1
|
Dowd WW, Kültz D. Lost in translation? Evidence for a muted proteomic response to thermal stress in a stenothermal Antarctic fish and possible evolutionary mechanisms. Physiol Genomics 2024; 56:721-740. [PMID: 39250150 DOI: 10.1152/physiolgenomics.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stenothermal Antarctic notothenioid fishes are noteworthy for their history of isolation in extreme cold and their corresponding lack of the canonical heat shock response. Despite extensive transcriptomic studies, the mechanistic basis for stenothermy has not been fully elucidated. Given that the proteome better represents an organism's physiology, the possibility exists that some aspects of stenothermy arise posttranscriptionally. Here, Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by a thorough assessment of proteomic responses in the brain, gill, and kidney. Few cellular stress response proteins were induced, and overall responses were modest in terms of the numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of the translational machinery in Antarctic notothenioids could explain these patterns. Some components of translational regulatory pathways are highly conserved [e.g., Ser-52, eukaryotic translation initiation factor 2α (eIF2α)], but other proteins comprising the cellular "integrated stress response," specifically, the eIF2α kinases general control nonderepressible 2 (GCN2) and PKR-like endoplasmic reticulum kinase (PERK), may have evolved along different trajectories in Antarctic fishes. Taken together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.NEW & NOTEWORTHY Antarctic fishes have some of the lowest known heat tolerances among vertebrates, but the molecular mechanisms underlying this pattern are not fully understood. By combining detailed analyses of protein expression patterns in several tissues under various heat treatments with a broader evolutionary perspective, this study offers a novel hypothesis to explain the narrow range of temperature tolerance in this extraordinary group of fishes.
Collapse
Affiliation(s)
- W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Dietmar Kültz
- Physiological Genomics Group, Department of Animal Science and Genome Center, University of California, Davis, California, United States
| |
Collapse
|
2
|
Mojica E, Kültz D. A Strategy to Characterize the Global Landscape of Histone Post-Translational Modifications Within Tissues of Nonmodel Organisms. J Proteome Res 2024; 23:2780-2794. [PMID: 37624673 PMCID: PMC11301685 DOI: 10.1021/acs.jproteome.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/27/2023]
Abstract
Histone post-translational modifications (PTMs) are epigenetic marks that play a critical role in the expression and maintenance of DNA, but they remain largely uninvestigated in nonmodel organisms due to technical challenges. To begin alleviating this issue, we developed a workflow for histone PTM analysis in Mozambique tilapia (Oreochromis mossambicus), being a widespread and environmentally hardy fish, using mass spectrometry methods. By incorporating multiple protein digestion methods into the preparation of each sample, we reliably quantified 214 biologically relevant histone PTMs. All of these histone PTMs, collectively referred to as the global histone PTM landscape, were characterized in the gills, kidney, and testes of this fish. By comparing the global histone PTM landscape between the three tissues, we found that 91.59% of histone PTMs were tissue-dependent. The workflow and tools for histone PTM analysis described in this study are now publicly available and enable comprehensive investigation into the influence of environmental stress on histone PTMs in nonmodel organisms. Given the functionality and flexibility of histone PTMs, we anticipate that the study of histone PTMs in ecologically relevant contexts will provide ground-breaking insights into comparative physiology and evolution.
Collapse
Affiliation(s)
- Elizabeth
A. Mojica
- Department of Animal Sciences, University of California - Davis, One Shields Avenue, Meyer Hall, Davis, California 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences, University of California - Davis, One Shields Avenue, Meyer Hall, Davis, California 95616, United States
| |
Collapse
|
3
|
Mojica EA, Fu Y, Kültz D. Salinity-responsive histone PTMs identified in the gills and gonads of Mozambique tilapia (Oreochromis mossambicus). BMC Genomics 2024; 25:586. [PMID: 38862901 PMCID: PMC11167857 DOI: 10.1186/s12864-024-10471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Yuhan Fu
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Hamar J, Cnaani A, Kültz D. Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis pathway on hyper-osmotic tolerance of tilapia cells. Genomics 2024; 116:110833. [PMID: 38518899 DOI: 10.1016/j.ygeno.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Myo-inositol is an important compatible osmolyte in vertebrates. This osmolyte is produced by the myo-inositol biosynthesis (MIB) pathway composed of myo-inositol phosphate synthase and inositol monophosphatase. These enzymes are among the highest upregulated proteins in tissues and cell cultures from teleost fish exposed to hyperosmotic conditions indicating high importance of this pathway for tolerating this type of stress. CRISPR/Cas9 gene editing of tilapia cells produced knockout lines of MIB enzymes and control genes. Metabolic activity decreased significantly for MIB KO lines in hyperosmotic media. Trends of faster growth of the MIB knockout lines in isosmotic media and faster decline of MIB knockout lines in hyperosmotic media were also observed. These results indicate a decline in metabolic fitness but only moderate effects on cell survival when tilapia cells with disrupted MIB genes are exposed to hyperosmolality. Therefore MIB genes are required for full osmotolerance of tilapia cells.
Collapse
Affiliation(s)
- Jens Hamar
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Garrity C, Garcia-Rovetta C, Rivas I, Delatorre U, Wong A, Kültz D, Peyton J, Arzi B, Vapniarsky N. Tilapia Fish Skin Treatment of Third-Degree Skin Burns in Murine Model. J Funct Biomater 2023; 14:512. [PMID: 37888177 PMCID: PMC10607444 DOI: 10.3390/jfb14100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This study explored the feasibility of using fish skin bandages as a therapeutic option for third-degree skin burns. Following the California wildfires, clinical observations of animals with third-degree skin burns demonstrated increased comfort levels and reduced pain when treated with tilapia fish skin. Despite the promises of this therapy, there are few studies explaining the healing mechanisms behind the application of tilapia fish skin. In this study, mice with third-degree burns were treated with either a hydrocolloid adhesive bandage (control) (n = 16) or fish skin (n = 16) 7 days post-burn. Mice were subjected to histologic, hematologic, molecular, and gross evaluation at days 7, 16, and 28 post-burn. The fish skin offered no benefit to overall wound closure compared to hydrocolloids. Additionally, we detected no difference between fish skin and control treatments in regard to hypermetabolism or hematologic values. However, the fish skin groups exhibited 2 times more vascularization and 2 times higher expression of antimicrobial defensin peptide in comparison to controls. Proteomic analysis of the fish skin revealed the presence of antimicrobial peptides. Collectively, these data suggest that fish skin can serve as an innovative and cost-effective therapeutic alternative for burn victims to facilitate vascularization and reduce bacterial infection.
Collapse
Affiliation(s)
- Carissa Garrity
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Christina Garcia-Rovetta
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Iris Rivas
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Ubaldo Delatorre
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Sciences and Coastal & Marine Sciences Institute, Davis, CA 95616, USA;
| | - Jamie Peyton
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA; (C.G.); (I.R.)
| |
Collapse
|
6
|
Kim C, Cnaani A, Kültz D. Removal of evolutionarily conserved functional MYC domains in a tilapia cell line using a vector-based CRISPR/Cas9 system. Sci Rep 2023; 13:12086. [PMID: 37495710 PMCID: PMC10371998 DOI: 10.1038/s41598-023-37928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
MYC transcription factors have critical roles in facilitating a variety of cellular functions that have been highly conserved among species during evolution. However, despite circumstantial evidence for an involvement of MYC in animal osmoregulation, mechanistic links between MYC function and osmoregulation are missing. Mozambique tilapia (Oreochromis mossambicus) represents an excellent model system to study these links because it is highly euryhaline and highly tolerant to osmotic (salinity) stress at both the whole organism and cellular levels of biological organization. Here, we utilize an O. mossambicus brain cell line and an optimized vector-based CRISPR/Cas9 system to functionally disrupt MYC in the tilapia genome and to establish causal links between MYC and cell functions, including cellular osmoregulation. A cell isolation and dilution strategy yielded polyclonal myca (a gene encoding MYC) knockout (ko) cell pools with low genetic variability and high gene editing efficiencies (as high as 98.2%). Subsequent isolation and dilution of cells from these pools produced a myca ko cell line harboring a 1-bp deletion that caused a frameshift mutation. This frameshift functionally inactivated the transcriptional regulatory and DNA-binding domains predicted by bioinformatics and structural analyses. Both the polyclonal and monoclonal myca ko cell lines were viable, propagated well in standard medium, and differed from wild-type cells in morphology. As such, they represent a new tool for causally linking myca to cellular osmoregulation and other cell functions.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Different transcriptomic architecture of the gill epithelia in Nile and Mozambique tilapia after salinity challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 41:100927. [PMID: 34794104 DOI: 10.1016/j.cbd.2021.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Tilapiine fishes of the genus Oreochromis vary in their euryhaline capabilities, therefore inhabiting aquatic environments of different salinities across the African continent. We analyzed the differential gene expression in the gills before and after 6 weeks salinity challenge between the highly tolerant Mozambique tilapia (Oreochromis mossambicus) and the less tolerant Nile tilapia (O. niloticus). The pathways triggered by salinity in both tilapia species reveal immune and cell stress responses as well as turnover of ionocytes. Nevertheless, the actual differential expressed genes vary between these two species, pointing at differential transcriptomic architecture, which likely contribute to the species osmoregulation capabilities in elevated salinities.
Collapse
|
8
|
Guo J, Zhang Y, Mo J, Sun H, Li Q. Sulfamethoxazole-Altered Transcriptomein Green Alga Raphidocelis subcapitata Suggests Inhibition of Translation and DNA Damage Repair. Front Microbiol 2021; 12:541451. [PMID: 34349730 PMCID: PMC8326373 DOI: 10.3389/fmicb.2021.541451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Occurrence of sulfonamide antibiotics has been reported in surface waters with the exposures ranging from < 1 ng L–1 to approximately 11 μg L–1, which may exert adverse effects on non-target algal species, inhibiting algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of sulfonamide in algae remain undetermined. The aims of the present work are: (1) to test the hypothesis whether sulfamethoxazole (SMX) inhibits the folate biosynthesis in a model green alga Raphidocelis subcapitata; and (2) to explore the effects of SMX at an environmentally relevant concentration on algal health. Here, transcriptomic analysis was applied to investigate the changes at the molecular levels in R. subcapitata treated with SMX at the concentrations of 5 and 300 μg L–1. After 7-day exposure, the algal density in the 5 μg L–1 group was not different from that in the controls, whereas a marked reduction of 63% in the high SMX group was identified. Using the adj p < 0.05 and absolute log2 fold change > 1 as a cutoff, we identified 1 (0 up- and 1 downregulated) and 1,103 (696 up- and 407 downregulated) differentially expressed genes (DEGs) in the 5 and 300 μg L–1 treatment groups, respectively. This result suggested that SMX at an environmentally relevant exposure may not damage algal health. In the 300 μg L–1 group, DEGs were primarily enriched in the DNA replication and repair, photosynthesis, and translation pathways. Particularly, the downregulation of base and nucleotide excision repair pathways suggested that SMX may be genotoxic and cause DNA damage in alga. However, the folate biosynthesis pathway was not enriched, suggesting that SMX does not necessarily inhibit the algal growth via its mode of action in bacteria. Taken together, this study revealed the molecular mechanism of action of SMX in algal growth inhibition.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Yibo Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China.,School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| |
Collapse
|