1
|
Kim J, Kim Y, Shin J, Kim YK, Lee DH, Park JW, Lee D, Kim HC, Lee JH, Lee SH, Kim J. Fully phased genome assemblies and graph-based genetic variants of the olive flounder, Paralichthys olivaceus. Sci Data 2024; 11:1193. [PMID: 39496665 PMCID: PMC11535246 DOI: 10.1038/s41597-024-04033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
The olive flounder, Paralichthys olivaceus, also known as the Korean halibut, is an economically important flatfish in East Asian countries. Here, we provided four fully phased genome assemblies of two different olive flounder individuals using high-fidelity long-read sequencing and their parental short-read sequencing data. We obtained 42-44 Gb of ~15-kb and ~Q30 high-fidelity long reads, and their assembly quality values were ~53. We annotated ~30 K genes, ~170-Mb repetitive sequences, and ~3 M 5-methylcytosine positions for each genome assembly, and established a graph-based draft pan-genome of the olive flounder. We identified 5 M single-nucleotide variants and 100 K structural variants with their genotype information, where ~13% of the variants were possibly fixed in the two Korean individuals. Based on our chromosome-level genome assembly, we also explored chromosome evolution in the Pleuronectiformes family, as reported earlier. Our high-quality genomic resources will contribute to future genomic selection for accelerating the breeding process of the olive flounder.
Collapse
Affiliation(s)
- Julan Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Yoonsik Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeongwoen Shin
- Bigdata Center, TNT Research Co., Ltd, Wonjangdong-gil 102, Deokjin-gu, Jeollabuk-do, Jeonju-si, 54810, Korea
| | - Yeong-Kuk Kim
- Quantomic research and solution, Yuseong-gu Daejeon Tips-town, Daejeon, 34134, Korea
| | - Doo Ho Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Hyun-Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Jeong-Ho Lee
- Research and Development Planning and Coordination Department, National Institute of Fisheries Science, Busan, 46083, Korea
| | - Seung Hwan Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jun Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea.
- Department of Convergent Bioscience and Informatics, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
2
|
Jiang C, Liu S, Yang Y, Cui W, Xu S, Rasoamananto I, Lavitra T, Zhang L, Sun L. Population genomic analysis reveals a polygenic sex determination system in Apostichopus japonicus. iScience 2024; 27:110852. [PMID: 39381746 PMCID: PMC11458978 DOI: 10.1016/j.isci.2024.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
The sea cucumber Apostichopus japonicus, a key species in Chinese aquaculture, plays a significant evolutionary role within the Echinodermata phylum. However, the sex determination mechanism in this species remains poorly understood. Here, we conducted extensive sex surveys and sampling of eight wild populations, investigating the sex-related SNPs and insertion or deletions (indels) through bulk segregation analysis (BSA) and genome-wide association study (GWAS) analysis. Our findings suggest that A. japonicus employs a polygenic sex determination (PSD) system, with solute carrier family 8 (SLC8A) being the candidate gene for sex determination, encoding sodium-calcium exchanger (NCX1). The analysis of normalized sequencing depth reveals variations across chromosomes 6, 13, 14, 16, and 18, supporting the PSD system. We also identified 541.656 kb of male-specific sequences and screened five markers (C77185, C98086, C64977, C125, and C876) for molecular sex identification. Overall, this study provides new insights into A. japonicus sex determination, highlighting a complex multi-gene mechanism rather than a simple XX/XY system.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Irène Rasoamananto
- Institut Halieutique et des Sciences Marines (IH.SM), University of Toliara, Toliara, Madagascar
| | - Thierry Lavitra
- Institut Halieutique et des Sciences Marines (IH.SM), University of Toliara, Toliara, Madagascar
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse Origins of Near-Identical Antifreeze Proteins in Unrelated Fish Lineages Provide Insights Into Evolutionary Mechanisms of New Gene Birth and Protein Sequence Convergence. Mol Biol Evol 2024; 41:msae182. [PMID: 39213383 PMCID: PMC11403476 DOI: 10.1093/molbev/msae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Determining the origins of novel genes and the mechanisms driving the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. Recently evolved fish antifreeze proteins (AFPs) offer a unique opportunity to explore these processes, particularly the near-identical type I AFP (AFPI) found in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages. Through comprehensive comparative analyses of newly sequenced genomes of winter flounder and grubby sculpin, along with available high-quality genomes of cunner and 14 other related species, the study revealed that near-identical AFPI proteins originated from distinct genetic precursors in each lineage. Each lineage independently evolved a de novo coding region for the novel ice-binding protein while repurposing fragments from their respective ancestors into potential regulatory regions, representing partial de novo origination-a process that bridges de novo gene formation and the neofunctionalization of duplicated genes. The study supports existing models of new gene origination and introduces new ones: the innovation-amplification-divergence model, where novel changes precede gene duplication; the newly proposed duplication-degeneration-divergence model, which describes new functions arising from degenerated pseudogenes; and the duplication-degeneration-divergence gene fission model, where each new sibling gene differentially degenerates and renovates distinct functional domains from their parental gene. These findings highlight the diverse evolutionary pathways through which a novel functional gene with convergent sequences at the protein level can evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
Affiliation(s)
- Nathan Rives
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Vinita Lamba
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - C H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
4
|
Yu H, Du X, Chen X, Liu L, Wang X. Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination. Gen Comp Endocrinol 2024; 355:114561. [PMID: 38821217 DOI: 10.1016/j.ygcen.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (amhy, gsdfy, gdf6), receptors (amhr, bmpr), and regulator (id2bby), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xinxin Du
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xue Chen
- School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong, China
| | - Longxue Liu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
5
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse origins of near-identical antifreeze proteins in unrelated fish lineages provide insights into evolutionary mechanisms of new gene birth and protein sequence convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584730. [PMID: 38559027 PMCID: PMC10980009 DOI: 10.1101/2024.03.12.584730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Determining the origins of novel genes and the genetic mechanisms underlying the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. The convergently evolved fish antifreeze proteins provide excellent opportunities to investigate evolutionary origins and pathways of new genes. Particularly notable is the near-identical type I antifreeze proteins (AFPI) in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages, revealing different paths by which a similar protein arose from diverse genomic resources. Comprehensive comparative analyses of de novo sequenced genome of the winter flounder and grubby sculpin, available high-quality genome of the cunner and 14 other relevant species found that the near-identical AFPI originated from a distinct genetic precursor in each lineage. Each independently evolved a coding region for the novel ice-binding protein while retaining sequence identity in the regulatory regions with their respective ancestor. The deduced evolutionary processes and molecular mechanisms are consistent with the Innovation-Amplification-Divergence (IAD) model applicable to AFPI formation in all three lineages, a new Duplication-Degeneration-Divergence (DDD) model we propose for the sculpin lineage, and a DDD model with gene fission for the cunner lineage. This investigation illustrates the multiple ways by which a novel functional gene with sequence convergence at the protein level could evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
|
6
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Lopez-Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson WA, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of anti-Mullerian hormone receptor type 2 as a candidate master sex-determining gene in Percidae. BMC Biol 2024; 22:141. [PMID: 38926709 PMCID: PMC11209984 DOI: 10.1186/s12915-024-01935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany.
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cédric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | | | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wesley A Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Auke Bay LaboratoriesJuneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | | |
Collapse
|
7
|
Villarreal F, Burguener GF, Sosa EJ, Stocchi N, Somoza GM, Turjanski AG, Blanco A, Viñas J, Mechaly AS. Genome sequencing and analysis of black flounder (Paralichthys orbignyanus) reveals new insights into Pleuronectiformes genomic size and structure. BMC Genomics 2024; 25:297. [PMID: 38509481 PMCID: PMC10956332 DOI: 10.1186/s12864-024-10081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/02/2024] [Indexed: 03/22/2024] Open
Abstract
Black flounder (Paralichthys orbignyanus, Pleuronectiformes) is a commercially significant marine fish with promising aquaculture potential in Argentina. Despite extensive studies on Black flounder aquaculture, its limited genetic information available hampers the crucial role genetics plays in the development of this activity. In this study, we first employed Illumina sequencing technology to sequence the entire genome of Black flounder. Utilizing two independent libraries-one from a female and another from a male-with 150 bp paired-end reads, a mean insert length of 350 bp, and over 35 X-fold coverage, we achieved assemblies resulting in a genome size of ~ 538 Mbp. Analysis of the assemblies revealed that more than 98% of the core genes were present, with more than 78% of them having more than 50% coverage. This indicates a somehow complete and accurate genome at the coding sequence level. This genome contains 25,231 protein-coding genes, 445 tRNAs, 3 rRNAs, and more than 1,500 non-coding RNAs of other types. Black flounder, along with pufferfishes, seahorses, pipefishes, and anabantid fish, displays a smaller genome compared to most other teleost groups. In vertebrates, the number of transposable elements (TEs) is often correlated with genome size. However, it remains unclear whether the sizes of introns and exons also play a role in determining genome size. Hence, to elucidate the potential factors contributing to this reduced genome size, we conducted a comparative genomic analysis between Black flounder and other teleost orders to determine if the small genomic size could be explained by repetitive elements or gene features, including the whole genome genes and introns sizes. We show that the smaller genome size of flounders can be attributed to several factors, including changes in the number of repetitive elements, and decreased gene size, particularly due to lower amount of very large and small introns. Thus, these components appear to be involved in the genome reduction in Black flounder. Despite these insights, the full implications and potential benefits of genome reduction in Black flounder for reproduction and aquaculture remain incompletely understood, necessitating further research.
Collapse
Affiliation(s)
- Fernando Villarreal
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Germán F Burguener
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Nicolas Stocchi
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés Blanco
- Facultade de Veterinaria, Universidade de Santiago de Compostela, Santiago de Compostela, Lugo, Spain
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jordi Viñas
- Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Maria Aurèlia Campmany, 40, Girona, Spain
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina.
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| |
Collapse
|
8
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
9
|
Simchick C, Bolstad K, Simeon A, Planas JV. Endocrine patterns associated with ovarian development in female Pacific halibut (Hippoglossus stenolepis). Gen Comp Endocrinol 2024; 347:114425. [PMID: 38101488 DOI: 10.1016/j.ygcen.2023.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The Pacific halibut (Hippoglossus stenolepis) is a large migratory demersal flatfish species that occupies a top trophic role in the North Pacific Ocean and Bering Sea ecosystems, where it also supports various fisheries. As a first attempt to characterize the endocrine mechanisms driving sexual maturation in this important species, we collected pituitary, ovarian and blood samples from Pacific halibut females captured in the wild that were classified histologically into various female developmental stages. We conducted gene expression analyses of gonadotropin beta subunits in the pituitary and observed that mRNA expression levels of fshb gradually increased throughout vitellogenesis, remained elevated until before ovulation and declined after spawning. In contrast, the mRNA expression levels of lhb markedly increased during oocyte maturation and remained elevated until after spawning. Ovarian mRNA expression levels of the gonadotropin receptor genes fshr and lhr peaked during oocyte maturation and before spawning, respectively, immediately following the developmental stage at which pituitary fshb and lhb mRNA expression first reached maximum levels. The ovarian gene expression patterns of steroidogenic enzyme genes cyp19a1 and hsd20b2 paralleled those of fshr and lhr, respectively. Testosterone and 17β-estradiol (E2) plasma levels increased concomitantly with fshr and cyp19a1 mRNA expression levels, and vitellogenin plasma levels increased throughout vitellogenesis and reached maximum levels prior to spawning. These results are consistent with the notion that in female Pacific halibut, as in other teleosts, vitellogenesis and oocyte maturation and ovulation are likely under the control of pituitary gonadotropic hormones Fsh and Lh, respectively.
Collapse
Affiliation(s)
- Crystal Simchick
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA
| | - Kennedy Bolstad
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA
| | - Anna Simeon
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA
| | - Josep V Planas
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA.
| |
Collapse
|
10
|
Xu XW, Sun P, Gao C, Zheng W, Chen S. Assembly of the poorly differentiated Verasper variegatus W chromosome by different sequencing technologies. Sci Data 2023; 10:893. [PMID: 38092799 PMCID: PMC10719390 DOI: 10.1038/s41597-023-02790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
The assembly of W and Y chromosomes poses significant challenges in vertebrate genome sequencing and assembly. Here, we successfully assembled the W chromosome of Verasper variegatus with a length of 20.48 Mb by combining population and PacBio HiFi sequencing data. It was identified as a young sex chromosome and showed signs of expansion in repetitive sequences. The major component of the expansion was Ty3/Gypsy. The ancestral Osteichthyes karyotype consists of 24 protochromosomes. The sex chromosomes in four Pleuronectiformes species derived from a pair of homologous protochromosomes resulting from a whole-genome duplication event in teleost fish, yet with different sex-determination systems. V. variegatus and Cynoglossus semilaevis adhere to the ZZ/ZW system, while Hippoglossus stenolepis and H. hippoglossus follow the XX/XY system. Interestingly, V. variegatus and H. hippoglossus derived from one protochromosome, while C. semilaevis and H. stenolepis derived from another protochromosome. Our study provides valuable insights into the evolution of sex chromosomes in flatfish and sheds light on the important role of whole-genome duplication in shaping the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Xi-Wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chengbin Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
11
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson W, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of the anti-Mullerian hormone receptor type 2 gene, an old master sex determining gene, in Percidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566804. [PMID: 38014084 PMCID: PMC10680665 DOI: 10.1101/2023.11.13.566804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, Indiana, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cedric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | | | - Thomas Lecocq
- University of Lorraine, INRAE, UR AFPA, Nancy, France
| | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wes Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Point Lena Loop Road, Juneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | | |
Collapse
|
12
|
Weise EM, Van Wyngaarden M, Den Heyer C, Mills Flemming J, Kess T, Einfeldt AL, Fisher JAD, Ditta R, Pare G, Ruzzante DE. SNP Panel and Genomic Sex Identification in Atlantic Halibut (Hippoglossus hippoglossus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:580-587. [PMID: 37351707 DOI: 10.1007/s10126-023-10227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The ability to identify sex is necessary in population biology for a proper understanding of the dynamics of a population. In Atlantic halibut, phenotypic sex identification is not possible due to the lack of significant external morphological differences. We developed an Illumina SNP panel for Atlantic halibut with 4000 SNPs spread evenly throughout the genome with a minor allele frequency MAF ≥ 0.4, except for N = 249 SNPs located in a sex-determining region on chromosome 12, N = 176 of these SNPs were selected to genetically identify male and female individuals using a DAPC analysis. The genomic identification of sex allows for non-lethal sex determination and validation of sex identification in the field. The SNP panel is a new genomic resource for Atlantic halibut that will make it possible to generate the genotypic data for the large number of individuals needed to estimate population abundance using genomics and the Close Kin Mark Recapture (CKMR) approach, an emerging component of fisheries management and stock monitoring.
Collapse
Affiliation(s)
- Ellen M Weise
- Department of Biology, Dalhousie University, 1355 Oxford St, B3H 4R2, Halifax, NS, Canada.
| | - Mallory Van Wyngaarden
- Department of Biology, Dalhousie University, 1355 Oxford St, B3H 4R2, Halifax, NS, Canada
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Cornelia Den Heyer
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, B2Y 4A2, Dartmouth, NS, Canada
| | - Joanna Mills Flemming
- Department of Mathematics & Statistics, Dalhousie University, 6316 Coburg Rd, B3H 4R2, Halifax, NS, Canada
| | - Tony Kess
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, B2Y 4A2, Dartmouth, NS, Canada
| | - Anthony L Einfeldt
- Department of Biology, Dalhousie University, 1355 Oxford St, B3H 4R2, Halifax, NS, Canada
- Parks Canada, East Kootenay, BC, Canada
| | - Jonathan A D Fisher
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, 155 Ridge Rd, A1C 5R3, St. John's, NL, Canada
| | - Reina Ditta
- Population Health Research Institute, 237 Barton Street, East Hamilton, ON, L8L 2X2, Canada
| | - Guillaume Pare
- Population Health Research Institute, 237 Barton Street, East Hamilton, ON, L8L 2X2, Canada
| | - Daniel E Ruzzante
- Department of Biology, Dalhousie University, 1355 Oxford St, B3H 4R2, Halifax, NS, Canada.
| |
Collapse
|