1
|
Moore MA, Scheible MK, Robertson JB, Meiklejohn KA. Assessing the lysis of diverse pollen from bulk environmental samples for DNA metabarcoding. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.89753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pollen is ubiquitous year-round in bulk environmental samples and can provide useful information on previous and current plant communities. Characterization of pollen has traditionally been completed based on morphology, requiring significant time and expertise. DNA metabarcoding is a promising approach for characterizing pollen from bulk environmental samples, but accuracy hinges on successful lysis of pollen grains to free template DNA. In this study, we assessed the lysis of morphologically and taxonomically diverse pollen from one of the most common bulk environmental sample types for DNA metabarcoding, surface soil. To achieve this, a four species artificial pollen mixture was spiked into surface soils collected from Colorado, North Carolina, and Pennsylvania, and subsequently subjected to DNA extraction using both the PowerSoil and PowerSoil Pro Kits (Qiagen) with a heated incubation (either 65 °C or 90 °C). Amplification and Illumina sequencing of the internal transcribed spacer subunit 2 (ITS2) was completed in duplicate for each sample (total n, 76), and the resulting sequencing reads taxonomically identified using GenBank. The PowerSoil Pro Kit statistically outperformed the PowerSoil Kit for total DNA yield. When using either kit, incubation temperature (65 °C or 90 °C) used had no impact on the recovery of DNA, plant amplicon sequence variants (ASVs), or total plant ITS2 reads. This study highlighted that lysis of pollen in bulk environmental samples is feasible using commercially available kits, and downstream DNA metabarcoding can be used to accurately characterize pollen DNA from such sample types.
Collapse
|
2
|
Abstract
The identification of floral visitation by pollinators provides an opportunity to improve our understanding of the fine-scale ecological interactions between plants and pollinators, contributing to biodiversity conservation and promoting ecosystem health. In this review, we outline the various methods which can be used to identify floral visitation, including plant-focused and insect-focused methods. We reviewed the literature covering the ways in which DNA metabarcoding has been used to answer ecological questions relating to plant use by pollinators and discuss the findings of this research. We present detailed methodological considerations for each step of the metabarcoding workflow, from sampling through to amplification, and finally bioinformatic analysis. Detailed guidance is provided to researchers for utilisation of these techniques, emphasising the importance of standardisation of methods and improving the reliability of results. Future opportunities and directions of using molecular methods to analyse plant–pollinator interactions are then discussed.
Collapse
|
3
|
Liu S, Lang D, Meng G, Hu J, Tang M, Zhou X. Tracing the origin of honey products based on metagenomics and machine learning. Food Chem 2022; 371:131066. [PMID: 34543927 DOI: 10.1016/j.foodchem.2021.131066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023]
Abstract
The adulteration of honey is common. Recently, High Throughput Sequencing (HTS)-based metabarcoding method has been applied successfully to pollen/honey identification to determine floral composition that, in turn, can be used to identify the geographical origins of honeys. However, the lack of local references materials posed a serious challenge for HTS-based pollen identification methods. Here, we sampled 28 honey samples from various geographic origins without prior knowledge of local floral information and applied a machine learning method to determine geographical origins. The machine learning method uses a resilient backpropagation algorithm to train a neural network. The results showed that biological components in honey provided characteristic traits that enabled accurate geographic tracing for nearly all honey samples, confidently discriminating honeys to their geographic origin with >99% success rates, including those separated by as little as 39 km.
Collapse
Affiliation(s)
- Shanlin Liu
- Department of Entomology, China Agriculture University, No.2, West Yuanmingyuan Road, Beijing 100193, China
| | - Dandan Lang
- Department of Entomology, China Agriculture University, No.2, West Yuanmingyuan Road, Beijing 100193, China
| | - Guanliang Meng
- Centre of Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig, D-53113 Bonn, Germany
| | - Jiahui Hu
- Department of Entomology, China Agriculture University, No.2, West Yuanmingyuan Road, Beijing 100193, China
| | - Min Tang
- Department of Entomology, China Agriculture University, No.2, West Yuanmingyuan Road, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, China Agriculture University, No.2, West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
4
|
Bell KL, Petit RA, Cutler A, Dobbs EK, Macpherson JM, Read TD, Burgess KS, Brosi BJ. Comparing whole-genome shotgun sequencing and DNA metabarcoding approaches for species identification and quantification of pollen species mixtures. Ecol Evol 2021; 11:16082-16098. [PMID: 34824813 PMCID: PMC8601920 DOI: 10.1002/ece3.8281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular identification of mixed-species pollen samples has a range of applications in various fields of research. To date, such molecular identification has primarily been carried out via amplicon sequencing, but whole-genome shotgun (WGS) sequencing of pollen DNA has potential advantages, including (1) more genetic information per sample and (2) the potential for better quantitative matching. In this study, we tested the performance of WGS sequencing methodology and publicly available reference sequences in identifying species and quantifying their relative abundance in pollen mock communities. Using mock communities previously analyzed with DNA metabarcoding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq and MiSeq. Taxonomic identifications were based on the Kraken k-mer identification method with reference libraries constructed from full-genome and short read archive data from the NCBI database. We found WGS to be a reliable method for taxonomic identification of pollen with near 100% identification of species in mixtures but generating higher rates of false positives (reads not identified to the correct taxon at the required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quantification of relative species abundance, WGS data provided a stronger correlation between pollen grain proportion and sequence read proportion, but diverged more from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a limitation of WGS-based pollen identification is the lack of representation of plant diversity in publicly available genome databases. As databases improve and costs drop, we expect that eventually genomics methods will become the methods of choice for species identification and quantification of mixed-species pollen samples.
Collapse
Affiliation(s)
- Karen L Bell
- Department of Environmental Sciences Emory University Atlanta Georgia USA
- Present address: School of Biological Sciences University of Western Australia Perth Australia
- Present address: CSIRO Land & Water and CSIRO Health & Biosecurity Floreat WA Australia
| | - Robert A Petit
- Division of Infectious Diseases Department of Medicine Emory University Atlanta Georgia USA
| | - Anya Cutler
- Department of Environmental Sciences Emory University Atlanta Georgia USA
| | - Emily K Dobbs
- Department of Environmental Sciences Emory University Atlanta Georgia USA
- Present address: Department of Biology Northern Kentucky University Highland Heights Kentucky USA
| | - J Michael Macpherson
- Department of Biology Chapman University Orange California USA
- Present address: 23andMe Mountain View California USA
| | - Timothy D Read
- Division of Infectious Diseases Department of Medicine Emory University Atlanta Georgia USA
| | - Kevin S Burgess
- Department of Biology Columbus State University Columbus Georgia USA
| | - Berry J Brosi
- Department of Environmental Sciences Emory University Atlanta Georgia USA
- Present address: Department of Biology University of Washington Seattle Washington USA
| |
Collapse
|
5
|
Garrido-Sanz L, Senar MÀ, Piñol J. Relative species abundance estimation in artificial mixtures of insects using mito-metagenomics and a correction factor for the mitochondrial DNA copy number. Mol Ecol Resour 2021; 22:153-167. [PMID: 34251746 DOI: 10.1111/1755-0998.13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
Mito-metagenomics (MMG) is becoming an alternative to amplicon metabarcoding for the assessment of biodiversity in complex biological samples using high-throughput sequencing. Whereas MMG overcomes the biases introduced by the PCR step in the generation of amplicons, it is not yet a technique free of shortcomings. First, as the reads are obtained from shotgun sequencing, a very low proportion of reads map into the mitogenomes, so a high sequencing effort is needed. Second, as the number of mitogenomes per cell can vary among species, the relative species abundance (RSA) in a mixture could be wrongly estimated. Here, we challenge the MMG method to estimate the RSA using artificial libraries of 17 insect species whose complete genomes are available on public repositories. With fresh specimens of these species, we created single-species libraries to calibrate the bioinformatic pipeline and mixed-species libraries to estimate the RSA. Our results showed that the MMG approach confidently recovers the species list of the mixtures, even when they contain congeneric species. The method was also able to estimate the abundance of a species across different samples (within-species estimation) but failed to estimate the RSA within a single sample (across-species estimation) unless a correction factor accounting for the variable number of mitogenomes per cell was used. To estimate this correction factor, we used the proportion of reads mapping into mitogenomes in the single-species libraries and the lengths of the whole genomes and mitogenomes.
Collapse
Affiliation(s)
| | | | - Josep Piñol
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Yang C, Bohmann K, Wang X, Cai W, Wales N, Ding Z, Gopalakrishnan S, Yu DW. Biodiversity Soup II: A bulk‐sample metabarcoding pipeline emphasizing error reduction. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
| | - Kristine Bohmann
- Section for Evolutionary Genomics Globe Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Xiaoyang Wang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
| | - Wang Cai
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
| | - Nathan Wales
- Section for Evolutionary Genomics Globe Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Archaeology University of York York UK
| | - Zhaoli Ding
- Biodiversity Genomics Center Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics Globe Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of ZoologyChinese Academy of Sciences Kunming China
- School of Biological Sciences University of East AngliaNorwich Research Park Norwich UK
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
7
|
Handy SM, Pawar RS, Ottesen AR, Ramachandran P, Sagi S, Zhang N, Hsu E, Erickson DL. HPLC-UV, Metabarcoding and Genome Skims of Botanical Dietary Supplements: A Case Study in Echinacea. PLANTA MEDICA 2021; 87:314-324. [PMID: 33445185 DOI: 10.1055/a-1336-1685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of DNA-based methods to authenticate botanical dietary supplements has been vigorously debated for a variety of reasons. More comparisons of DNA-based and chemical methods are needed, and concordant evaluation of orthogonal approaches on the same products will provide data to better understand the strengths and weaknesses of both approaches. The overall application of DNA-based methods is already firmly integrated into a wide array of continually modernizing stand alone and complementary authentication protocols. Recently, the use of full-length chloroplast genome sequences provided enhanced discriminatory capacity for closely related species of Echinacea compared to traditional DNA barcoding approaches (matK and rbcL). Here, two next-generation sequencing approaches were used: (1) genome skimming and (2) PCR amplicon (metabarcoding). The two genetic approaches were then combined with HPLC-UV to evaluate 20 commercially available dietary supplements of Echinacea representing "finished" products. The trade-offs involved in different DNA approaches were discussed, with a focus on how DNA methods support existing, accepted chemical methods. In most of the products (19/20), HPLC-UV suggested the presence of Echinacea spp. While metabarcoding was not useful with this genus and instead only resolved 7 products to the family level, genome skimming was able to resolve to species (9) or genus (1) with the 10/20 products where it was successful. Additional ingredients that HPLC-UV was unable to identify were also found in four products along with the relative sequence proportion of the constituents. Additionally, genome skimming was able to identify one product that was a different Echinacea species entirely.
Collapse
Affiliation(s)
- Sara M Handy
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, Maryland, United States
| | - Rahul S Pawar
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, Maryland, United States
| | - Andrea R Ottesen
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, Maryland, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, Maryland, United States
| | - Satyanarayanaraju Sagi
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, Maryland, United States
| | - Ning Zhang
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, Maryland, United States
| | - Erica Hsu
- Joint Institute of Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, United States
| | - David L Erickson
- Joint Institute of Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, United States
- DNA4 Technologies LLC, Halethorpe, Maryland, United States
| |
Collapse
|
8
|
Olsson O, Karlsson M, Persson AS, Smith HG, Varadarajan V, Yourstone J, Stjernman M. Efficient, automated and robust pollen analysis using deep learning. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ola Olsson
- Department of Biology Lund University Lund Sweden
| | - Melanie Karlsson
- Centre for Environment and Climate Research Lund University Lund Sweden
| | - Anna S. Persson
- Centre for Environment and Climate Research Lund University Lund Sweden
| | - Henrik G. Smith
- Department of Biology Lund University Lund Sweden
- Centre for Environment and Climate Research Lund University Lund Sweden
| | | | | | | |
Collapse
|
9
|
Choudhary P, Singh BN, Chakdar H, Saxena AK. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 2021; 37:54. [PMID: 33604719 DOI: 10.1007/s11274-021-03019-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.
Collapse
Affiliation(s)
- Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Bansh Narayan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| |
Collapse
|
10
|
Swenson SJ, Gemeinholzer B. Testing the effect of pollen exine rupture on metabarcoding with Illumina sequencing. PLoS One 2021; 16:e0245611. [PMID: 33529182 PMCID: PMC7853484 DOI: 10.1371/journal.pone.0245611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Pollen metabarcoding has received much attention recently for its potential to increase taxonomic resolution of the identifications of pollen grains necessary for various public health, ecological and environmental inquiry. However, methodologies implemented are widely varied across studies confounding comparisons and casting uncertainty on the reliability of results. In this study, we investigated part of the methodology, the effects of level of exine rupture and lysis incubation time, on the performance of DNA extraction and Illumina sequencing. We examined 15 species of plants from 12 families with pollen that varies in size, shape, and aperture number to evaluate effort necessary for exine rupture. Then created mock communities of 14 of the species from DNA extractions at 4 levels of exine rupture (0, 33, 67, and 100%) and two levels of increased lysis incubation time without exine rupture (2 or 24 hours). Quantities of these DNA extractions displayed a positive correlation between increased rupture and DNA yield, however increasing time of lysis incubation was associated with decreased DNA yield. Illumina sequencing was performed with these artificial community treatments with three common plant DNA barcode regions (rbcL, ITS1, ITS2) with two different primer pairings for ITS2 and rbcL. We found decreased performance in treatments with 0% or 100% exine rupture compared to 33% and 67% rupture, based on deviation from expected proportions and species retrieval, and increased lysis incubation was found to be detrimental to results.
Collapse
|
11
|
Piñol J. Genotype by sequencing: An alternative new method to amplicon metabarcoding and shotgun metagenomics for the assessment of eukaryote biodiversity. Mol Ecol Resour 2021; 21:1001-1004. [PMID: 33423396 DOI: 10.1111/1755-0998.13320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
The use of high-throughput DNA sequencing (HTS) has revolutionized the assessment of biodiversity in plant and animal communities. There are two main approaches to estimate the identity and the relative species abundance (RSA) in complex mixtures using HTS: amplicon metabarcoding and shotgun metagenomics. While amplicon metabarcoding targets one or a few genomic regions, shotgun metagenomics randomly explores the genome of the species. In this issue of Molecular Ecology Resources, Wagemaker et al. (2021) present a new method, multi-species Genotyping by Sequencing (msGBS), as an alternative middle ground between metabarcoding and metagenomics. They apply the technique to mixtures of plant roots and report the remarkable capacity of msGBS to estimate the RSA. If validated in other laboratories and biological communities, msGBS might become a third method to explore the biodiversity of biological communities, especially of plants, where current techniques are struggling to get sufficient taxonomic resolution.
Collapse
Affiliation(s)
- Josep Piñol
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Wagemaker CAM, Mommer L, Visser EJW, Weigelt A, van Gurp TP, Postuma M, Smit-Tiekstra AE, de Kroon H. msGBS: A new high-throughput approach to quantify the relative species abundance in root samples of multispecies plant communities. Mol Ecol Resour 2020; 21:1021-1036. [PMID: 33058506 PMCID: PMC8246947 DOI: 10.1111/1755-0998.13278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Plant interactions are as important belowground as aboveground. Belowground plant interactions are however inherently difficult to quantify, as roots of different species are difficult to disentangle. Although for a couple of decades molecular techniques have been successfully applied to quantify root abundance, root identification and quantification in multispecies plant communities remains particularly challenging. Here we present a novel methodology, multispecies genotyping by sequencing (msGBS), as a next step to tackle this challenge. First, a multispecies meta‐reference database containing thousands of gDNA clusters per species is created from GBS derived High Throughput Sequencing (HTS) reads. Second, GBS derived HTS reads from multispecies root samples are mapped to this meta‐reference which, after a filter procedure to increase the taxonomic resolution, allows the parallel quantification of multiple species. The msGBS signal of 111 mock‐mixture root samples, with up to 8 plant species per sample, was used to calculate the within‐species abundance. Optional subsequent calibration yielded the across‐species abundance. The within‐ and across‐species abundances highly correlated (R2 range 0.72–0.94 and 0.85–0.98, respectively) to the biomass‐based species abundance. Compared to a qPCR based method which was previously used to analyse the same set of samples, msGBS provided similar results. Additional data on 11 congener species groups within 105 natural field root samples showed high taxonomic resolution of the method. msGBS is highly scalable in terms of sensitivity and species numbers within samples, which is a major advantage compared to the qPCR method and advances our tools to reveal hidden belowground interactions. see also the Perspective by Josep Piñol
Collapse
Affiliation(s)
- Cornelis A M Wagemaker
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Maarten Postuma
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Annemiek E Smit-Tiekstra
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Hans de Kroon
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Bänsch S, Tscharntke T, Wünschiers R, Netter L, Brenig B, Gabriel D, Westphal C. Using ITS2 metabarcoding and microscopy to analyse shifts in pollen diets of honey bees and bumble bees along a mass-flowering crop gradient. Mol Ecol 2020; 29:5003-5018. [PMID: 33030785 DOI: 10.1111/mec.15675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Worldwide pollinator declines lead to pollination deficits in crops and wild plants, and managed bees are frequently used to meet the increasing demand for pollination. However, their foraging can be affected by flower availability and colony size. We investigated how mass-flowering oilseed rape (OSR) can influence the pollen resource use of small and large honey bee (Apis mellifera L.) and bumble bee (Bombus terrestris L.) colonies. Colonies were placed adjacent to strawberry fields along a gradient of OSR availability in the landscapes. We used ITS2 metabarcoding to identify the pollen richness based on ITS2 amplicon sequencing and microscopy for quantification of target pollen. Bumble bees collected pollen from more different plant genera than honey bees. In both species, strawberry pollen collection decreased with high OSR availability but was facilitated by increasing strawberry flower cover. Colony size had no effect. The relationship between next-generation sequencing-generated ITS2 amplicon reads and microscopic pollen counts was positive but pollen type-specific. Bumble bees and, to a lesser degree, honey bees collected pollen from a wide variety of plants. Therefore, in order to support pollinators and associated pollination services, future conservation schemes should sustain and promote pollen plant richness in agricultural landscapes. Both bee species responded to the availability of flower resources in the landscape. Although honey bees collected slightly more strawberry pollen than bumble bees, both can be considered as crop pollinators. Metabarcoding could provide similar quantitative information to microscopy, taking into account the pollen types, but there remains high potential to improve the methodological weaknesses.
Collapse
Affiliation(s)
- Svenja Bänsch
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Göttingen, Germany.,Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Teja Tscharntke
- Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Röbbe Wünschiers
- Department of Biotechnology and Chemistry, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Leonie Netter
- Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Doreen Gabriel
- Federal Research Centre for Cultivated Plants, Institute of Crop and Soil Science, Julius Kühn-Institut (JKI), Braunschweig, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Yang CQ, Lv Q, Zhang AB. Sixteen Years of DNA Barcoding in China: What Has Been Done? What Can Be Done? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Alsos IG, Lavergne S, Merkel MKF, Boleda M, Lammers Y, Alberti A, Pouchon C, Denoeud F, Pitelkova I, Pușcaș M, Roquet C, Hurdu BI, Thuiller W, Zimmermann NE, Hollingsworth PM, Coissac E. The Treasure Vault Can be Opened: Large-Scale Genome Skimming Works Well Using Herbarium and Silica Gel Dried Material. PLANTS (BASEL, SWITZERLAND) 2020; 9:E432. [PMID: 32244605 PMCID: PMC7238428 DOI: 10.3390/plants9040432] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023]
Abstract
Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%. Average insert length, cover and full cpDNA and rDNA assembly were considerably higher for silica gel dried than herbarium-preserved material. However, complete plastid genomes were still assembled for 54% of herbarium samples compared to 70% of silica dried samples. Moreover, there was comparable recovery of coding genes from both tissue sources (121 for silica gel dried and 118 for herbarium material) and only minor differences in assembly success of standard barcodes between silica dried (89% ITS2, 96% matK and rbcL) and herbarium material (87% ITS2, 98% matK and rbcL). The success rate was > 90% for all three markers in 1034 of 1036 genera in 160 families, and only Boraginaceae worked poorly, with 7 genera failing. Our study shows that large-scale genome skims are feasible and work well across most of the land plant families and genera we tested, independently of material type. It is therefore an efficient method for increasing the availability of plant biodiversity genomic data to support a multitude of downstream applications.
Collapse
Affiliation(s)
- Inger Greve Alsos
- Tromsø Museum, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (M.K.F.M.); (Y.L.); (I.P.)
| | - Sebastien Lavergne
- LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000 Grenoble, France; (S.L.); (M.B.); (C.P.); (C.R.); (W.T.)
| | | | - Marti Boleda
- LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000 Grenoble, France; (S.L.); (M.B.); (C.P.); (C.R.); (W.T.)
| | - Youri Lammers
- Tromsø Museum, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (M.K.F.M.); (Y.L.); (I.P.)
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; (A.A.); (F.D.)
| | - Charles Pouchon
- LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000 Grenoble, France; (S.L.); (M.B.); (C.P.); (C.R.); (W.T.)
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; (A.A.); (F.D.)
| | - Iva Pitelkova
- Tromsø Museum, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (M.K.F.M.); (Y.L.); (I.P.)
| | - Mihai Pușcaș
- A. Borza Botanical Garden and Faculty of Biology and Geology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania;
| | - Cristina Roquet
- LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000 Grenoble, France; (S.L.); (M.B.); (C.P.); (C.R.); (W.T.)
- Systematics and Evolution of Vascular Plants (UAB)—Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Spain
| | - Bogdan-Iuliu Hurdu
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Wilfried Thuiller
- LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000 Grenoble, France; (S.L.); (M.B.); (C.P.); (C.R.); (W.T.)
| | | | | | - Eric Coissac
- LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000 Grenoble, France; (S.L.); (M.B.); (C.P.); (C.R.); (W.T.)
| |
Collapse
|
16
|
Baksay S, Pornon A, Burrus M, Mariette J, Andalo C, Escaravage N. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci Rep 2020; 10:4202. [PMID: 32144370 PMCID: PMC7060345 DOI: 10.1038/s41598-020-61198-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Although the use of metabarcoding to identify taxa in DNA mixtures is widely approved, its reliability in quantifying taxon abundance is still the subject of debate. In this study we investigated the relationships between the amount of pollen grains in mock solutions and the abundance of high-throughput sequence reads and how the relationship was affected by the pollen counting methodology, the number of PCR cycles, the type of markers and plant species whose pollen grains have different characteristics. We found a significant positive relationship between the number of DNA sequences and the number of pollen grains in the mock solutions. However, better relationships were obtained with light microscopy as a pollen grain counting method compared with flow cytometry, with the chloroplastic trnL marker compared with ribosomal ITS1 and with 30 when compared with 25 or 35 PCR cycles. We provide a list of recommendations to improve pollen quantification.
Collapse
Affiliation(s)
- Sandra Baksay
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France.
| | - André Pornon
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Monique Burrus
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Jérôme Mariette
- Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliqués INRA, UR875, Toulouse, F-31320, Castanet-Tolosan, France
| | - Christophe Andalo
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Nathalie Escaravage
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| |
Collapse
|
17
|
Bell KL, Batchelor KL, Bradford M, McKeown A, Macdonald SL, Westcott D. Optimisation of a pollen DNA metabarcoding method for diet analysis of flying-foxes (Pteropus spp.). AUST J ZOOL 2020. [DOI: 10.1071/zo20085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Determining the diet of flying-foxes can increase understanding of how they function as pollinators and seed dispersers, as well as managing any negative impacts of large roosts. Traditional methods for diet analysis are time consuming, and not feasible to conduct for hundreds of animals. In this study, we optimised a method for diet analysis, based on DNA metabarcoding of environmental DNA (eDNA) from pollen and other plant parts in the faeces. We found that existing eDNA metabarcoding protocols are suitable, with the most useful results being obtained using a commercial food DNA extraction kit, and sequencing 350–450 base pairs of a DNA barcode from the internally transcribed spacer region (ITS2), with ~550 base pairs of the chloroplast rubisco large subunit (rbcL) as a secondary DNA barcode. A list of forage plants was generated for the little red flying-fox (Pteropus scapulatus), the black flying-fox (Pteropus alecto) and the spectacled flying-fox (Pteropus conspicillatus) from our collection sites across Queensland. The diets were determined to comprise predominantly Myrtaceae species, particularly those in the genera Eucalyptus, Melaleuca and Corymbia. With more plant genomes becoming publicly available in the future, there are likely to be further applications of eDNA methods in understanding the role of flying-foxes as pollinators and seed dispersers.
Collapse
|
18
|
Lang D, Tang M, Hu J, Zhou X. Genome-skimming provides accurate quantification for pollen mixtures. Mol Ecol Resour 2019; 19:1433-1446. [PMID: 31325909 PMCID: PMC6900181 DOI: 10.1111/1755-0998.13061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
Studies on foraging partitioning in pollinators can provide critical information to the understanding of food-web niche and pollination functions, thus aiding conservation. Metabarcoding based on PCR amplification and high-throughput sequencing has seen increasing applications in characterizing pollen loads carried by pollinators. However, amplification bias across taxa could lead to unpredictable artefacts in estimation of pollen compositions. We examined the efficacy of a genome-skimming method based on direct shotgun sequencing in quantifying mixed pollen, using mock samples (five and 14 mocks of flower and bee pollen, respectively). The results demonstrated a high level of repeatability and accuracy in identifying pollen from mixtures of varied species ratios. All pollen species were detected in all mocks, and pollen frequencies estimated from the number of sequence reads of each species were significantly correlated with pollen count proportions (linear model, R2 = 86.7%, p = 2.2e-16). For >97% of the mixed taxa, pollen proportion could be quantified by sequencing to the correct order of magnitude, even for species which constituted only 0.2% of the total pollen. In addition, DNA extracted from pollen grains equivalent to those collected from a single honeybee corbicula was sufficient for genome-skimming. We conclude that genome-skimming is a feasible approach to identifying and quantifying mixed pollen samples. By providing reliable and sensitive taxon identification and relative abundance, this method is expected to improve our understanding in studies that involve plant-pollinator interactions, such as pollen preference in corbiculate bees, pollen diet analyses and identification of landscape pollen resource use from beehives.
Collapse
Affiliation(s)
- Dandan Lang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiahui Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|