1
|
Oliveira Carvalho C, Pazirgiannidi M, Ravelomanana T, Andriambelomanana F, Schrøder-Nielsen A, Stuart Ready J, de Boer H, Fusari CE, Mauvisseau Q. Multi-method survey rediscovers critically endangered species and strengthens Madagascar's freshwater fish conservation. Sci Rep 2024; 14:20427. [PMID: 39227484 PMCID: PMC11372049 DOI: 10.1038/s41598-024-71398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Freshwater ecosystems are crucial for global biodiversity through supporting plant and animal species and providing essential resources. These ecosystems are under significant threat, particularly in island environments such as Madagascar. Our study focuses on the Amboaboa River basin, home to the rare and endemic fish species Rheocles derhami, last recorded in 2013. To assess the status of this and other threatened fish species including Ptychochromis insolitus and Paretroplus gymnopreopercularis, and to understand freshwater fish population dynamics in this biodiversity hotspot, we conducted a comprehensive survey using both environmental DNA (eDNA) and traditional fishing methods. While traditional methods effectively captured a diverse range of species, including several invasive aliens and the critically endangered endemic species that were the focus of this study, the eDNA approach detected only a fraction of these introduced species and struggled to identify some critically endangered endemics at the species level. This highlights the value of combining methods to enhance species detection. We also investigated the trade-offs associated with multi-primer assessments in eDNA analysis, focusing on three different primer combinations targeting the 12S mitochondrial gene: MiFish, Tele02, and Riaz. Additionally, we provided 12S reference barcodes for 10 species across 9 genera of fishes from the region to increase the coverage of the public reference databases. Overall, our study elucidates the current state of freshwater biodiversity in the Amboaboa River basin and underscores the value of employing multiple methods for effective conservation strategies.
Collapse
Affiliation(s)
- Cintia Oliveira Carvalho
- Natural History Museum, University of Oslo, Oslo, Norway
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | | | - Tsilavina Ravelomanana
- Biology of Aquatic Population Laboratory, Antananarivo University, Antananarivo, Madagascar.
| | | | | | - Jonathan Stuart Ready
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
2
|
Carvalho CO, Gromstad W, Dunthorn M, Karlsen HE, Schrøder-Nielsen A, Ready JS, Haugaasen T, Sørnes G, de Boer H, Mauvisseau Q. Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Sci Rep 2024; 14:10154. [PMID: 38698067 PMCID: PMC11065990 DOI: 10.1038/s41598-024-60762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
In the face of global ecosystem changes driven by anthropogenic activities, effective biomonitoring strategies are crucial for mitigating impacts on vulnerable aquatic habitats. Time series analysis underscores a great significance in understanding the dynamic nature of marine ecosystems, especially amidst climate change disrupting established seasonal patterns. Focusing on Norway's Oslo fjord, our research utilises eDNA-based monitoring for temporal analysis of aquatic biodiversity during a one year period, with bi-monthly sampling along a transect. To increase the robustness of the study, a taxonomic assignment comparing BLAST+ and SINTAX approaches was done. Utilising MiFish and Elas02 primer sets, our study detected 63 unique fish species, including several commercially important species. Our findings reveal a substantial increase in read abundance during specific migratory cycles, highlighting the efficacy of eDNA metabarcoding for fish composition characterization. Seasonal dynamics for certain species exhibit clear patterns, emphasising the method's utility in unravelling ecological complexities. eDNA metabarcoding emerges as a cost-effective tool with considerable potential for fish community monitoring for conservation purposes in dynamic marine environments like the Oslo fjord, contributing valuable insights for informed management strategies.
Collapse
Affiliation(s)
- Cintia Oliveira Carvalho
- Natural History Museum, University of Oslo, Oslo, Norway
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | | | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Jonathan Stuart Ready
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Grete Sørnes
- Marine Research Station Drøbak, University of Oslo, Oslo, Norway
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Cantera I, Jézéquel C, Dejean T, Murienne J, Vigouroux R, Valentini A, Brosse S. Deforestation strengthens environmental filtering and competitive exclusion in Neotropical streams and rivers. Proc Biol Sci 2023; 290:20231130. [PMID: 37700645 PMCID: PMC10498049 DOI: 10.1098/rspb.2023.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Understanding how anthropization impacts the assembly of species onto communities is pivotal to go beyond the observation of biodiversity changes and reveal how disturbances affect the environmental and biotic processes shaping biodiversity. Here, we propose a simple framework to measure the assembly processes underpinning functional convergence/divergence patterns. We applied this framework to northern Amazonian fish communities inventoried using environmental DNA in 35 stream sites and 64 river sites. We found that the harsh and unstable environmental conditions characterizing streams conveyed communities towards functional convergence, by filtering traits related to food acquisition and, to a lower extent, dispersal. Such environmental filtering also strengthened competition by excluding species having less competitive food acquisition traits. Instead, random species assembly was more marked in river communities, which may be explained by the downstream position of rivers facilitating the dispersion of species. Although fish assembly rules differed between streams and river fish communities, anthropogenic disturbances reduced functional divergence in both ecosystems, with a reinforcement of both environmental filtering and weaker competitor exclusion. This may explain the substantial biodiversity alterations observed under slight deforestation levels in Neotropical freshwater ecosystems and underlines their vulnerability to anthropic disturbances that not only affect species persistence but also modify community assembly rules.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Céline Jézéquel
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Tony Dejean
- SPYGEN, 17 rue du Lac Saint-André Savoie Technolac, BP 274, 73375 Le Bourget-du-Lac, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Régis Vigouroux
- HYDRECO, Laboratoire Environnement de Petit Saut, BP 823, 97388 Kourou Cedex, French Guiana
| | - Alice Valentini
- SPYGEN, 17 rue du Lac Saint-André Savoie Technolac, BP 274, 73375 Le Bourget-du-Lac, France
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
4
|
Zhang S, Zhao J, Yao M. Urban landscape-level biodiversity assessments of aquatic and terrestrial vertebrates by environmental DNA metabarcoding. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117971. [PMID: 37119629 DOI: 10.1016/j.jenvman.2023.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
Globally, expansive urbanization profoundly alters natural habitats and the associated biota. Monitoring biodiversity in cities can provide essential information for conservation management, but the complexity of urban landscapes poses serious challenges to conventional observational and capture-based surveys. Here we assessed pan-vertebrate biodiversity, including both aquatic and terrestrial taxa, using environmental DNA (eDNA) sampled from 109 water sites across Beijing, China. Using eDNA metabarcoding with a single primer set (Tele02), we detected 126 vertebrate species, including 73 fish, 39 birds, 11 mammals, and 3 reptiles belonging to 91 genera, 46 families, and 22 orders. The probability of detection from eDNA varied substantially among species and was related to their lifestyle, as shown by the greater detectability of fish compared to that of terrestrial and arboreal (birds and mammals) groups, as well as the greater detectability of water birds compared to that of forest birds (Wilcoxon rank-sum test p = 0.007). Furthermore, the eDNA detection probabilities across all vertebrates (Wilcoxon rank-sum test p = 0.009), as well as for birds (p < 0.001), were higher at lentic sites in comparison with lotic sites. Also, the detected biodiversity was positively correlated with lentic waterbody size for fish (Spearman p = 0.012), but not for other groups. Our results demonstrate the capacity of eDNA metabarcoding to efficiently surveil diverse vertebrate communities across an extensive spatial scale in heterogenous urban landscapes. With further methodological development and optimization, the eDNA approach has great potential for non-invasive, efficient, economic, and timely assessments of biodiversity responses to urbanization, thus guiding city ecosystem conservation management.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Miya M, Sado T, Oka SI, Fukuchi T. The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.80444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test the feasibility of a citizen science program for fish eDNA metabarcoding in coastal marine environments, we recruited six groups of voluntary citizens for a science education course at a natural history museum. We held a seminar on eDNA and a workshop for seawater sampling and on-site filtration using syringes and filter cartridges for the participants. After that, they selected single survey sites following the guidelines for conducting a safe field trip. They performed seawater sampling and on-site filtration at these sites during their summer holidays. The six selected sites unexpectedly included diverse coastal habitats within a 40 km radius, located at temperate latitudes in central Japan (~35°N). After the field trips, they returned filtered cartridges to the museum, and we extracted eDNA from the filters. We performed fish eDNA metabarcoding, along with data analysis. Consequently, we identified 140 fish species across 66 families and 118 genera from the six samples, with species richness ranging from 14 to 66. Despite its limited sample size, such a diverse taxonomic range of fish species exhibited spatial biodiversity patterns within the region, which are consistent with species distribution. These include north-south and urbanization gradients of species richness, geographic structure of the fish communities, and varying salinity preferences of the component species. This case study demonstrates the potential of fish eDNA metabarcoding as an educational and scientific tool to raise public awareness and perform large-scale citizen science initiatives encompassing regional, national, or global fauna.
Collapse
|
6
|
Mariac C, Duponchelle F, Miranda G, Ramallo C, Wallace R, Tarifa G, Garcia-Davila C, Ortega H, Pinto J, Renno JF. Unveiling biogeographical patterns of the ichthyofauna in the Tuichi basin, a biodiversity hotspot in the Bolivian Amazon, using environmental DNA. PLoS One 2022; 17:e0262357. [PMID: 34982802 PMCID: PMC8726463 DOI: 10.1371/journal.pone.0262357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
To date, more than 2400 valid fish species have been recorded in the Amazon basin. However, some regions remain poorly documented. This is the case in the Beni basin and in particular in one of its main sub-basins, the Tuichi, an Andean foothills rivers flowing through the Madidi National Park in the Bolivian Amazonia. The knowledge of its ichthyological diversity is, however, essential for the management and protection of aquatic ecosystems, which are threatened by the development of infrastructures (dams, factories and cities), mining and deforestation. Environmental DNA (eDNA) has been relatively little used so far in the Amazon basin. We sampled eDNA from water in 34 sites in lakes and rivers in the Beni basin including 22 sites in the Tuichi sub-basin, during the dry season. To assess the biogeographical patterns of the amazonian ichthyofauna, we implemented a metabarcoding approach using two pairs of specific primers designed and developed in our laboratory to amplify two partially overlapping CO1 fragments, one of 185bp and another of 285bp. We detected 252 fish taxa (207 at species level) among which 57 are newly identified for the Beni watershed. Species compositions are significantly different between lakes and rivers but also between rivers according to their hydrographic rank and altitude. Furthermore, the diversity patterns are related to the different hydro-ecoregions through which the Tuichi flows. The eDNA approach makes it possible to identify and complete the inventory of the ichthyofauna in this still poorly documented Amazon basin. However, taxonomic identification remains constrained by the lack of reference barcodes in public databases and does not allow the assignment of all OTUs. Our results can be taken into account in conservation and management strategies and could serve as a baseline for future studies, including on other Andean tributaries.
Collapse
Affiliation(s)
- Cédric Mariac
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP, UAGRM, IRD, Paris, France
- * E-mail:
| | - Fabrice Duponchelle
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP, UAGRM, IRD, Paris, France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guido Miranda
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP, UAGRM, IRD, Paris, France
- Wildlife Conservation Society, Bolivia Program, La Paz, Bolivia
- Unidad de Limnología, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Camila Ramallo
- Wildlife Conservation Society, Bolivia Program, La Paz, Bolivia
| | - Robert Wallace
- Wildlife Conservation Society, Bolivia Program, La Paz, Bolivia
| | - Gabriel Tarifa
- Wildlife Conservation Society, Bolivia Program, La Paz, Bolivia
| | - Carmen Garcia-Davila
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP, UAGRM, IRD, Paris, France
- Instituto de Investigaciones de la Amazonía Peruana (IIAP), Laboratorio de Biología y Genética Molecular (LBGM), Iquitos, Perú
| | - Hernán Ortega
- Departamento de Ictiología, Museo de Historia Natural, Universidad Nacional Mayor San Marcos, Lima, Peru
| | - Julio Pinto
- Unidad de Limnología, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Jean-François Renno
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
- Laboratoire Mixte International—Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI—EDIA), IIAP, UAGRM, IRD, Paris, France
| |
Collapse
|
7
|
Schultz AJ, Strickland K, Cristescu RH, Hanger J, de Villiers D, Frère CH. Testing the effectiveness of genetic monitoring using genetic non-invasive sampling. Ecol Evol 2022; 12:e8459. [PMID: 35127011 PMCID: PMC8794716 DOI: 10.1002/ece3.8459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Effective conservation requires accurate data on population genetic diversity, inbreeding, and genetic structure. Increasingly, scientists are adopting genetic non-invasive sampling (gNIS) as a cost-effective population-wide genetic monitoring approach. gNIS has, however, known limitations which may impact the accuracy of downstream genetic analyses. Here, using high-quality single nucleotide polymorphism (SNP) data from blood/tissue sampling of a free-ranging koala population (n = 430), we investigated how the reduced SNP panel size and call rate typical of genetic non-invasive samples (derived from experimental and field trials) impacts the accuracy of genetic measures, and also the effect of sampling intensity on these measures. We found that gNIS at small sample sizes (14% of population) can provide accurate population diversity measures, but slightly underestimated population inbreeding coefficients. Accurate measures of internal relatedness required at least 33% of the population to be sampled. Accurate geographic and genetic spatial autocorrelation analysis requires between 28% and 51% of the population to be sampled. We show that gNIS at low sample sizes can provide a powerful tool to aid conservation decision-making and provide recommendations for researchers looking to apply these techniques to free-ranging systems.
Collapse
Affiliation(s)
- Anthony James Schultz
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
- Icelandic Museum of Natural History (Náttúruminjasafn Íslands)ReykjavikIceland
| | - Kasha Strickland
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
- Department of Aquaculture and Fish BiologyHólar UniversityHólarIceland
| | - Romane H. Cristescu
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
| | | | | | - Céline H. Frère
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQldAustralia
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
8
|
de Santana CD, Parenti LR, Dillman CB, Coddington JA, Bastos DA, Baldwin CC, Zuanon J, Torrente-Vilara G, Covain R, Menezes NA, Datovo A, Sado T, Miya M. The critical role of natural history museums in advancing eDNA for biodiversity studies: a case study with Amazonian fishes. Sci Rep 2021; 11:18159. [PMID: 34518574 PMCID: PMC8438044 DOI: 10.1038/s41598-021-97128-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Ichthyological surveys have traditionally been conducted using whole-specimen, capture-based sampling with varied but conventional fishing gear. Recently, environmental DNA (eDNA) metabarcoding has emerged as a complementary, and possible alternative, approach to whole-specimen methodologies. In the tropics, where much of the diversity remains undescribed, vast reaches continue unexplored, and anthropogenic activities are constant threats; there have been few eDNA attempts for ichthyological inventories. We tested the discriminatory power of eDNA using MiFish primers with existing public reference libraries and compared this with capture-based methods in two distinct ecosystems in the megadiverse Amazon basin. In our study, eDNA provided an accurate snapshot of the fishes at higher taxonomic levels and corroborated its effectiveness to detect specialized fish assemblages. Some flaws in fish metabarcoding studies are routine issues addressed in natural history museums. Thus, by expanding their archives and adopting a series of initiatives linking collection-based research, training and outreach, natural history museums can enable the effective use of eDNA to survey Earth's hotspots of biodiversity before taxa go extinct. Our project surveying poorly explored rivers and using DNA vouchered archives to build metabarcoding libraries for Neotropical fishes can serve as a model of this protocol.
Collapse
Affiliation(s)
- C David de Santana
- Division of Fishes, Department of Vertebrate Zoology, MRC 159, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.
| | - Lynne R Parenti
- Division of Fishes, Department of Vertebrate Zoology, MRC 159, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Casey B Dillman
- Cornell University Museum of Vertebrates, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Douglas A Bastos
- Programa de Pós-Graduação em Ciências Biológicas (BADPI), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Carole C Baldwin
- Division of Fishes, Department of Vertebrate Zoology, MRC 159, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Jansen Zuanon
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Gislene Torrente-Vilara
- Instituto do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| | - Raphaël Covain
- Museum of Natural History, Department of Herpetology and Ichthyology, route de Malagnou 1, PO Box 6434, 1211, Geneva 6, Switzerland
| | - Naércio A Menezes
- Museu de Zoologia da Universidade de São Paulo (MZUSP), Av. Nazaré, 481, São Paulo, SP, 04263-000, Brazil
| | - Aléssio Datovo
- Museu de Zoologia da Universidade de São Paulo (MZUSP), Av. Nazaré, 481, São Paulo, SP, 04263-000, Brazil
| | - T Sado
- Natural History Museum and Institute, Chuo-ku, Chiba, 260-8682, Japan
| | - M Miya
- Natural History Museum and Institute, Chuo-ku, Chiba, 260-8682, Japan
| |
Collapse
|
9
|
Lamy T, Pitz KJ, Chavez FP, Yorke CE, Miller RJ. Environmental DNA reveals the fine-grained and hierarchical spatial structure of kelp forest fish communities. Sci Rep 2021; 11:14439. [PMID: 34262101 PMCID: PMC8280230 DOI: 10.1038/s41598-021-93859-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000-2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems.
Collapse
Affiliation(s)
- Thomas Lamy
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA.
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France.
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | | | - Christie E Yorke
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
10
|
Mathon L, Valentini A, Guérin PE, Normandeau E, Noel C, Lionnet C, Boulanger E, Thuiller W, Bernatchez L, Mouillot D, Dejean T, Manel S. Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Mol Ecol Resour 2021; 21:2565-2579. [PMID: 34002951 DOI: 10.1111/1755-0998.13430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Bioinformatic analysis of eDNA metabarcoding data is a crucial step toward rigorously assessing biodiversity. Many programs are now available for each step of the required analyses, but their relative abilities at providing fast and accurate species lists have seldom been evaluated. We used simulated mock communities and real fish eDNA metabarcoding data to evaluate the performance of 13 bioinformatic programs and pipelines to retrieve fish occurrence and read abundance using the 12S mt rRNA gene marker. We used four indices to compare the outputs of each program with the simulated samples: sensitivity, F-measure, root-mean-square error (RMSE) on read relative abundances, and execution time. We found marked differences among programs only for the taxonomic assignment step, both in terms of sensitivity, F-measure and RMSE. Running time was highly different between programs for each step. The fastest programs with best indices for each step were assembled into a pipeline. We compared this pipeline to pipelines constructed from existing toolboxes (OBITools, Barque, and QIIME 2). Our pipeline and Barque obtained the best performance for all indices and appear to be better alternatives to highly used pipelines for analysing fish eDNA metabarcoding data when a complete reference database is available. Analysis on real eDNA metabarcoding data also indicated differences for taxonomic assignment and execution time only. This study reveals major differences between programs during the taxonomic assignment step. The choice of algorithm for the taxonomic assignment can have a significant impact on diversity estimates and should be made according to the objectives of the study.
Collapse
Affiliation(s)
- Laetitia Mathon
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,SPYGEN, Savoie Technolac, Le Bourget du Lac, France
| | | | | | - Eric Normandeau
- Université Laval, IBIS (Institut de Biologie Intégrative et des Systèmes), Québec, QC, Canada
| | - Cyril Noel
- IFREMER - IRSI - Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Clément Lionnet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Grenoble, France
| | - Emilie Boulanger
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, Univ. Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Grenoble, France
| | - Louis Bernatchez
- Université Laval, IBIS (Institut de Biologie Intégrative et des Systèmes), Québec, QC, Canada
| | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, IRD, Ifremer, Montpellier, France.,Institut Universitaire de France, IUF, Paris, France
| | - Tony Dejean
- SPYGEN, Savoie Technolac, Le Bourget du Lac, France
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
11
|
Marques V, Milhau T, Albouy C, Dejean T, Manel S, Mouillot D, Juhel J. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Virginie Marques
- MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France
- CEFE EPHE CNRS UM UPV IRD PSL Research University Montpellier France
| | | | - Camille Albouy
- IFREMER Unité Ecologie et Modèles pour l’Halieutique Nantes cedex 3 Nantes France
| | | | - Stéphanie Manel
- CEFE EPHE CNRS UM UPV IRD PSL Research University Montpellier France
| | - David Mouillot
- MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | | |
Collapse
|
12
|
Lafferty KD, Garcia-Vedrenne AE, McLaughlin JP, Childress JN, Morse MF, Jerde CL. At Palmyra Atoll, the fish-community environmental DNA signal changes across habitats but not with tides. JOURNAL OF FISH BIOLOGY 2021; 98:415-425. [PMID: 32441343 PMCID: PMC9300262 DOI: 10.1111/jfb.14403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 05/24/2023]
Abstract
At Palmyra Atoll, the environmental DNA (eDNA) signal on tidal sand flats was associated with fish biomass density and captured 98%-100% of the expected species diversity there. Although eDNA spilled over across habitats, species associated with reef habitat contributed more eDNA to reef sites than to sand-flat sites, and species associated with sand-flat habitat contributed more eDNA to sand-flat sites than to reef sites. Tides did not disrupt the sand-flat habitat signal. At least 25 samples give a coverage >97.5% at this diverse, tropical, marine system.
Collapse
Affiliation(s)
- Kevin D. Lafferty
- Western Ecological Research Center, U.S. Geological Survey, Reston, Virginia
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California
| | - Ana E. Garcia-Vedrenne
- Ecology, Evolution and Marine Biology, University of California, Los Angeles, Los Angeles, California
| | - John P. McLaughlin
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Jasmine N. Childress
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Marisa F. Morse
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Christopher L. Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California
| |
Collapse
|
13
|
Jerde CL. Can we manage fisheries with the inherent uncertainty from eDNA? JOURNAL OF FISH BIOLOGY 2021; 98:341-353. [PMID: 31769024 DOI: 10.1111/jfb.14218] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Environmental (e)DNA, as a general approach in aquatic systems, seeks to connect the presence of species' genetic material in the water and hence to infer the species' physical presence. However, fisheries managers face making decisions with risk and uncertainty when eDNA indicates a fish is present but traditional methods fail to capture the fish. In comparison with traditional methods such as nets, electrofishing and piscicides, eDNA approaches have more sources of underlying error that could give rise to false positives. This has resulted in some managers to question whether eDNA can be used to make management decisions because there is no fish in hand. As a relatively new approach, the methods and techniques have quickly evolved to improve confidence in eDNA. By evaluating an eDNA based research programmes through the pattern of the eDNA signal, assay design, experimental design, quality assurance and quality control checks, data analyses and concurrent search for fish using traditional gears, the evidence for fish presence can be evaluated to build confidence in the eDNA approach. The benefits for fisheries management from adopting an eDNA approach are numerous but include cost effectiveness, broader geographic coverage of habitat occupancy, early detection of invasive species, non-lethal stock assessments, exploration of previously inaccessible aquatic environments and discovery of new species hidden beneath the water's surface. At a time when global freshwater and marine fisheries are facing growing threats from over-harvest, pollution and climate change, we anticipate that growing confidence in eDNA will overcome the inherent uncertainty of not having a fish in hand and will empower the informed management actions necessary to protect and restore our fisheries.
Collapse
Affiliation(s)
- Christopher L Jerde
- Marine Science Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
14
|
Abstract
Temporary rivers are characterized by shifting habitats between flowing, isolated pools, and dry phases. Despite the fact that temporary rivers are currently receiving increasing attention by researchers and managers, the isolated pools phase has been largely disregarded. However, isolated pools in temporary rivers are transitional habitats of major ecological relevance as they support aquatic ecosystems during no-flow periods, and can act as refugees for maintaining local and regional freshwater biodiversity. Pool characteristics such as surface water permanence and size, presence of predators, local physicochemical conditions, time since disconnection from the river flow, or distance to other freshwater habitats challenge a comprehensive understanding of the ecology of these habitats, and challenge ecological quality assessments and conservation practices in temporary rivers. In this paper, we aim at providing a characterization of isolated pools from a hydrological, geomorphological, physicochemical, biogeochemical, and biological point of view as a framework to better conceptualize, conserve, and manage these habitats.
Collapse
|
15
|
McElroy ME, Dressler TL, Titcomb GC, Wilson EA, Deiner K, Dudley TL, Eliason EJ, Evans NT, Gaines SD, Lafferty KD, Lamberti GA, Li Y, Lodge DM, Love MS, Mahon AR, Pfrender ME, Renshaw MA, Selkoe KA, Jerde CL. Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00276] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
|