment association methods: Latent Factors Mixed Models and BayPass. While we found numerous candidate SNPs and a highly significant overlap between candidates identified by the two methods within the geographic regions, there was a distinctive lack of repeatability between the geographic regions both at the level of individual SNPs and of genomic regions. However, we found "synapse organization" at the top of the functional categories enriched among the genes located in the proximity of the candidate urbanization SNPs. Interestingly, the overall significance of "synapse organization" was built up by the accretion of different genes associated with candidate SNPs in different geographic regions. This finding is consistent with the highly polygenic nature of adaptation, where the response may be achieved through a subtle adjustment of allele frequencies in different genes that contribute to adaptive phenotypes. Taken together, our results point to a polygenic adaptive response in the nervous system, specifically implicating genes involved in synapse organization, which mirrors the findings from several genomic and behavioral studies of adaptation to urbanization in other taxa.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - S. Sniegula
- Department of Ecosystem Conservation, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
8
|
Lavretsky P, Mohl JE, Söderquist P, Kraus RHS, Schummer ML, Brown JI. The meaning of wild: Genetic and adaptive consequences from large-scale releases of domestic mallards. Commun Biol 2023; 6:819. [PMID: 37543640 PMCID: PMC10404241 DOI: 10.1038/s42003-023-05170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
The translocation of individuals around the world is leading to rising incidences of anthropogenic hybridization, particularly between domestic and wild congeners. We apply a landscape genomics approach for thousands of mallard (Anas platyrhynchos) samples across continental and island populations to determine the result of over a century of supplementation practices. We establish that a single domestic game-farm mallard breed is the source for contemporary release programs in Eurasia and North America, as well as for established feral populations in New Zealand and Hawaii. In particular, we identify central Europe and eastern North America as epicenters of ongoing anthropogenic hybridization, and conclude that the release of game-farm mallards continues to affect the genetic integrity of wild mallards. Conversely, self-sustaining feral populations in New Zealand and Hawaii not only show strong differentiation from their original stock, but also signatures of local adaptation occurring in less than a half-century since game-farm mallard releases have ceased. We conclude that 'wild' is not singular, and that even feral populations are capable of responding to natural processes. Although considered paradoxical to biological conservation, understanding the capacity for wildness among feral and feral admixed populations in human landscapes is critical as such interactions increase in the Anthropocene.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA.
| | - Jonathon E Mohl
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA
| | - Pär Söderquist
- Faculty of Natural Sciences, Kristianstad University, SE- 291 88, Kristianstad, Sweden
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, 78315, Radolfzell, Germany
| | - Michael L Schummer
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Joshua I Brown
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA
| |
Collapse
|
9
|
Wit J, Workentine ML, Redman E, Laing R, Stevens L, Cotton JA, Chaudhry U, Ali Q, Andersen EC, Yeaman S, Wasmuth JD, Gilleard JS. Genomic signatures of selection associated with benzimidazole drug treatments in Haemonchus contortus field populations. Int J Parasitol 2022; 52:677-689. [PMID: 36113620 DOI: 10.1016/j.ijpara.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.
Collapse
Affiliation(s)
- Janneke Wit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | | | - Elizabeth Redman
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, UK
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Umer Chaudhry
- University of Edinburgh, Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Qasim Ali
- Department of Parasitology FVAS, University of Agriculture, D.I. Khan, Pakistan
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Liu K, Qi M, Du FK. Population and Landscape Genetics Provide Insights Into Species Conservation of Two Evergreen Oaks in Qinghai-Tibet Plateau and Adjacent Regions. FRONTIERS IN PLANT SCIENCE 2022; 13:858526. [PMID: 35665182 PMCID: PMC9161217 DOI: 10.3389/fpls.2022.858526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The combination of population and landscape genetics can facilitate the understanding of conservation strategy under the changing climate. Here, we focused on the two most diverse and ecologically important evergreen oaks: Quercus aquifolioides and Quercus spinosa in Qinghai-Tibetan Plateau (QTP), which is considered as world's biodiversity hotspot. We genotyped 1,657 individuals of 106 populations at 15 nuclear microsatellite loci throughout the species distribution range. Spatial patterns of genetic diversity were identified by mapping the allelic richness (AR) and locally common alleles (LCA) according to the circular neighborhood methodology. Migration routes from QTP were detected by historical gene flow estimation. The response pattern of genetic variation to environmental gradient was assessed by the genotype-environment association (GEA) analysis. The overall genetic structure showed a high level of intra-species genetic divergence of a strong west-east pattern. The West-to-East migration route indicated the complex demographic history of two oak species. We found evidence of isolation by the environment in Q. aqu-East and Q. spi-West lineage but not in Q. aqu-West and Q. spi-East lineage. Furthermore, priority for conservation should be given to populations that retain higher spatial genetic diversity or isolated at the edge of the distribution range. Our findings indicate that knowledge of spatial diversity and migration route can provide valuable information for the conservation of existing populations. This study provides an important guide for species conservation for two oak species by the integration of population and landscape genetic methods.
Collapse
Affiliation(s)
| | | | - Fang K. Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Conrady M, Lampei C, Bossdorf O, Durka W, Bucharova A. Evolution during seed production for ecological restoration? A molecular analysis of 19 species finds only minor genomic changes. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Malte Conrady
- Institute of Landscape Ecology University of Münster Münster Germany
- Department of Biology, Philipps‐University Marburg Marburg Germany
| | - Christian Lampei
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Institute of Evolution & Ecology; University of Tübingen; Tübingen; Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research ‐ UFZ; Halle; Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Anna Bucharova
- Institute of Landscape Ecology University of Münster Münster Germany
- Department of Biology, Philipps‐University Marburg Marburg Germany
| |
Collapse
|
12
|
Hu Y, Feng C, Yang L, Edger PP, Kang M. Genomic population structure and local adaptation of the wild strawberry Fragaria nilgerrensis. HORTICULTURE RESEARCH 2022; 9:uhab059. [PMID: 35043184 PMCID: PMC8993681 DOI: 10.1093/hr/uhab059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The crop wild relative, Fragaria nilgerrensis, is adapted to a variety of diverse habitats across its native range in China. Thus, discoveries made in this species could serve useful to guide the development of new superior strawberry cultivars that are resilient to new or variable environments. However, the genetic diversity and genetic architecture of traits in this species underlying important adaptive traits remain poorly understood. Here, we used whole-genome resequencing data from 193 F. nilgerrensis individuals spanning the distribution range in China to investigate the genetic diversity, population structure and the genomic basis of local adaptation. We identified four genetic groups, with the western group located in Hengduan Mountains exhibited the highest genetic diversity. Redundancy analysis suggests that both environment and geographic variables shaped a significant proportion of genomic variation. Our analyses revealed that the environmental difference explains more of the observed genetic variation than geographic distance. This suggests that adaptation to distinct habitats, unique combination of abiotic factors, likely drove genetic differentiation. Lastly, by implementing selective sweeps scans and genome-environment association analysis throughout the genome, we identified the genetic variation associated with local adaptation and investigated the functions of putative candidate genes in F. nilgerrensis.
Collapse
Affiliation(s)
- Yuxi Hu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
13
|
Feng L, Du FK. Landscape Genomics in Tree Conservation Under a Changing Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:822217. [PMID: 35283901 PMCID: PMC8908315 DOI: 10.3389/fpls.2022.822217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
Understanding the genetic basis of how species respond to changing environments is essential to the conservation of species. However, the molecular mechanisms of adaptation remain largely unknown for long-lived tree species which always have large population sizes, long generation time, and extensive gene flow. Recent advances in landscape genomics can reveal the signals of adaptive selection linking genetic variations and landscape characteristics and therefore have created novel insights into tree conservation strategies. In this review article, we first summarized the methods of landscape genomics used in tree conservation and elucidated the advantages and disadvantages of these methods. We then highlighted the newly developed method "Risk of Non-adaptedness," which can predict the genetic offset or genomic vulnerability of species via allele frequency change under multiple scenarios of climate change. Finally, we provided prospects concerning how our introduced approaches of landscape genomics can assist policymaking and improve the existing conservation strategies for tree species under the ongoing global changes.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Fang K. Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Fang K. Du,
| |
Collapse
|
14
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
15
|
Dong X, Yi W, Zheng C, Zhu X, Wang S, Xue H, Ye Z, Bu W. Species delimitation of rice seed bugs complex: Insights from mitochondrial genomes and ddRAD‐seq data. ZOOL SCR 2021. [DOI: 10.1111/zsc.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Dong
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Wenbo Yi
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Chenguang Zheng
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Xiuxiu Zhu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Shujing Wang
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Huaijun Xue
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Zhen Ye
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Wenjun Bu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
16
|
Gamboa MP, Ghalambor CK, Scott Sillett T, Morrison SA, Chris Funk W. Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. Mol Ecol 2021; 31:603-619. [PMID: 34704295 DOI: 10.1111/mec.16253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east-west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation-based and environmental association analyses coupled with genome-wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g., BMP, CaM, Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.
Collapse
Affiliation(s)
- Maybellene P Gamboa
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Burton AR, Gravem SA, Barreto FS. Little evidence for genetic variation associated with susceptibility to sea star wasting syndrome in the keystone species Pisaster ochraceus. Mol Ecol 2021; 31:197-205. [PMID: 34626020 DOI: 10.1111/mec.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
The keystone species Pisaster ochraceus suffered mass mortalities along the northeast Pacific Ocean from Sea Star Wasting Syndrome (SSWS) outbreaks in 2013-2016. SSWS causation remains of debate, leading to concerns as to whether outbreaks will continue to impact this species. Considering the apparent link between ocean temperature and SSWS, the future of this species and intertidal communities remains uncertain. Surveys of co-occurring apparently normal and wasting P. ochraceus along the central Oregon coast in 2016 allowed us to address whether variation in disease status showed genetic variation that may be associated with differences in susceptibility to SSWS. We performed restriction site-associated DNA sequencing (2bRAD-seq) to genotype ~72,000 single nucleotide polymorphism (SNP) loci across apparently normal and wasting sea stars. Locus-specific analyses of differentiation (FST ) between disease-status groups revealed no signal of genetic differences separating the two groups. Using a multivariate approach, we observed weak separation between the groups, but identified 18 SNP loci showing highest discriminatory power between the groups and scanned the genome annotation for linked genes. A total of 34 protein-coding genes were found to be located within 15 kb (measured by linkage disequilibrium decay) of at least one of the 18 SNPs, and 30 of these genes had homologies to annotated protein databases. Our results suggest that the likelihood of developing SSWS symptoms does not have a strong genetic basis. The few genomic regions highlighted had only modest levels of differentiation, but the genes associated with these regions may form the basis for functional studies aiming to understand disease progression.
Collapse
Affiliation(s)
- Andrea R Burton
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Sarah A Gravem
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
18
|
Hale MC, Campbell MA, McKinney GJ. A candidate chromosome inversion in Arctic charr (Salvelinus alpinus) identified by population genetic analysis techniques. G3 (BETHESDA, MD.) 2021; 11:jkab267. [PMID: 34568922 PMCID: PMC8473973 DOI: 10.1093/g3journal/jkab267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022]
Abstract
The "genomics era" has allowed questions to be asked about genome organization and genome architecture of non-model species at a rate not previously seen. Analyses of these genome-wide datasets have documented many examples of novel structural variants (SVs) such as chromosomal inversions, copy number variants, and chromosomal translocations, many of which have been linked to adaptation. The salmonids are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture and fisheries. However, the number of documented SVs in salmonids is surprisingly low and is most likely due to removing loci in high linkage disequilibrium when analyzing structure and gene flow. Here we re-analyze RAD-seq data from several populations of Arctic charr (Salvelinus alpinus) and document a novel ∼1.2 MB SV at the distal end of LG12. This variant contains 15 protein-coding genes connected to a wide-range of functions including cell adhesion and signal transduction. Interestingly, we studied the frequency of this polymorphism in four disjointed populations of charr-one each from Nunavut, Newfoundland, Eastern Russia, and Scotland-and found evidence of the variant only in Nunavut, Canada, suggesting the polymorphism is novel and recently evolved.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Garrett J McKinney
- National Research Council Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| |
Collapse
|
19
|
Lou RN, Jacobs A, Wilder A, Therkildsen NO. A beginner's guide to low-coverage whole genome sequencing for population genomics. Mol Ecol 2021; 30:5966-5993. [PMID: 34250668 DOI: 10.1111/mec.16077] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
Low-coverage whole genome sequencing (lcWGS) has emerged as a powerful and cost-effective approach for population genomic studies in both model and non-model species. However, with read depths too low to confidently call individual genotypes, lcWGS requires specialized analysis tools that explicitly account for genotype uncertainty. A growing number of such tools have become available, but it can be difficult to get an overview of what types of analyses can be performed reliably with lcWGS data, and how the distribution of sequencing effort between the number of samples analyzed and per-sample sequencing depths affects inference accuracy. In this introductory guide to lcWGS, we first illustrate how the per-sample cost for lcWGS is now comparable to RAD-seq and Pool-seq in many systems. We then provide an overview of software packages that explicitly account for genotype uncertainty in different types of population genomic inference. Next, we use both simulated and empirical data to assess the accuracy of allele frequency and genetic diversity estimation, detection of population structure, and selection scans under different sequencing strategies. Our results show that spreading a given amount of sequencing effort across more samples with lower depth per sample consistently improves the accuracy of most types of inference, with a few notable exceptions. Finally, we assess the potential for using imputation to bolster inference from lcWGS data in non-model species, and discuss current limitations and future perspectives for lcWGS-based population genomics research. With this overview, we hope to make lcWGS more approachable and stimulate its broader adoption.
Collapse
Affiliation(s)
- Runyang Nicolas Lou
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Arne Jacobs
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Aryn Wilder
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, USA
| | - Nina O Therkildsen
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
20
|
Farleigh K, Vladimirova SA, Blair C, Bracken JT, Koochekian N, Schield DR, Card DC, Finger N, Henault J, Leaché AD, Castoe TA, Jezkova T. The effects of climate and demographic history in shaping genomic variation across populations of the Desert Horned Lizard (Phrynosoma platyrhinos). Mol Ecol 2021; 30:4481-4496. [PMID: 34245067 DOI: 10.1111/mec.16070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large-scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post-glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.
Collapse
Affiliation(s)
- Keaka Farleigh
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, New York, USA.,Biology PhD Program, CUNY Graduate Center, New York, New York, USA
| | | | | | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas Finger
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, New York, USA
| | | | - Adam D Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| |
Collapse
|
21
|
Jahner JP, Parchman TL, Matocq MD. Multigenerational backcrossing and introgression between two woodrat species at an abrupt ecological transition. Mol Ecol 2021; 30:4245-4258. [PMID: 34219316 DOI: 10.1111/mec.16056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
When organisms experience secondary contact after allopatric divergence, genomic regions can introgress differentially depending on their relationships with adaptation, reproductive isolation, recombination, and drift. Analyses of genome-wide patterns of divergence and introgression could provide insight into the outcomes of hybridization and the potential relationship between allopatric divergence and reproductive isolation. Here, we generate population genetic data (26,262 SNPs; 353 individuals) using a reduced-representation sequencing approach to quantify patterns of ancestry, differentiation, and introgression between a pair of ecologically distinct mammals-the desert woodrat (N. lepida) and Bryant's woodrat (N. bryanti)-that hybridize at a sharp ecotone in southern California. Individual ancestry estimates confirmed that hybrids were rare in this bimodal hybrid zone, and entirely consisted of a few F1 individuals and a broad range of multigenerational backcrosses. Genomic cline analyses indicated more than half of loci had elevated introgression from one genomic background into the other. However, introgression was not associated with relative or absolute measures of divergence, and loci with extreme values for both were not typically found near detoxification enzymes previously implicated in dietary specialization for woodrats. The decoupling of differentiation and introgression suggests that processes other than adaptation, such as drift, may underlie the extreme clines at this contact zone.
Collapse
Affiliation(s)
- Joshua P Jahner
- Department of Biology, University of Nevada, Reno, Nevada, USA.,Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Thomas L Parchman
- Department of Biology, University of Nevada, Reno, Nevada, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | - Marjorie D Matocq
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA.,Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
22
|
Pabis K, Chiari Y, Sala C, Straka E, Giacconi R, Provinciali M, Li X, Brown-Borg H, Nowikovsky K, Valencak TG, Gundacker C, Garagnani P, Malavolta M. Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience 2021; 43:1975-1993. [PMID: 34117600 DOI: 10.1007/s11357-021-00393-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear. Specifically, we do not know if long-lived species evolved an efficient metal stress response by upregulating their MT levels to reduce the toxic effects of environmental pollutants, such as Cd, that accumulate over their longer life span. It is also unknown if the number of MT genes, their expression, or both protect the organisms from potentially damaging effects during aging. To address these questions, we reanalyzed several cross-species studies and obtained data on MT expression and Cd accumulation in long-lived mouse models. We confirmed a relationship between species maximum life span in captive mammals and their Cd content in liver and kidney. We found that although the number of MT genes does not affect longevity, gene expression and protein amount of specific MT paralogs are strongly related to life span in mammals. MT expression rather than gene number may influence the high Cd levels and longevity of some species. In support of this, we found that overexpression of MT-1 accelerated Cd accumulation in mice and that tissue Cd was higher in long-lived mouse strains with high MT expression. We conclude that long-lived species have evolved a more efficient stress response by upregulating the expression of MT genes in presence of Cd, which contributes to elevated tissue Cd levels.
Collapse
Affiliation(s)
- Kamil Pabis
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, 40126, Bologna, Italy
| | - Elisabeth Straka
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Holly Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Teresa G Valencak
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
23
|
Marques DA, Lucek K, Sousa VC, Excoffier L, Seehausen O. Reply to "Re-evaluating the evidence for facilitation of stickleback speciation by admixture in the Lake Constance basin". Nat Commun 2021; 12:2807. [PMID: 33990586 PMCID: PMC8121787 DOI: 10.1038/s41467-021-23096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- David A Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Laurent Excoffier
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland. .,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.
| |
Collapse
|
24
|
Denlinger DS, Hudson SB, Keweshan NS, Gompert Z, Bernhardt SA. Standing genetic variation in laboratory populations of insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) for the evolution of resistance. Evol Appl 2021; 14:1248-1262. [PMID: 34025765 PMCID: PMC8127718 DOI: 10.1111/eva.13194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/02/2023] Open
Abstract
Insecticides can exert strong selection on insect pest species, including those that vector diseases, and have led to rapid evolution of resistance. Despite such rapid evolution, relatively little is known about standing genetic variation for resistance in insecticide-susceptible populations of many species. To help fill this knowledge gap, we generated genotyping-by-sequencing data from insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis sand flies that survived or died from a sub-diagnostic exposure to either permethrin or malathion using a modified version of the Centers for Disease Control and Prevention bottle bioassay. Multi-locus genome-wide association mapping methods were used to quantify standing genetic variation for insecticide resistance in these populations and to identify specific alleles associated with insecticide survival. For each insecticide treatment, we estimated the proportion of the variation in survival explained by the genetic data (i.e., "chip" heritability) and the number and contribution of individual loci with measurable effects. For all treatments, survival to an insecticide exposure was heritable with a polygenic architecture. Both P. papatasi and L. longipalpis had alleles for survival that resided within many genes throughout their genomes. The implications for resistance conferred by many alleles, as well as inferences made about the utility of laboratory insecticide resistance association studies compared to field observations, are discussed.
Collapse
|
25
|
Schweizer RM, Saarman N, Ramstad KM, Forester BR, Kelley JL, Hand BK, Malison RL, Ackiss AS, Watsa M, Nelson TC, Beja-Pereira A, Waples RS, Funk WC, Luikart G. Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. J Hered 2021; 112:313-327. [PMID: 33860294 DOI: 10.1093/jhered/esab019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Norah Saarman
- Department of Biology, Utah State University, Logan, UT
| | - Kristina M Ramstad
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Brian K Hand
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Rachel L Malison
- Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Amanda S Ackiss
- Wisconsin Cooperative Fishery Research Unit, University of Wisconsin Stevens Point, Stevens Point, WI
| | | | | | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), InBIO, Universidade do Porto, Vairão, Portugal.,DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Faculty of Sciences, University of Porto, Porto, Portugal
| | - Robin S Waples
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| |
Collapse
|
26
|
Andrews KR, Epstein B, Leslie MS, Fiedler P, Morin PA, Hoelzel AR. Genomic signatures of divergent selection are associated with social behaviour for spinner dolphin ecotypes. Mol Ecol 2021; 30:1993-2008. [PMID: 33645853 DOI: 10.1111/mec.15865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Understanding the genomic basis of adaptation is critical for understanding evolutionary processes and predicting how species will respond to environmental change. Spinner dolphins in the eastern tropical Pacific (ETP) present a unique system for studying adaptation. Within this large geographical region are four spinner dolphin ecotypes with weak neutral genetic divergence and no obvious barriers to gene flow, but strong spatial variation in morphology, behaviour and habitat. These ecotypes have large population sizes, which could reduce the effects of drift and facilitate selection. To identify genomic regions putatively under divergent selective pressures between ecotypes, we used genome scans with 8994 RADseq single nucleotide polymorphisms (SNPs) to identify population differentiation outliers and genotype-environment association outliers. Gene ontology enrichment analyses indicated that outlier SNPs from both types of analyses were associated with multiple genes involved in social behaviour and hippocampus development, including 15 genes associated with the human social disorder autism. Evidence for divergent selection on social behaviour is supported by previous evidence that these spinner dolphin ecotypes differ in mating systems and associated social behaviours. In particular, three of the ETP ecotypes probably have a polygynous mating system characterized by strong premating competition among males, whereas the fourth ecotype probably has a polygynandrous mating system characterized by strong postmating competition such as sperm competition. Our results provide evidence that selection for social behaviour may be an evolutionary force driving diversification of spinner dolphins in the ETP, potentially as a result of divergent sexual selection associated with different mating systems. Future studies should further investigate the potential adaptive role of the candidate genes identified here, and could probably find further signatures of selection using whole genome sequence data.
Collapse
Affiliation(s)
- Kimberly R Andrews
- School of Biosciences, Durham University, Durham, UK.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Brendan Epstein
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Paul Fiedler
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - A Rus Hoelzel
- School of Biosciences, Durham University, Durham, UK
| |
Collapse
|
27
|
Magalhaes IS, Whiting JR, D'Agostino D, Hohenlohe PA, Mahmud M, Bell MA, Skúlason S, MacColl ADC. Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nat Ecol Evol 2021; 5:251-261. [PMID: 33257817 PMCID: PMC7858233 DOI: 10.1038/s41559-020-01341-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Parallelism, the evolution of similar traits in populations diversifying in similar conditions, provides strong evidence of adaptation by natural selection. Many studies of parallelism focus on comparisons of different ecotypes or contrasting environments, defined a priori, which could upwardly bias the apparent prevalence of parallelism. Here, we estimated genomic parallelism associated with components of environmental and phenotypic variation at an intercontinental scale across four freshwater adaptive radiations (Alaska, British Columbia, Iceland and Scotland) of the three-spined stickleback (Gasterosteus aculeatus). We combined large-scale biological sampling and phenotyping with restriction site associated DNA sequencing (RAD-Seq) data from 73 freshwater lake populations and four marine ones (1,380 fish) to associate genome-wide allele frequencies with continuous distributions of environmental and phenotypic variation. Our three main findings demonstrate that (1) quantitative variation in phenotypes and environments can predict genomic parallelism; (2) genomic parallelism at the early stages of adaptive radiations, even at large geographic scales, is founded on standing variation; and (3) similar environments are a better predictor of genome-wide parallelism than similar phenotypes. Overall, this study validates the importance and predictive power of major phenotypic and environmental factors likely to influence the emergence of common patterns of genomic divergence, providing a clearer picture than analyses of dichotomous phenotypes and environments.
Collapse
Affiliation(s)
- Isabel S Magalhaes
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
- Department of Life Sciences, Whitelands College, University of Roehampton, London, UK.
| | - James R Whiting
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, London, UK.
| | - Daniele D'Agostino
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Muayad Mahmud
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
- Erbil Polytechnic University, Kurdistan Region, Iraq
| | - Michael A Bell
- Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
- Icelandic Museum of Natural History, Suðurlandsbraut, Reykjavík, Iceland
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
28
|
Klingler KB, Jahner JP, Parchman TL, Ray C, Peacock MM. Genomic variation in the American pika: signatures of geographic isolation and implications for conservation. BMC Ecol Evol 2021; 21:2. [PMID: 33514306 PMCID: PMC7853312 DOI: 10.1186/s12862-020-01739-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023] Open
Abstract
Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.
Collapse
Affiliation(s)
| | - Joshua P Jahner
- Department of Biology, University of Nevada, Reno, 89557, USA
| | - Thomas L Parchman
- Department of Biology, University of Nevada, Reno, 89557, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Chris Ray
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Mary M Peacock
- Department of Biology, University of Nevada, Reno, 89557, USA. .,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
29
|
Shryock DF, Washburn LK, DeFalco LA, Esque TC. Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. Mol Ecol 2021; 30:698-717. [PMID: 33007116 DOI: 10.1111/mec.15672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Local adaptation features critically in shaping species responses to changing environments, complicating efforts to revegetate degraded areas. Rapid climate change poses an additional challenge that could reduce fitness of even locally sourced seeds in restoration. Predictive restoration strategies that apply seeds with favourable adaptations to future climate may promote long-term resilience. Landscape genomics is increasingly used to assess spatial patterns in local adaption and may represent a cost-efficient approach for identifying future-adapted genotypes. To demonstrate such an approach, we genotyped 760 plants from 64 Mojave Desert populations of the desert annual Plantago ovata. Genome scans on 5,960 SNPs identified 184 potentially adaptive loci related to climate and satellite vegetation metrics. Causal modelling indicated that variation in potentially adaptive loci was not confounded by isolation by distance or isolation by habitat resistance. A generalized dissimilarity model (GDM) attributed spatial turnover in potentially adaptive loci to temperature, precipitation and NDVI amplitude, a measure of vegetation green-up potential. By integrating a species distribution model (SDM), we find evidence that summer maximum temperature may both constrain the range of P. ovata and drive adaptive divergence in populations exposed to higher temperatures. Within the species' current range, warm-adapted genotypes are predicted to experience a fivefold expansion in climate niche by midcentury and could harbour key adaptations to cope with future climate. We recommend eight seed transfer zones and project each zone into its relative position in future climate. Prioritizing seed collection efforts on genotypes with expanding future habitat represents a promising strategy for restoration practitioners to address rapidly changing climates.
Collapse
Affiliation(s)
- Daniel F Shryock
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | | | - Lesley A DeFalco
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| | - Todd C Esque
- U.S. Geological Survey, Western Ecological Research Center, Henderson, NV, USA
| |
Collapse
|
30
|
Nyinondi CS, Mtolera MSP, Mmochi AJ, Lopes Pinto FA, Houston RD, de Koning DJ, Palaiokostas C. Assessing the genetic diversity of farmed and wild Rufiji tilapia ( Oreochromis urolepis urolepis) populations using ddRAD sequencing. Ecol Evol 2020; 10:10044-10056. [PMID: 33005362 PMCID: PMC7520224 DOI: 10.1002/ece3.6664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Rufiji tilapia (Oreochromis urolepis urolepis) is an endemic cichlid in Tanzania. In addition to its importance for biodiversity conservation, Rufiji tilapia is also attractive for farming due to its high growth rate, salinity tolerance, and the production of all-male hybrids when crossed with Nile tilapia (Oreochromis niloticus). The aim of the current study was to assess the genetic diversity and population structure of both wild and farmed Rufiji tilapia populations in order to inform conservation and aquaculture practices. Double-digest restriction-site-associated DNA (ddRAD) libraries were constructed from 195 animals originating from eight wild (Nyamisati, Utete, Mansi, Mindu, Wami, Ruaha, Kibasira, and Kilola) and two farmed (Bwawani and Chemchem) populations. The identified single nucleotide polymorphisms (SNPs; n = 2,182) were used to investigate the genetic variation within and among the studied populations. Genetic distance estimates (F st) were low among populations from neighboring locations, with the exception of Utete and Chemchem populations (F st = 0.34). Isolation-by-distance (IBD) analysis among the wild populations did not detect any significant correlation signal (r = .05; p-value = .4) between the genetic distance and the sampling (Euclidean distance) locations. Population structure and putative ancestry were further investigated using both Bayesian (Structure) and multivariate approaches (discriminant analysis of principal components). Both analysis indicated the existence of three distinct genetic clusters. Two cross-validation scenarios were conducted in order to test the efficiency of the SNP dataset for discriminating between farmed and wild animals or predicting the population of origin. Approximately 95% of the test dataset was correctly classified in the first scenario, while in the case of predicting for the population of origin 68% of the test dataset was correctly classified. Overall, our results provide novel insights regarding the population structure of Rufiji tilapia and a new database of informative SNP markers for both conservation management and aquaculture activities.
Collapse
Affiliation(s)
- Christer S. Nyinondi
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- Institute of Marine SciencesUniversity of Dar es SalaamZanzibarTanzania
| | | | - Aviti J. Mmochi
- Institute of Marine SciencesUniversity of Dar es SalaamZanzibarTanzania
| | - Fernando A. Lopes Pinto
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Dirk J. de Koning
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Christos Palaiokostas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| |
Collapse
|
31
|
Wright BR, Farquharson KA, McLennan EA, Belov K, Hogg CJ, Grueber CE. A demonstration of conservation genomics for threatened species management. Mol Ecol Resour 2020; 20:1526-1541. [DOI: 10.1111/1755-0998.13211] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Belinda R. Wright
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Elspeth A. McLennan
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Katherine Belov
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
- San Diego Zoo Global San Diego CA USA
| |
Collapse
|
32
|
Maselko J, Andrews KR, Hohenlohe PA. Long-lived marine species may be resilient to environmental variability through a temporal portfolio effect. Ecol Evol 2020; 10:6435-6448. [PMID: 32724524 PMCID: PMC7381576 DOI: 10.1002/ece3.6378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 12/02/2022] Open
Abstract
Maintenance of genetic variation may provide resilience of populations to natural environmental variability. We used Pacific ocean perch (POP; Sebastes alutus) to test for the maintenance of adaptive variation across overlapping generations. POP are a long-lived species characterized by widespread larval dispersal in their first year and a longevity of over 100 years. In order to understand how early marine dispersal affects POP survival and population structure, we used restriction site-associated DNA sequencing (RADseq) to obtain 11,146 single-nucleotide polymorphisms (SNPs) from 401 young-of-the-year (YOY) POP collected during surveys conducted in 2014 (19 stations) and 2015 (4 stations) in the eastern Gulf of Alaska. Population clustering analysis showed that the POP samples represented four distinct ancestral populations mixed throughout the sampling area. Based on prior work on larval dispersal of POP, these larvae are most likely from distinct parturition locations that are mixing during their pelagic dispersal life stage. Latent factor mixed models revealed that POP larvae face significant selection during their first year at sea, which is specific to the year of their birth. Thus each adult cohort's genetic composition is heavily influenced by the environmental conditions experienced during their first year at sea. Long-lived species relying on broadcast spawning strategies may therefore be uniquely resilient to environmental variability by maintaining a portfolio of cohort-specific adaptive genotypes, and age truncation due to overfishing of older cohorts may have detrimental effect on the population viability.
Collapse
Affiliation(s)
- Jacek Maselko
- College of Science, Bioinformatics and Computational Biology ProgramUniversity of IdahoMoscowIDUSA
- Alaska Fisheries Science CenterNOAANational Marine Fisheries ServiceJuneauAKUSA
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIDUSA
| | - Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIDUSA
- Department of Biological SciencesInstitute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIDUSA
| |
Collapse
|
33
|
Carvalho CS, Forester BR, Mitre SK, Alves R, Imperatriz-Fonseca VL, Ramos SJ, Resende-Moreira LC, Siqueira JO, Trevelin LC, Caldeira CF, Gastauer M, Jaffé R. Combining genotype, phenotype, and environmental data to delineate site-adjusted provenance strategies for ecological restoration. Mol Ecol Resour 2020; 21:44-58. [PMID: 32419278 DOI: 10.1111/1755-0998.13191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Despite the importance of climate-adjusted provenancing to mitigate the effects of environmental change, climatic considerations alone are insufficient when restoring highly degraded sites. Here we propose a comprehensive landscape genomic approach to assist the restoration of moderately disturbed and highly degraded sites. To illustrate it we employ genomic data sets comprising thousands of single nucleotide polymorphisms from two plant species suitable for the restoration of iron-rich Amazonian Savannas. We first use a subset of neutral loci to assess genetic structure and determine the genetic neighbourhood size. We then identify genotype-phenotype-environment associations, map adaptive genetic variation, and predict adaptive genotypes for restoration sites. Whereas local provenances were found optimal to restore a moderately disturbed site, a mixture of genotypes seemed the most promising strategy to recover a highly degraded mining site. We discuss how our results can help define site-adjusted provenancing strategies, and argue that our methods can be more broadly applied to assist other restoration initiatives.
Collapse
Affiliation(s)
- Carolina S Carvalho
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - José O Siqueira
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Ecologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Rivera-Colón AG, Rochette NC, Catchen JM. Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data. Mol Ecol Resour 2020; 21:363-378. [PMID: 32275349 DOI: 10.1111/1755-0998.13163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
Restriction-site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large-scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often-complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population-level variation.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Nicolas C Rochette
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Julian M Catchen
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
35
|
Jia K, Zhao W, Maier PA, Hu X, Jin Y, Zhou S, Jiao S, El‐Kassaby YA, Wang T, Wang X, Mao J. Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evol Appl 2020; 13:665-676. [PMID: 32211059 PMCID: PMC7086053 DOI: 10.1111/eva.12891] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
Understanding and quantifying populations' adaptive genetic variation and their response to climate change are critical to reforestation's seed source selection, forest management decisions, and gene conservation. Landscape genomics combined with geographic and environmental information provide an opportunity to interrogate forest populations' genome-wide variation for understanding the extent to which evolutionary forces shape past and contemporary populations' genetic structure, and identify those populations that may be most at risk under future climate change. Here, we used genotyping by sequencing to generate over 11,000 high-quality variants from Platycladus orientalis range-wide collection to evaluate its diversity and to predict genetic offset under future climate scenarios. Platycladus orientalis is a widespread conifer in China with significant ecological, timber, and medicinal values. We found population structure and evidences of isolation by environment, indicative of adaptation to local conditions. Gradient forest modeling identified temperature-related variables as the most important environmental factors influencing genetic variation and predicted areas with higher risk under future climate change. This study provides an important reference for forest resource management and conservation for P. orientalis.
Collapse
Affiliation(s)
- Kai‐Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | | | - Xian‐Ge Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuqing Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shan‐Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Si‐Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yousry A El‐Kassaby
- Department of Forest and Conservation SciencesFaculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Tongli Wang
- Department of Forest and Conservation SciencesFaculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Xiao‐Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Department of Ecology and Environmental ScienceUPSCUmeå UniversityUmeåSweden
| | - Jian‐Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingKey Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
36
|
Marrano A, Palmer AE, Moyers BT. Stacking up RADSeq assembly programs: From complete hit to completely abysmal. Mol Ecol Resour 2020; 20:357-359. [PMID: 32012467 DOI: 10.1111/1755-0998.13140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/06/2020] [Accepted: 01/30/2020] [Indexed: 11/29/2022]
Abstract
Decreasing sequencing costs have driven a rapid expansion of novel genotyping methods. One of these methods is the exploitation of restriction enzyme cut sites to generate genome-wide but reduced representation sequencing libraries (RRLs), alternatively termed genotyping by sequencing or restriction-site associated DNA sequencing. Without a reference genome, the resulting short sequence reads must be assembled de novo. There are many possible assembly programs, most not explicitly developed for RRL data, and we know little of their effectiveness. In this issue of Molecular Ecology Resources, LaCava et al. (2020) systematically evaluate six commonly used programs and two commonly varied parameters for complete and accurate assembly of RRLs, using simulated double digests of Homo sapiens and Arabidopsis thaliana genomes with varied mutation rates and types. The authors find substantial variation in performance across assembly programs. The most consistently high-performing assembler is infrequently used in their literature survey (CD-HIT; Li and Godzik, 2006), while several others fail to produce complete, accurate assemblies under many conditions. LaCava et al. additionally recommend best practices in parameter choice and evaluation of future assembly programs-advice that molecular ecologists working to assemble sequences of all kinds should take to heart.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Alice E Palmer
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Brook T Moyers
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
37
|
Phelps MP, Seeb LW, Seeb JE. Transforming ecology and conservation biology through genome editing. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:54-65. [PMID: 30693970 DOI: 10.1111/cobi.13292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/23/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
As the conservation challenges increase, new approaches are needed to help combat losses in biodiversity and slow or reverse the decline of threatened species. Genome-editing technology is changing the face of modern biology, facilitating applications that were unimaginable only a decade ago. The technology has the potential to make significant contributions to the fields of evolutionary biology, ecology, and conservation, yet the fear of unintended consequences from designer ecosystems containing engineered organisms has stifled innovation. To overcome this gap in the understanding of what genome editing is and what its capabilities are, more research is needed to translate genome-editing discoveries into tools for ecological research. Emerging and future genome-editing technologies include new clustered regularly interspaced short palindromic repeats (CRISPR) targeted sequencing and nucleic acid detection approaches as well as species genetic barcoding and somatic genome-editing technologies. These genome-editing tools have the potential to transform the environmental sciences by providing new noninvasive methods for monitoring threatened species or for enhancing critical adaptive traits. A pioneering effort by the conservation community is required to apply these technologies to real-world conservation problems.
Collapse
Affiliation(s)
- Michael P Phelps
- Department of Pathology, University of Washington, Box 357705, Seattle, WA, 98195, U.S.A
| | - Lisa W Seeb
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, 98195, U.S.A
| | - James E Seeb
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, 98195, U.S.A
| |
Collapse
|
38
|
LaCava MEF, Aikens EO, Megna LC, Randolph G, Hubbard C, Buerkle CA. Accuracy of de novo assembly of DNA sequences from double-digest libraries varies substantially among software. Mol Ecol Resour 2019; 20:360-370. [PMID: 31665547 DOI: 10.1111/1755-0998.13108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022]
Abstract
Advances in DNA sequencing have made it feasible to gather genomic data for non-model organisms and large sets of individuals, often using methods for sequencing subsets of the genome. Several of these methods sequence DNA associated with endonuclease restriction sites (various RAD and GBS methods). For use in taxa without a reference genome, these methods rely on de novo assembly of fragments in the sequencing library. Many of the software options available for this application were originally developed for other assembly types and we do not know their accuracy for reduced representation libraries. To address this important knowledge gap, we simulated data from the Arabidopsis thaliana and Homo sapiens genomes and compared de novo assemblies by six software programs that are commonly used or promising for this purpose (ABySS, CD-HIT, Stacks, Stacks2, Velvet and VSEARCH). We simulated different mutation rates and types of mutations, and then applied the six assemblers to the simulated data sets, varying assembly parameters. We found substantial variation in software performance across simulations and parameter settings. ABySS failed to recover any true genome fragments, and Velvet and VSEARCH performed poorly for most simulations. Stacks and Stacks2 produced accurate assemblies of simulations containing SNPs, but the addition of insertion and deletion mutations decreased their performance. CD-HIT was the only assembler that consistently recovered a high proportion of true genome fragments. Here, we demonstrate the substantial difference in the accuracy of assemblies from different software programs and the importance of comparing assemblies that result from different parameter settings.
Collapse
Affiliation(s)
- Melanie E F LaCava
- Program in Ecology, University of Wyoming, Laramie, WY, USA.,Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Ellen O Aikens
- Program in Ecology, University of Wyoming, Laramie, WY, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Libby C Megna
- Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Gregg Randolph
- Genome Technologies Lab, University of Wyoming, Laramie, WY, USA
| | - Charley Hubbard
- Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA
| | - C Alex Buerkle
- Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Botany, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
39
|
Mynhardt S, Bennett NC, Bloomer P. New insights from RADseq data on differentiation in the Hottentot golden mole species complex from South Africa. Mol Phylogenet Evol 2019; 143:106667. [PMID: 31676418 DOI: 10.1016/j.ympev.2019.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Golden moles (Family Chrysochloridae) are small subterranean mammals, endemic to sub-Saharan Africa, and many of the 21 species are listed as threatened on the IUCN Red List. Most species have highly restricted ranges; however two species, the Hottentot golden mole (Amblysomus hottentotus) and the Cape golden mole (Chrysochloris asiatica) have relatively wide ranges. We recently uncovered cryptic diversity within A. hottentotus, through a phylogeographic analysis of this taxon using two mitochondrial gene regions and a nuclear intron. To further investigate this cryptic diversity, we generated nuclear SNP data from across the genome of A. hottentotus, by means of double-digest restriction-site associated DNA sequencing (ddRADSeq), and mapped reads to the Cape golden mole genome. We conducted a phylogenetic analysis and investigated population differentiation. Our results support the distinctiveness of A. h. meesteri. Furthermore, we provide evidence from nuclear SNPs in support of our previous finding that Central coastal samples represent a unique cryptic lineage that is highly divergent from A. h. pondoliae farther south. Although mtDNA suggests that Umtata may represent a unique lineage sister to A. h. longiceps, mito-nuclear discordance from our RADseq data indicate that these samples may instead be closer to A. h. pondoliae, and therefore may not represent a distinct lineage. We stress the importance of recognizing that understudied populations, such as that of Umtata, may represent populations or ESUs under threat and in need of conservation attention. We present a high-quality filtered SNP dataset, comprising thousands of SNPs, which may serve as a useful resource for future golden mole studies. We have thus added to the growing body of research demonstrating the power and utility of RADseq to investigate population differentiation.
Collapse
Affiliation(s)
- Samantha Mynhardt
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
40
|
Benjelloun B, Boyer F, Streeter I, Zamani W, Engelen S, Alberti A, Alberto FJ, BenBati M, Ibnelbachyr M, Chentouf M, Bechchari A, Rezaei HR, Naderi S, Stella A, Chikhi A, Clarke L, Kijas J, Flicek P, Taberlet P, Pompanon F. An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Mol Ecol Resour 2019; 19:1497-1515. [PMID: 31359622 PMCID: PMC7115901 DOI: 10.1111/1755-0998.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic parameters, demographic processes, and selection signatures. However, WGS may still be not affordable for a representative number of individuals/populations. In this context, our goal was to assess the efficiency of several SNP genotyping strategies by testing their ability to accurately estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 110 WGS at 12× coverage for four different species, i.e., sheep, goats and their wild counterparts. From these data we generated 946 data sets corresponding to random panels of 1K to 5M variants, commercial SNP chips and exome capture, for sample sizes of five to 48 individuals. We also extracted low-coverage genome resequencing of 1×, 2× and 5× by randomly subsampling reads from the 12× resequencing data. Globally, 5K to 10K random variants were enough for an accurate estimation of genome diversity. Conversely, commercial panels and exome capture displayed strong ascertainment biases. Besides the characterization of neutral diversity, the detection of the signature of selection and the accurate estimation of linkage disequilibrium (LD) required high-density panels of at least 1M variants. Finally, genotype likelihoods increased the quality of variant calling from low coverage resequencing but proportions of incorrect genotypes remained substantial, especially for heterozygote sites. Whole genome resequencing coverage of at least 5× appeared to be necessary for accurate assessment of genomic variations. These results have implications for studies seeking to deploy low-density SNP collections or genome scans across genetically diverse populations/species showing similar genetic characteristics and patterns of LD decay for a wide variety of purposes.
Collapse
Affiliation(s)
- Badr Benjelloun
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Frédéric Boyer
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Wahid Zamani
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran
| | - Stefan Engelen
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Adriana Alberti
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Florian J. Alberto
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Mohamed BenBati
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Mustapha Ibnelbachyr
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Mouad Chentouf
- National Institute of Agronomic Research (INRA Maroc), CRRA Tangier, 90010 Tangier, Morocco
| | - Abdelmajid Bechchari
- National Institute of Agronomic Research (INRA Maroc), CRRA Oujda, 60000 Oujda, Morocco
| | - Hamid R. Rezaei
- Department of Environmental Sci, Gorgan University of Agricultural Sciences & Natural Resources, 41996-13776 Gorgan, Iran
| | - Saeid Naderi
- Environmental Sciences Department, Natural Resources Faculty, University of Guilan, 49138-15749 Guilan, Iran
| | - Alessandra Stella
- PTP Science Park, Bioinformatics Unit, Via Einstein-Loc. Cascina Codazza, 26900 Lodi, Italy
| | - Abdelkader Chikhi
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Pierre Taberlet
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Pompanon
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| |
Collapse
|
41
|
Rochette NC, Rivera‐Colón AG, Catchen JM. Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Mol Ecol 2019; 28:4737-4754. [DOI: 10.1111/mec.15253] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolas C. Rochette
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Angel G. Rivera‐Colón
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Julian M. Catchen
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| |
Collapse
|
42
|
Kess T, Boulding EG. Genome-wide association analyses reveal polygenic genomic architecture underlying divergent shell morphology in Spanish Littorina saxatilis ecotypes. Ecol Evol 2019; 9:9427-9441. [PMID: 31534666 PMCID: PMC6745682 DOI: 10.1002/ece3.5378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab-adapted and wave-adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome-wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome-wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait-associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab-adapted and wave-adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.
Collapse
Affiliation(s)
- Tony Kess
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
- Present address:
Fisheries and Oceans CanadaSt. John'sNLCanada
| | | |
Collapse
|
43
|
Bourgeois Y, Boissinot S. Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer. Mol Ecol 2019; 28:3523-3543. [PMID: 31233650 DOI: 10.1111/mec.15162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole-genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
44
|
Li YL, Xue DX, Zhang BD, Liu JX. Population Genomic Signatures of Genetic Structure and Environmental Selection in the Catadromous Roughskin Sculpin Trachidermus fasciatus. Genome Biol Evol 2019; 11:1751-1764. [PMID: 31173074 PMCID: PMC6601870 DOI: 10.1093/gbe/evz118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Understanding the patterns of genetic diversity and adaptation across species' range is crucial to assess its long-term persistence and determine appropriate conservation measures. The impacts of human activities on the genetic diversity and genetic adaptation to heterogeneous environments remain poorly understood in the marine realm. The roughskin sculpin (Trachidermus fasciatus) is a small catadromous fish, and has been listed as a second-class state protected aquatic animal since 1988 in China. To elucidate the underlying mechanism of population genetic structuring and genetic adaptations to local environments, RAD tags were sequenced for 202 individuals in nine populations across the range of T. fasciatus in China. The pairwise FST values over 9,271 filtered SNPs were significant except that between Dongying and Weifang. All the genetic clustering analysis revealed significant population structure with high support for eight distinct genetic clusters. Both the minor allele frequency spectra and Ne estimations suggested extremely small Ne in some populations (e.g., Qinhuangdao, Rongcheng, Wendeng, and Qingdao), which might result from recent population bottleneck. The strong genetic structure can be partly attributed to genetic drift and habitat fragmentation, likely due to the anthropogenic activities. Annotations of candidate adaptive loci suggested that genes involved in metabolism, development, and osmoregulation were critical for adaptation to spatially heterogenous environment of local populations. In the context of anthropogenic activities and environmental change, results of the present population genomic work provided important contributions to the understanding of genetic differentiation and adaptation to changing environments.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
45
|
Fraser BA, Whiting JR. What can be learned by scanning the genome for molecular convergence in wild populations? Ann N Y Acad Sci 2019; 1476:23-42. [PMID: 31241191 PMCID: PMC7586825 DOI: 10.1111/nyas.14177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Convergent evolution, where independent lineages evolve similar phenotypes in response to similar challenges, can provide valuable insight into how selection operates and the limitations it encounters. However, it has only recently become possible to explore how convergent evolution is reflected at the genomic level. The overlapping outlier approach (OOA), where genome scans of multiple independent lineages are used to find outliers that overlap and therefore identify convergently evolving loci, is becoming popular. Here, we present a quantitative analysis of 34 studies that used this approach across many sampling designs, taxa, and sampling intensities. We found that OOA studies with increased biological sampling power within replicates have increased likelihood of finding overlapping, "convergent" signals of adaptation between them. When identifying convergent loci as overlapping outliers, it is tempting to assume that any false-positive outliers derived from individual scans will fail to overlap across replicates, but this cannot be guaranteed. We highlight how population demographics and genomic context can contribute toward both true convergence and false positives in OOA studies. We finish with an exploration of emerging methods that couple genome scans with phenotype and environmental measures, leveraging added information from genome data to more directly test hypotheses of the likelihood of convergent evolution.
Collapse
Affiliation(s)
- Bonnie A Fraser
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - James R Whiting
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
46
|
Gallego‐García N, Forero‐Medina G, Vargas‐Ramírez M, Caballero S, Shaffer HB. Landscape genomic signatures indicate reduced gene flow and forest‐associated adaptive divergence in an endangered neotropical turtle. Mol Ecol 2019; 28:2757-2771. [DOI: 10.1111/mec.15112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Natalia Gallego‐García
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
- Department of Ecology and Evolutionary Biology, California Conservation Science, Institute of the Environment and Sustainability University of California Los Angeles California USA
- Wildlife Conservation Society Turtle Survival Alliance Cali Colombia
| | | | - Mario Vargas‐Ramírez
- Biodiversidad y Conservación Genética, Instituto de Genética Universidad Nacional de Colombia Bogotá Colombia
| | - Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Howard Bradley Shaffer
- Department of Ecology and Evolutionary Biology, California Conservation Science, Institute of the Environment and Sustainability University of California Los Angeles California USA
| |
Collapse
|
47
|
Romeiras MM, Pena AR, Menezes T, Vasconcelos R, Monteiro F, Paulo OS, Moura M. Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. Int J Mol Sci 2019; 20:E2782. [PMID: 31174340 PMCID: PMC6600550 DOI: 10.3390/ijms20112782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
Over the previous decades, numerous studies focused on how oceanic islands have contributed to determine the phylogenetic relationships and times of origin and diversification of different endemic lineages. The Macaronesian Islands (i.e., Azores, Madeira, Selvagens, Canaries, and Cabo Verde), harbour biotas with exceptionally high levels of endemism. Within the region, the vascular plants and reptiles constitute two of the most important radiations. In this study we compare relevant published phylogenetic data and diversification rates retrieved within Cabo Verde endemic lineages and discuss the importance of choosing appropriate phylogeny-based methods to investigate diversification dynamics on islands. From this selective literature-based review, we summarize the software packages used in Macaronesian studies and discuss their adequacy considering the published data to obtain well-supported phylogenies in the target groups. We further debate the importance of Next Generation Sequencing (NGS), to investigate the evolutionary processes of diversification in the Macaronesian Islands. Analysis of genomic data provides phylogenetic resolution for rapidly evolving species radiations, suggesting a great potential to improve the phylogenetic signal and divergence time estimates in insular lineages. The most important Macaronesian reptile radiations provide good case-studies to compare classical phylogenetic methods with new tools, such as phylogenomics, revealing a high value for research on this hotspot area.
Collapse
Affiliation(s)
- Maria M Romeiras
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Ana Rita Pena
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Tiago Menezes
- CIBIO, Research Centre in Biodiversity and Genetic Resources, Azores Group, InBIO Associate Laboratory, Universidade dos Açores, 9501-855 Ponta Delgada, Azores, Portugal.
| | - Raquel Vasconcelos
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Universidade do Porto, 4485-661 Vairão, Portugal.
| | - Filipa Monteiro
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Mónica Moura
- CIBIO, Research Centre in Biodiversity and Genetic Resources, Azores Group, InBIO Associate Laboratory, Universidade dos Açores, 9501-855 Ponta Delgada, Azores, Portugal.
| |
Collapse
|
48
|
Larson WA, Dann TH, Limborg MT, McKinney GJ, Seeb JE, Seeb LW. Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Mol Ecol 2019; 28:2254-2271. [DOI: 10.1111/mec.15082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Tyler H. Dann
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
- Gene Conservation Laboratory Alaska Department of Fish and Game Anchorage Alaska
| | - Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| |
Collapse
|
49
|
Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers across two divergent population clusters of a highly threatened seagrass. PeerJ 2019; 7:e6806. [PMID: 31106053 PMCID: PMC6497040 DOI: 10.7717/peerj.6806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The seagrass, Zostera capensis, occurs across a broad stretch of coastline and wide environmental gradients in estuaries and sheltered bays in southern and eastern Africa. Throughout its distribution, habitats are highly threatened and poorly protected, increasing the urgency of assessing the genomic variability of this keystone species. A pooled genomic approach was employed to obtain SNP data and examine neutral genomic variation and to identify potential outlier loci to assess differentiation across 12 populations across the ∼9,600 km distribution of Z. capensis. Results indicate high clonality and low genomic diversity within meadows, which combined with poor protection throughout its range, increases the vulnerability of this seagrass to further declines or local extinction. Shared variation at outlier loci potentially indicates local adaptation to temperature and precipitation gradients, with Isolation-by-Environment significantly contributing towards shaping spatial variation in Z. capensis. Our results indicate the presence of two population clusters, broadly corresponding to populations on the west and east coasts, with the two lineages shaped only by frequency differences of outlier loci. Notably, ensemble modelling of suitable seagrass habitat provides evidence that the clusters are linked to historical climate refugia around the Last Glacial Maxi-mum. Our work suggests a complex evolutionary history of Z. capensis in southern and eastern Africa that will require more effective protection in order to safeguard this important ecosystem engineer into the future.
Collapse
Affiliation(s)
- Nikki Leanne Phair
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Robert John Toonen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Ingrid Knapp
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Sophie von der Heyden
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
50
|
Friedline CJ, Faske TM, Lind BM, Hobson EM, Parry D, Dyer RJ, Johnson DM, Thompson LM, Grayson KL, Eckert AJ. Evolutionary genomics of gypsy moth populations sampled along a latitudinal gradient. Mol Ecol 2019; 28:2206-2223. [PMID: 30834645 DOI: 10.1111/mec.15069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/05/2023]
Abstract
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large-scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction-site associated DNA sequencing and used these data to discover genome-wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range-edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non-native species to invade novel environments.
Collapse
Affiliation(s)
| | - Trevor M Faske
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon M Lind
- Integrative Life Sciences Ph.D. Program, Virginia Commonwealth University, Richmond, Virginia
| | - Erin M Hobson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Dylan Parry
- Department of Environmental & Forest Biology, State University of New York, Syracuse, New York
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Johnson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lily M Thompson
- Department of Biology, University of Richmond, Richmond, Virginia
| | | | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|