1
|
Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol 2024; 15:1334109. [PMID: 38481996 PMCID: PMC10932975 DOI: 10.3389/fimmu.2024.1334109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background As a damage-associated molecular pattern protein, high mobility group box 1 (HMGB1) is associated with kidney and systemic inflammation. The predictive and therapeutic value of HMGB1 as a biomarker has been confirmed in various diseases. However, its value in diabetic kidney disease (DKD) remains unclear. Therefore, this study aimed to investigate the correlation between serum and urine HMGB1 levels and DKD progression. Methods We recruited 196 patients with type 2 diabetes mellitus (T2DM), including 109 with DKD and 87 T2DM patients without DKD. Additionally, 60 healthy participants without T2DM were also recruited as controls. Serum and urine samples were collected for HMGB1 analysis. Simultaneously, tumor necrosis factor receptor superfamily member 1A (TNFR-1) in serum and kidney injury molecule (KIM-1) in urine samples were evaluated for comparison. Results Serum and urine HMGB1 levels were significantly higher in patients with DKD than in patients with T2DM and healthy controls. Additionally, serum HMGB1 levels significantly and positively correlated with serum TNFR-1 (R 2 = 0.567, p<0.001) and urine KIM-1 levels (R 2 = 0.440, p<0.001), and urine HMGB1 has a similar correlation. In the population with T2DM, the risk of DKD progression increased with an increase in serum HMGB1 levels. Multivariate logistic regression analysis showed that elevated serum HMGB1 level was an independent risk factor for renal function progression in patients with DKD, and regression analysis did not change in the model corrected for multiple variables. The restricted cubic spline depicted a nonlinear relationship between serum HMGB1 and renal function progression in patients with DKD (p-nonlinear=0.007, p<0.001), and this positive effect remained consistent across subgroups. Conclusion Serum HMGB1 was significantly correlated with DKD and disease severity. When the HMGB1 level was ≥27 ng/ml, the risk of renal progression increased sharply, indicating that serum HMGB1 can be used as a potential biomarker for the diagnosis of DKD progression.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yanmei Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Xiai Wu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Tingting Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
2
|
Jia L, Li X, Shen J, Teng Y, Zhang B, Zhang M, Gu Y, Xu H. Ang-1, Ang-2, and Tie2 are diagnostic biomarkers for Henoch-Schönlein purpura and pediatric-onset systemic lupus erythematous. Open Life Sci 2024; 19:20220812. [PMID: 38465338 PMCID: PMC10921503 DOI: 10.1515/biol-2022-0812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 03/12/2024] Open
Abstract
Henoch-Schönlein purpura (HSP) and pediatric-onset systemic lupus erythematosus (pSLE) are closely associated with vasculitis and vascular diseases. This study aimed to investigate the clinical diagnostic values of Ang-1, Ang-2, and Tie2 for HSP and pSLE. We surveyed 82 HSP patients, 34 pSLE patients, and 10 healthy children. The expression levels of Ang-1, Ang-2, and Tie2 in the serum and urine were assessed using enzyme-linked immunosorbent assay. The diagnostic values of Ang-1, Ang-2, and Tie2 for HSP and pSLE were evaluated using receiver operating characteristic curve analysis. The results revealed that the serum and urine expression levels of Ang-2 and Tie2 were significantly elevated in HSP and pSLE patients, whereas the Ang-1/Ang-2 values were reduced. Additionally, Ang-1 was highly expressed in the serum and urine of HSP patients and in the serum of pSLE patients. Ang-1, Ang-2, and Tie2 showed differential expression in various types of HSP and pSLE compared with their expression in healthy controls. In summary, Ang-1, Ang-2, and Tie2 can serve as biomarkers for HSP and pSLE. Moreover, Ang-1/Ang-2 values are reduced in HSP and pSLE patients. Ang-1, Ang-2, and Tie2 can be used as biomarkers for HSP and pSLE.
Collapse
Affiliation(s)
- Lishan Jia
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, No. 58 Changsheng South Road, Taicang City, Jiangsu Province, 215400, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, No. 303 Jingde Road, Gusu District, Suzhou City, Jiangsu Province, 215003, China
| | - Jiayun Shen
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, No. 58 Changsheng South Road, Taicang City, Jiangsu Province, 215400, China
| | - Yan Teng
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, No. 58 Changsheng South Road, Taicang City, Jiangsu Province, 215400, China
| | - Baoqin Zhang
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, No. 58 Changsheng South Road, Taicang City, Jiangsu Province, 215400, China
| | - Min Zhang
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, No. 58 Changsheng South Road, Taicang City, Jiangsu Province, 215400, China
| | - Yueqin Gu
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, No. 58 Changsheng South Road, Taicang City, Jiangsu Province, 215400, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, No. 399 Wanyuan Road, Minhang District, Shanghai City, 201102, China
| |
Collapse
|
3
|
Li SJ, Ruan DD, Wu WZ, Wu M, Wu QY, Wang HL, Ji YY, Zhang YP, Lin XF, Fang ZT, Liao LS, Luo JW, Gao MZ, Wu JB. Potential regulatory role of the Nrf2/HMGB1/TLR4/NF-κB signaling pathway in lupus nephritis. Pediatr Rheumatol Online J 2023; 21:130. [PMID: 37872565 PMCID: PMC10594751 DOI: 10.1186/s12969-023-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVES Systemic lupus erythematosus is an autoimmune disease that involves multiple organ systems. One of its major complications, lupus nephritis (LN), is associated with a high mortality rate, and children-onset LN have a more severe course and worse prognosis than adults. Oxidative stress and inflammatory responses are involved in LN development and pathogenesis. Thus, this study aimed to explore the role of signaling regulation of the Nrf2/HMGB1/TLR/NF-κB pathway in LN pathogenesis and unravel the expression of TLR4+CXCR4+ plasma cells subset (PCs) in LN. METHODS C57BL/6 and MRL/lpr mice were divided into four groups: control, model, vector control, and Nrf2 overexpression groups. The vector control and Nrf2 overexpression groups were injected with adenoviral vectors into the kidney in situ. Pathological changes in kidney tissues were observed by hematoxylin-eosin staining. The expression of Nrf2, HMGB1, TLR4, NF-κB, and downstream inflammatory factors in kidney samples was analyzed by quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The ratios of TLR4+CXCR4+ PC subsets in the blood and kidneys of mice were determined by flow cytometry. RESULTS In MRL/lpr mice, Nrf2 was downregulated while HMGB1/TLR4/NF-κB pathway proteins were upregulated. Nrf2 overexpression decreased the expression of HMGB1, TLR4, NF-κB, and its downstream inflammatory cytokines (IL-1β and TNFα). These cytokines were negatively correlated with an increase in Nrf2 content. PC and TLR4 + CXCR4 + PCs in the blood and kidney samples were significantly increased in MRL/lpr mice; however, they were decreased upon Nrf2 overexpression. CONCLUSION This study showed severe kidney injury in an LN mouse model and an increased ratio of TLR4 + CXCR4 + PCs. Furthermore, we observed that Nrf2 regulates LN immune response through the Nrf2/HMGB1/TLR4/NF-κB pathway, which can be considered an important target for LN treatment. The clinical value of the findings of our study requires further investigation.
Collapse
Affiliation(s)
- Shi-Jie Li
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Dan-Dan Ruan
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Wei-Zhen Wu
- Xiyuan Clinical Medical College of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Min Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qiu-Yan Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Han-Lu Wang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yuan-Yuan Ji
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yan-Ping Zhang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xin-Fu Lin
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Zhu-Ting Fang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Li-Sheng Liao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jie-Wei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Mei-Zhu Gao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jia-Bin Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- School of Medicine, Fuzhou Second Hospital, Xiamen University, Fuzhou, 350007, China.
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China.
| |
Collapse
|
4
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
5
|
Li B, Peng X, Li H, Chen F, Chen Y, Zhang Y, Le K. The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:8-30. [PMID: 33140586 PMCID: PMC7860603 DOI: 10.1002/iid3.370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitously expressed nonhistone nuclear protein high-mobility group box protein 1 (HMGB1) has different functions related to posttranslational modifications and cellular localization. In the nucleus, HMGB1 modulates gene transcription, replication and DNA repair as well as determines chromosomal architecture. When the post-transcriptional modified HMGB1 is released into the extracellular space, it triggers several physiological and pathological responses and initiates innate immunity through interacting with its reciprocal receptors (i.e., TLR4/2 and RAGE). The effect of HMGB1-mediated inflammatory activation on different systems has received increasing attention. HMGB1 is now considered to be an alarmin and participates in multiple inflammation-related diseases. In addition, HMGB1 also affects the occurrence and progression of tumors. However, most studies involving HMGB1 have been focused on adults or mature animals. Due to differences in disease characteristics between children and adults, it is necessary to clarify the role of HMGB1 in pediatric diseases. METHODS AND RESULTS Through systematic database retrieval, this review aimed to first elaborate the characteristics of HMGB1 under physiological and pathological conditions and then discuss the clinical significance of HMGB1 in the pediatric diseases according to different systems. CONCLUSIONS HMGB1 plays an important role in a variety of pediatric diseases and may be used as a diagnostic biomarker and therapeutic target for new strategies for the prevention and treatment of pediatric diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin Peng
- Department of Otolaryngology, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - He Li
- Department of Urology Surgery, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Chen
- Department of Child Health Care, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Rehabilitation Centre, Children's Hospital, Chongqing Medical University, Chongqing, Yuzhong, China
| | - Yingqian Zhang
- Department of Cardiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|