1
|
Cookson AL, Devane M, Marshall JC, Moinet M, Gardner A, Collis RM, Rogers L, Biggs PJ, Pita AB, Cornelius AJ, Haysom I, Hayman DTS, Gilpin BJ, Leonard M. Population structure and pathogen interaction of Escherichia coli in freshwater: Implications of land-use for water quality and public health in Aotearoa New Zealand. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13319. [PMID: 39096033 PMCID: PMC11297283 DOI: 10.1111/1758-2229.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.
Collapse
Affiliation(s)
- Adrian L. Cookson
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
- Institute of Environmental Science and ResearchKenepuru Science CentrePoriruaNew Zealand
| | - Meg Devane
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - Jonathan C. Marshall
- School of Mathematical and Computational SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Marie Moinet
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - Amanda Gardner
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
| | - Rose M. Collis
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
| | - Lynn Rogers
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
| | - Patrick J. Biggs
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
- School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Anthony B. Pita
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - Iain Haysom
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - David T. S. Hayman
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Brent J. Gilpin
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - Margaret Leonard
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| |
Collapse
|
2
|
Wu Z, Chi H, Han T, Li G, Wang J, Chen W. Differences of Escherichia coli isolated from different organs of the individual sheep: molecular typing, antibiotics resistance, and biofilm formation. Folia Microbiol (Praha) 2024; 69:567-578. [PMID: 37540315 DOI: 10.1007/s12223-023-01082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Despite numerous studies on Escherichia coli (E. coli) from sheep, there have been few reports on the characterization of E. coli isolates from various organs of individual sheep until now. The present study conducted molecular typing, antibiotics resistance, biofilm formation, and virulence genes on E. coli isolated from 57 freshly slaughtered apparently healthy sheep carcasses, gallbladders, fecal samples, and mesenteric lymph nodes (MLNs). The results demonstrated that the detection rate of R1 LPS core type in E. coli isolated from fecal samples (70.83%) was higher than that from other organs, but the detection rate of antibiotic resistance genes was lower (P < 0.05). The predominant phylogenetic group of E. coli isolated from the carcasses was group B1 (93.33%), and the detection rate of multidrug-resistance phenotype (80%) and the resistance rate of E. coli was higher than that from other organs (P < 0.05). Interestingly, the intensity of biofilm formation of E. coli isolated from MLNs was higher than that from other organs (P < 0.05). However, except for ibeB, the detection rates of virulence genes did not differ in E.coli isolated from different organs. In conclusion, differences were noted in these parameters of E. coli isolated from different organs of individual sheep. Therefore, the data may contain considerable mistakes concerning the actual situation in the host if we only analyze the data of E. coli isolated from feces or carcasses.
Collapse
Affiliation(s)
- Zihao Wu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Haoming Chi
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Tingting Han
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Guangxi Li
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Jixue Wang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Sciences and Technology, Tarim University, Alar, 86-843300, China.
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, College of Animal Sciences and Technology, Tarim University, Alar, 86-843300, China.
| |
Collapse
|
3
|
Lagerstrom KM, Scales NC, Hadly EA. Impressive pan-genomic diversity of E. coli from a wild animal community near urban development reflects human impacts. iScience 2024; 27:109072. [PMID: 38375235 PMCID: PMC10875580 DOI: 10.1016/j.isci.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Human and domesticated animal waste infiltrates global freshwater, terrestrial, and marine environments, widely disseminating fecal microbes, antibiotics, and other chemical pollutants. Emerging evidence suggests that guts of wild animals are being invaded by our microbes, including Escherichia coli, which face anthropogenic selective pressures to gain antimicrobial resistance (AMR) and increase virulence. However, wild animal sources remain starkly under-represented among genomic sequence repositories. We sequenced whole genomes of 145 E. coli isolates from 55 wild and 13 domestic animal fecal samples, averaging 2 (ranging 1-7) isolates per sample, on a preserve imbedded in a human-dominated landscape in California Bay Area, USA, to assess AMR, virulence, and pan-genomic diversity. With single nucleotide polymorphism analyses we predict potential transmission routes. We illustrate the usefulness of E. coli to aid our understanding of and ability to surveil the emergence of zoonotic pathogens created by the mixing of human and wild bacteria in the environment.
Collapse
Affiliation(s)
| | - Nicholas C. Scales
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, USA
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Moreira de Gouveia MI, Bernalier-Donadille A, Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. BIOLOGY 2024; 13:142. [PMID: 38534413 DOI: 10.3390/biology13030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The human gut microbiota plays a crucial role in maintaining host health. Our review explores the prevalence and dynamics of Enterobacteriaceae, a bacterial family within the Proteobacteria phylum, in the human gut which represents a small fraction of the gut microbiota in healthy conditions. Even though their roles are not yet fully understood, Enterobacteriaceae and especially Escherichia coli (E. coli) play a part in creating an anaerobic environment, producing vitamins and protecting against pathogenic infections. The composition and residency of E. coli strains in the gut fluctuate among individuals and is influenced by many factors such as geography, diet and health. Dysbiosis, characterized by alterations in the microbial composition of the gut microbiota, is associated with various diseases, including obesity, inflammatory bowel diseases and metabolic disorders. A consistent pattern in dysbiosis is the expansion of Proteobacteria, particularly Enterobacteriaceae, which has been proposed as a potential marker for intestinal and extra-intestinal inflammatory diseases. Here we develop the potential mechanisms contributing to Enterobacteriaceae proliferation during dysbiosis, including changes in oxygen levels, alterations in mucosal substrates and dietary factors. Better knowledge of these mechanisms is important for developing strategies to restore a balanced gut microbiota and reduce the negative consequences of the Enterobacteriaceae bloom.
Collapse
Affiliation(s)
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Lagerstrom KM, Hadly EA. Under-Appreciated Phylogroup Diversity of Escherichia coli within and between Animals at the Urban-Wildland Interface. Appl Environ Microbiol 2023:e0014223. [PMID: 37191541 DOI: 10.1128/aem.00142-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Wild animals have been implicated as reservoirs and even "melting pots" of pathogenic and antimicrobial-resistant bacteria of concern to human health. Though Escherichia coli is common among vertebrate guts and plays a role in the propagation of such genetic information, few studies have explored its diversity beyond humans nor the ecological factors that influence its diversity and distribution in wild animals. We characterized an average of 20 E. coli isolates per scat sample (n = 84) from a community of 14 wild and 3 domestic species. The phylogeny of E. coli comprises 8 phylogroups that are differentially associated with pathogenicity and antibiotic resistance, and we uncovered all of them in one small biological preserve surrounded by intense human activity. Challenging previous assumptions that a single isolate is representative of within-host phylogroup diversity, 57% of individual animals sampled carried multiple phylogroups simultaneously. Host species' phylogroup richness saturated at different levels across species and encapsulated vast within-sample and within-species variation, indicating that distribution patterns are influenced both by isolation source and laboratory sampling depth. Using ecological methods that ensure statistical relevance, we identify trends in phylogroup prevalence associated with host and environmental factors. The vast genetic diversity and broad distribution of E. coli in wildlife populations has implications for biodiversity conservation, agriculture, and public health, as well as for gauging unknown risks at the urban-wildland interface. We propose critical directions for future studies of the "wild side" of E. coli that will expand our understanding of its ecology and evolution beyond the human environment. IMPORTANCE To our knowledge, neither the phylogroup diversity of E. coli within individual wild animals nor that within an interacting multispecies community have previously been assessed. In doing so, we uncovered the globally known phylogroup diversity from an animal community on a preserve imbedded in a human-dominated landscape. We revealed that the phylogroup composition in domestic animals differed greatly from that in their wild counterparts, implying potential human impacts on the domestic animal gut. Significantly, many wild individuals hosted multiple phylogroups simultaneously, indicating the potential for strain-mixing and zoonotic spillback, especially as human encroachment into wildlands increases in the Anthropocene. We reason that due to extensive anthropogenic environmental contamination, wildlife is increasingly exposed to our waste, including E. coli and antibiotics. The gaps in the ecological and evolutionary understanding of E. coli thus necessitate a significant uptick in research to better understand human impacts on wildlife and the risk for zoonotic pathogen emergence.
Collapse
Affiliation(s)
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, California, USA
- Jasper Ridge Biological Preserve, Stanford University, Stanford, California, USA
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Evidence for a Causal Role for Escherichia coli Strains Identified as Adherent-Invasive (AIEC) in Intestinal Inflammation. mSphere 2023; 8:e0047822. [PMID: 36883813 PMCID: PMC10117065 DOI: 10.1128/msphere.00478-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.
Collapse
|
7
|
Behruznia M, Gordon DM. Molecular and metabolic characteristics of wastewater associated Escherichia coli strains. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:646-654. [PMID: 35638456 PMCID: PMC9543349 DOI: 10.1111/1758-2229.13076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/04/2023]
Abstract
We previously characterized the genetic diversity of Escherichia coli strains isolated from septic tanks in the Canberra region, Australia. In this study, we used repetitive element palindromic (REP) PCR fingerprinting to identify dominant REP-types belonging to phylogroups A and B1 strains across septic tanks. Subsequently, 76 E. coli strains were selected for whole-genome sequencing and phenotype microarrays. Comparative genome analysis was performed to compare septic tank E. coli genomes with a collection of 433 E. coli isolates from different hosts and freshwater. Clonal complexes (CCs) 10 (n = 15) and 399 (n = 10) along with sequence type (ST) 401 (n = 9) were the common lineages in septic tanks. CC10 strains have been detected from animal hosts and freshwater, whereas CC399 and ST401 strains appeared to be associated with septic tanks as they were uncommon in isolates from other sources. Comparative genome analysis revealed that CC399 and ST401 were genetically distinct from other isolates and carried an abundance of niche-specific traits involved in environmental adaptation. These strains also showed distinct metabolic characteristics, such as the ability to utilize pectin, which may provide a fitness advantage under nutrient-limited conditions. The results of this study characterized the adaptive mechanisms allowing E. coli to persist in wastewater.
Collapse
Affiliation(s)
- Mahboobeh Behruznia
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - David M. Gordon
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
8
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
9
|
Behruznia M, O'Brien CL, Gordon DM. Prevalence, diversity and genetic structure of Escherichia coli isolates from septic tanks. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:138-146. [PMID: 34918455 DOI: 10.1111/1758-2229.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The present study investigated the diversity and genetic structure of Escherichia coli isolates from 100 septic tanks in the Canberra region, Australia. The physicochemical characteristics of the septic tanks were determined to examine the extent to which environmental factors might influence E. coli prevalence, diversity and population structure. The results of this study indicated that the temperature of the septic tank could explain some of the variation observed in the number of E. coli isolates recovered per septic tank, whereas pH was an important driver of E. coli diversity. Conductivity, pH and household size had a significant impact on E. coli population structure, and household size significantly affected the probability of detecting human-associated E. coli lineages [sequence types (STs) 69, 73, 95 and 131] in septic tanks. Phylogroup A and B1 strains were not randomly distributed among septic tanks, and the strong negative association between them may indicate intraspecific competition. The findings of this study suggest that the combination of environmental factors and intraspecific interactions may influence the distribution and genetic structure of E. coli in the environment.
Collapse
Affiliation(s)
- Mahboobeh Behruznia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Claire L O'Brien
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, 2617, Australia
| | - David M Gordon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
10
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
11
|
Montes-Robledo A, Baldiris-Avila R, Galindo JF. D-Mannoside FimH Inhibitors as Non-Antibiotic Alternatives for Uropathogenic Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10091072. [PMID: 34572654 PMCID: PMC8465801 DOI: 10.3390/antibiotics10091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
FimH is a type I fimbria of uropathogenic Escherichia coli (UPEC), recognized for its ability to adhere and infect epithelial urinary tissue. Due to its role in the virulence of UPEC, several therapeutic strategies have focused on the study of FimH, including vaccines, mannosides, and molecules that inhibit their assembly. This work has focused on the ability of a set of monosubstituted and disubstituted phenyl mannosides to inhibit FimH. To determine the 3D structure of FimH for our in silico studies, we obtained fifteen sequences by PCR amplification of the fimH gene from 102 UPEC isolates. The fimH sequences in BLAST had a high homology (97–100%) to our UPEC fimH sequences. A search for the three-dimensional crystallographic structure of FimH proteins in the PDB server showed that proteins 4X5P and 4XO9 were found in 10 of the 15 isolates, presenting a 67% influx among our UPEC isolates. We focused on these two proteins to study the stability, free energy, and the interactions with different mannoside ligands. We found that the interactions with the residues of aspartic acid (ASP 54) and glutamine (GLN 133) were significant to the binding stability. The ligands assessed demonstrated high binding affinity and stability with the lectin domain of FimH proteins during the molecular dynamic simulations, based on MM-PBSA analysis. Therefore, our results suggest the potential utility of phenyl mannoside derivatives as FimH inhibitors to mitigate urinary tract infections produced by UPEC; thus, decreasing colonization, disease burden, and the costs of medical care.
Collapse
Affiliation(s)
- Alfredo Montes-Robledo
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
| | - Rosa Baldiris-Avila
- Grupo de Investigación Microbiología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias 13001, Colombia;
- Maestría en Microbiología, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 13001, Colombia
- Grupo de Investigación CIPTEC, Facultad de Ingeniería, Fundacion Universitaria Tecnologico Comfenalco—Cartagena, Cartagena de Indias 13001, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 11321, Colombia
- Correspondence: (R.B.-A.); (J.F.G.)
| |
Collapse
|
12
|
Foster-Nyarko E, Alikhan NF, Ikumapayi UN, Sarwar G, Okoi C, Tientcheu PEM, Defernez M, O'Grady J, Antonio M, Pallen MJ. Genomic diversity of Escherichia coli from healthy children in rural Gambia. PeerJ 2021; 9:e10572. [PMID: 33505796 PMCID: PMC7796664 DOI: 10.7717/peerj.10572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Little is known about the genomic diversity of Escherichia coli in healthy children from sub-Saharan Africa, even though this is pertinent to understanding bacterial evolution and ecology and their role in infection. We isolated and whole-genome sequenced up to five colonies of faecal E. coli from 66 asymptomatic children aged three-to-five years in rural Gambia (n = 88 isolates from 21 positive stools). We identified 56 genotypes, with an average of 2.7 genotypes per host. These were spread over 37 seven-allele sequence types and the E. coli phylogroups A, B1, B2, C, D, E, F and Escherichia cryptic clade I. Immigration events accounted for three-quarters of the diversity within our study population, while one-quarter of variants appeared to have arisen from within-host evolution. Several isolates encode putative virulence factors commonly found in Enteropathogenic and Enteroaggregative E. coli, and 53% of the isolates encode resistance to three or more classes of antimicrobials. Thus, resident E. coli in these children may constitute reservoirs of virulence- and resistance-associated genes. Moreover, several study strains were closely related to isolates that caused disease in humans or originated from livestock. Our results suggest that within-host evolution plays a minor role in the generation of diversity compared to independent immigration and the establishment of strains among our study population. Also, this study adds significantly to the number of commensal E. coli genomes, a group that has been traditionally underrepresented in the sequencing of this species.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom.,Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Usman N Ikumapayi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Golam Sarwar
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Catherine Okoi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Marianne Defernez
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom
| | - Justin O'Grady
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia.,Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom.,School of Veterinary Medicine, University of Surrey, Surrey, United Kingdom
| |
Collapse
|
13
|
Ramiro RS, Durão P, Bank C, Gordo I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol 2020; 18:e3000617. [PMID: 32155146 PMCID: PMC7064181 DOI: 10.1371/journal.pbio.3000617] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10−4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community. Weak-effect deleterious mutations and negative frequency–dependent selection, acting on beneficial mutations, shape the dynamics of molecular evolution within the mouse gut microbiota.
Collapse
Affiliation(s)
- Ricardo S. Ramiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| |
Collapse
|
14
|
Hendriks ACA, Reubsaet FAG, Kooistra-Smid AMDM, Rossen JWA, Dutilh BE, Zomer AL, van den Beld MJC. Genome-wide association studies of Shigella spp. and Enteroinvasive Escherichia coli isolates demonstrate an absence of genetic markers for prediction of disease severity. BMC Genomics 2020; 21:138. [PMID: 32041522 PMCID: PMC7011524 DOI: 10.1186/s12864-020-6555-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND We investigated the association of symptoms and disease severity of shigellosis patients with genetic determinants of infecting Shigella and entero-invasive Escherichia coli (EIEC), because determinants that predict disease outcome per individual patient could be used to prioritize control measures. For this purpose, genome wide association studies (GWAS) were performed using presence or absence of single genes, combinations of genes, and k-mers. All genetic variants were derived from draft genome sequences of isolates from a multicenter cross-sectional study conducted in the Netherlands during 2016 and 2017. Clinical data of patients consisting of binary/dichotomous representation of symptoms and their calculated severity scores were also available from this study. To verify the suitability of the methods used, the genetic differences between the genera Shigella and Escherichia were used as control. RESULTS The isolates obtained were representative of the population structure encountered in other Western European countries. No association was found between single genes or combinations of genes and separate symptoms or disease severity scores. Our benchmark characteristic, genus, resulted in eight associated genes and > 3,000,000 k-mers, indicating adequate performance of the algorithms used. CONCLUSIONS To conclude, using several microbial GWAS methods, genetic variants in Shigella spp. and EIEC that can predict specific symptoms or a more severe course of disease were not identified, suggesting that disease severity of shigellosis is dependent on other factors than the genetic variation of the infecting bacteria. Specific genes or gene fragments of isolates from patients are unsuitable to predict outcomes and cannot be used for development, prioritization and optimization of guidelines for control measures of shigellosis or infections with EIEC.
Collapse
Affiliation(s)
- Amber C A Hendriks
- Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Frans A G Reubsaet
- Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A M D Mirjam Kooistra-Smid
- Department of Medical Microbiology, Certe, Groningen, the Netherlands
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maaike J C van den Beld
- Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Panyukov VV, Kiselev SS, Ozoline ON. Unique k-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling. Int J Mol Sci 2020; 21:ijms21030944. [PMID: 32023871 PMCID: PMC7037511 DOI: 10.3390/ijms21030944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The need for a comparative analysis of natural metagenomes stimulated the development of new methods for their taxonomic profiling. Alignment-free approaches based on the search for marker k-mers turned out to be capable of identifying not only species, but also strains of microorganisms with known genomes. Here, we evaluated the ability of genus-specific k-mers to distinguish eight phylogroups of Escherichia coli (A, B1, C, E, D, F, G, B2) and assessed the presence of their unique 22-mers in clinical samples from microbiomes of four healthy people and four patients with Crohn's disease. We found that a phylogenetic tree inferred from the pairwise distance matrix for unique 18-mers and 22-mers of 124 genomes was fully consistent with the topology of the tree, obtained with concatenated aligned sequences of orthologous genes. Therefore, we propose strain-specific "barcodes" for rapid phylotyping. Using unique 22-mers for taxonomic analysis, we detected microbes of all groups in human microbiomes; however, their presence in the five samples was significantly different. Pointing to the intraspecies heterogeneity of E. coli in the natural microflora, this also indicates the feasibility of further studies of the role of this heterogeneity in maintaining population homeostasis.
Collapse
Affiliation(s)
- Valery V. Panyukov
- Institute of Mathematical Problems of Biology RAS—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia;
- Structural and Functional Genomics Group, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Sergey S. Kiselev
- Structural and Functional Genomics Group, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga N. Ozoline
- Structural and Functional Genomics Group, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
16
|
Mulberry N, Rutherford A, Colijn C. Systematic comparison of coexistence in models of drug-sensitive and drug-resistant pathogen strains. Theor Popul Biol 2019; 133:150-158. [PMID: 31887315 DOI: 10.1016/j.tpb.2019.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
A number of mathematical models have recently been proposed to explain empirical trends of pathogen diversity. In particular, long-term coexistence of both drug-sensitive and drug-resistant variants of a single pathogen is something of a mystery, given that simple models of pathogens competing for the same ecological niche predict competitive exclusion, and more complex models admitting coexistence require assumptions that may not be justified. Coinfection is among the candidate mechanisms to generate coexistence, as it occurs in many pathogens and provides the opportunity for strains to interact directly. Recently, coinfection and competitive release have been described as creating a form of negative frequency-dependent selection that promotes coexistence, and a range of models containing coinfection have been proposed as having generic stable coexistence of multiple strains. This abundance of new models presents the challenge of comparison and interpretation. To this end, we describe a dimensionless quantity that can be used to compare the amount of coexistence generated by different models. We focus on models that include coinfection, although this framework could be generalized to a larger class of structured models.
Collapse
|
17
|
Escherichia coli Clonobiome: Assessing the Strain Diversity in Feces and Urine by Deep Amplicon Sequencing. Appl Environ Microbiol 2019; 85:AEM.01866-19. [PMID: 31540992 DOI: 10.1128/aem.01866-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
While microbiome studies have focused on diversity at the species level or higher, bacterial species in microbiomes are represented by different, often multiple, strains. These strains could be clonally and phenotypically very different, making assessment of strain content vital to a full understanding of microbiome function. This is especially important with respect to antibiotic-resistant strains, the clonal spread of which may be dependent on competition between them and susceptible strains from the same species. The pandemic, multidrug-resistant, and highly pathogenic Escherichia coli subclone ST131-H30 (H30) is of special interest, as it has already been found persisting in the gut and bladder in healthy people. In order to rapidly assess E. coli clonal diversity, we developed a novel method based on deep sequencing of two loci used for sequence typing, along with an algorithm for analysis of the resulting data. Using this method, we assessed fecal and urinary samples from healthy women carrying H30 and were able to uncover considerable diversity, including strains with frequencies at <1% of the E. coli population. We also found that, even in the absence of antibiotic use, H30 could completely dominate the gut and, especially, urine of healthy carriers. Our study offers a novel tool for assessing a species' clonal diversity (clonobiome) within the microbiome, which could be useful in studying the population structure and dynamics of multidrug-resistant and/or highly pathogenic strains in their natural environments.IMPORTANCE Bacterial species in the microbiome are often represented by multiple genetically and phenotypically different strains, making insight into subspecies diversity critical to a full understanding of the microbiome, especially with respect to opportunistic pathogens. However, methods allowing efficient high-throughput clonal typing are not currently available. This study combines a conventional E. coli typing method with deep amplicon sequencing to allow analysis of many samples concurrently. While our method was developed for E. coli, it may be adapted for other species, allowing microbiome researchers to assess clonal strain diversity in natural samples. Since assessment of subspecies diversity is particularly important for understanding the spread of antibiotic resistance, we applied our method to the study of a pandemic multidrug-resistant E. coli clone. The results we present suggest that this clone could be highly competitive in healthy carriers and that the mechanisms of colonization by such clones need to be studied.
Collapse
|
18
|
Arimizu Y, Kirino Y, Sato MP, Uno K, Sato T, Gotoh Y, Auvray F, Brugere H, Oswald E, Mainil JG, Anklam KS, Döpfer D, Yoshino S, Ooka T, Tanizawa Y, Nakamura Y, Iguchi A, Morita-Ishihara T, Ohnishi M, Akashi K, Hayashi T, Ogura Y. Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains. Genome Res 2019; 29:1495-1505. [PMID: 31439690 PMCID: PMC6724679 DOI: 10.1101/gr.249268.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023]
Abstract
How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)–producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)–encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.
Collapse
Affiliation(s)
- Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yumi Kirino
- Laboratory of Veterinary Radiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Uno
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Toshio Sato
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Hubert Brugere
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France.,CHU de Toulouse, Hôpital Purpan, 31300 Toulouse, France
| | - Jacques G Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animal Health (FARAH), University of Liège, 4000 Liège, Belgium
| | - Kelly S Anklam
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yasuhiro Tanizawa
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoko Morita-Ishihara
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Mosavie M, Blandy O, Jauneikaite E, Caldas I, Ellington MJ, Woodford N, Sriskandan S. Sampling and diversity of Escherichia coli from the enteric microbiota in patients with Escherichia coli bacteraemia. BMC Res Notes 2019; 12:335. [PMID: 31196206 PMCID: PMC6563364 DOI: 10.1186/s13104-019-4369-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/05/2019] [Indexed: 12/03/2022] Open
Abstract
Objective The increase in Escherichia coli bloodstream infections mandates better characterisation of the relationship between commensal and invasive isolates. This study adopted a simple approach to characterize E. coli in the gut reservoir from patients with either E. coli or other Gram-negative bacteraemia, or those without bacteraemia, establishing strain collections suitable for genomic investigation. Enteric samples from patients in the three groups were cultured on selective chromogenic agar. Genetic diversity of prevailing E. coli strains in gut microbiota was estimated by RAPD-PCR. Results Enteric samples from E. coli bacteraemia patients yielded a median of one E. coli RAPD pattern (range 1–4) compared with two (range 1–5) from groups without E. coli bacteraemia. Of relevance to large-scale clinical studies, observed diversity of E. coli among hospitalised patients was not altered by sample type (rectal swab or stool), nor by increasing the colonies tested from 10 to 20. Hospitalised patients demonstrated an apparently limited diversity of E. coli in the enteric microbiota and this was further reduced in those with E. coli bacteraemia. The reduced diversity of E. coli within the gut during E. coli bacteraemia raises the possibility that dominant strains may outcompete other lineages in patients with bloodstream infection. Electronic supplementary material The online version of this article (10.1186/s13104-019-4369-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mia Mosavie
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Oliver Blandy
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Elita Jauneikaite
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Isabel Caldas
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthew J Ellington
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Neil Woodford
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Shiranee Sriskandan
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
20
|
Davies NG, Flasche S, Jit M, Atkins KE. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat Ecol Evol 2019; 3:440-449. [PMID: 30742105 PMCID: PMC6420107 DOI: 10.1038/s41559-018-0786-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
The spread of antibiotic resistance, a major threat to human health, is poorly understood. Simple population-level models of bacterial transmission predict that above a certain rate of antibiotic consumption in a population, resistant bacteria should completely eliminate non-resistant strains, while below this threshold they should be unable to persist at all. This prediction stands at odds with empirical evidence showing that resistant and non-resistant strains coexist stably over a wide range of antibiotic consumption rates. Not knowing what drives this long-term coexistence is a barrier to developing evidence-based strategies for managing the spread of resistance. Here, we argue that competition between resistant and sensitive pathogens within individual hosts gives resistant pathogens a relative fitness benefit when they are rare, promoting coexistence between strains at the population level. To test this hypothesis, we embed mechanistically explicit within-host dynamics in a structurally neutral pathogen transmission model. Doing so allows us to reproduce patterns of resistance observed in the opportunistic pathogens Escherichia coli and Streptococcus pneumoniae across European countries and to identify factors that may shape resistance evolution in bacteria by modulating the intensity and outcomes of within-host competition.
Collapse
Affiliation(s)
- Nicholas G Davies
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Department for Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Stefan Flasche
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department for Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Jit
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department for Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Modelling and Economics Unit, Public Health England, London, UK
| | - Katherine E Atkins
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department for Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Global Health, Usher Institute of Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Temporal Variability of Escherichia coli Diversity in the Gastrointestinal Tracts of Tanzanian Children with and without Exposure to Antibiotics. mSphere 2018; 3:3/6/e00558-18. [PMID: 30404930 PMCID: PMC6222053 DOI: 10.1128/msphere.00558-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study increases the number of resident Escherichia coli genome sequences, and explores E. coli diversity through longitudinal sampling. We investigate the genomes of E. coli isolated from human gastrointestinal tracts as part of an antibiotic treatment program among rural Tanzanian children. Phylogenomics demonstrates that resident E. coli are diverse, even within a single host. Though the E. coli isolates of the gastrointestinal community tend to be phylogenomically similar at a given time, they differed across the interrogated time points, demonstrating the variability of the members of the E. coli community in these subjects. Exposure to antibiotic treatment did not have an apparent impact on the E. coli community or the presence of resistance and virulence genes within E. coli genomes. The findings of this study highlight the variable nature of specific bacterial members of the human gastrointestinal tract. The stability of the Escherichia coli populations in the human gastrointestinal tract is not fully appreciated, and represents a significant knowledge gap regarding gastrointestinal community structure, as well as resistance to incoming pathogenic bacterial species and antibiotic treatment. The current study examines the genomic content of 240 Escherichia coli isolates from 30 children, aged 2 to 35 months old, in Tanzania. The E. coli strains were isolated from three time points spanning a six-month time period, with and without antibiotic treatment. The resulting isolates were sequenced, and the genomes compared. The findings in this study highlight the transient nature of E. coli strains in the gastrointestinal tract of these children, as during a six-month interval, no one individual contained phylogenomically related isolates at all three time points. While the majority of the isolates at any one time point were phylogenomically similar, most individuals did not contain phylogenomically similar isolates at more than two time points. Examination of global genome content, canonical E. coli virulence factors, multilocus sequence type, serotype, and antimicrobial resistance genes identified diversity even among phylogenomically similar strains. There was no apparent increase in the antimicrobial resistance gene content after antibiotic treatment. The examination of the E. coli from longitudinal samples from multiple children in Tanzania provides insight into the genomic diversity and population variability of resident E. coli within the rapidly changing environment of the gastrointestinal tract of these children. IMPORTANCE This study increases the number of resident Escherichia coli genome sequences, and explores E. coli diversity through longitudinal sampling. We investigate the genomes of E. coli isolated from human gastrointestinal tracts as part of an antibiotic treatment program among rural Tanzanian children. Phylogenomics demonstrates that resident E. coli are diverse, even within a single host. Though the E. coli isolates of the gastrointestinal community tend to be phylogenomically similar at a given time, they differed across the interrogated time points, demonstrating the variability of the members of the E. coli community in these subjects. Exposure to antibiotic treatment did not have an apparent impact on the E. coli community or the presence of resistance and virulence genes within E. coli genomes. The findings of this study highlight the variable nature of specific bacterial members of the human gastrointestinal tract.
Collapse
|
22
|
Responses of the Human Gut Escherichia coli Population to Pathogen and Antibiotic Disturbances. mSystems 2018; 3:mSystems00047-18. [PMID: 30057943 PMCID: PMC6060285 DOI: 10.1128/msystems.00047-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022] Open
Abstract
Research on human-associated E. coli tends to focus on pathogens, such as enterotoxigenic E. coli (ETEC) strains, which are a leading cause of diarrhea in developing countries. However, the severity of disease caused by these pathogens is thought to be influenced by the microbiome. The nonpathogenic E. coli community that resides in the human gastrointestinal tract may play a role in pathogen colonization and disease severity and may become a reservoir for virulence and antibiotic resistance genes. Our study used whole-genome sequencing of E. coli before, during, and after challenge with an archetype ETEC isolate, H10407, and antibiotic treatment to explore the diversity and resiliency of the resident E. coli population in response to the ecological disturbances caused by pathogen invasion and antibiotic treatment. Studies of Escherichia coli in the human gastrointestinal tract have focused on pathogens, such as diarrhea-causing enterotoxigenic E. coli (ETEC), while overlooking the resident, nonpathogenic E. coli community. Relatively few genomes of nonpathogenic E. coli strains are available for comparative genomic analysis, and the ecology of these strains is poorly understood. This study examined the diversity and dynamics of resident human gastrointestinal E. coli communities in the face of the ecological challenges presented by pathogen (ETEC) challenge, as well as of antibiotic treatment. Whole-genome sequences obtained from E. coli isolates from before, during, and after ETEC challenge were used in phylogenomic and comparative genomic analyses to examine the diversity of the resident E. coli communities, as well as the dynamics of the challenge strain, H10407, a well-studied ETEC strain (serotype O78:H11) that produces both heat-labile and heat-stable enterotoxins. ETEC failed to become the dominant E. coli clone in two of the six challenge subjects, each of whom exhibited limited or no clinical presentation of diarrhea. The E. coli communities of the remaining four subjects became ETEC dominant during the challenge but reverted to their original, subject-specific populations following antibiotic treatment, suggesting resiliency of the resident E. coli population following major ecological disruptions. This resiliency is likely due in part to the abundance of antibiotic-resistant ST131 E. coli strains in the resident populations. This report provides valuable insights into the potential interactions of members of the gastrointestinal microbiome and its responses to challenge by an external pathogen and by antibiotic exposure. IMPORTANCE Research on human-associated E. coli tends to focus on pathogens, such as enterotoxigenic E. coli (ETEC) strains, which are a leading cause of diarrhea in developing countries. However, the severity of disease caused by these pathogens is thought to be influenced by the microbiome. The nonpathogenic E. coli community that resides in the human gastrointestinal tract may play a role in pathogen colonization and disease severity and may become a reservoir for virulence and antibiotic resistance genes. Our study used whole-genome sequencing of E. coli before, during, and after challenge with an archetype ETEC isolate, H10407, and antibiotic treatment to explore the diversity and resiliency of the resident E. coli population in response to the ecological disturbances caused by pathogen invasion and antibiotic treatment.
Collapse
|
23
|
Xiaoli L, Figler HM, Goswami Banerjee K, Hayes CS, Dudley EG. Non-pathogenic Escherichia coli Enhance Stx2a Production of E. coli O157:H7 Through Both bamA-Dependent and Independent Mechanisms. Front Microbiol 2018; 9:1325. [PMID: 29973923 PMCID: PMC6020778 DOI: 10.3389/fmicb.2018.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Intestinal colonization by the foodborne pathogen Escherichia coli O157:H7 leads to serious disease symptoms, including hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC). Synthesis of one or more Shiga toxins (Stx) is essential for HUS and HC development. The genes encoding Stx, including Stx2a, are found within a lambdoid prophage integrated in the E. coli O157:H7 chromosome. Enhanced Stx2a expression was reported when specific non-pathogenic E. coli strains were co-cultured with E. coli O157:H7, and it was hypothesized that this phenotype required the non-pathogenic E. coli to be sensitive to stx-converting phage infection. We tested this hypothesis by generating phage resistant non-pathogenic E. coli strains where bamA (an essential gene and Stx phage receptor) was replaced with an ortholog from other species. Such heterologous gene replacement abolished the ability of the laboratory strain E. coli C600 to enhance toxin production when co-cultured with E. coli O157:H7 strain PA2, which belongs to the hypervirulent clade 8. The extracellular loops of BamA (loop 4, 6, 7) were further shown to be important for infection by stx2a-converting phages. However, similar gene replacement in another commensal E. coli, designated 1.1954, revealed a bamA-independent mechanism for toxin amplification. Toxin enhancement by 1.1954 was not the result of phage infection through an alternative receptor (LamB or FadL), lysogen formation by stx2a-converting phages, or the production of a secreted molecule. Collectively, these data suggest that non-pathogenic E. coli can enhance toxin production through at least two mechanisms.
Collapse
Affiliation(s)
- Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Hillary M Figler
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Kakolie Goswami Banerjee
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States.,Center for Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
24
|
Comparative ecology of Escherichia coli in endangered Australian sea lion (Neophoca cinerea) pups. INFECTION GENETICS AND EVOLUTION 2018; 62:262-269. [PMID: 29730275 DOI: 10.1016/j.meegid.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The dissemination of human-associated bacteria into the marine environment has the potential to expose wildlife populations to atypical microbes that can alter the composition of the gut microbiome or act as pathogens. The objective of the study was to determine whether endangered Australian sea lion (Neophoca cinerea) pups from two South Australian colonies, Seal Bay, Kangaroo Island and Dangerous Reef, Spencer Gulf, have been colonised by human-associated Escherichia coli. Faecal samples (n = 111) were collected to isolate E. coli, and molecular screening was applied to assign E. coli isolates (n = 94) to phylotypes and detect class 1 integrons; mobile genetic elements that confer resistance to antimicrobial agents. E. coli phylotype distribution and frequency differed significantly between colonies with phylotypes B2 and D being the most abundant at Seal Bay, Kangaroo Island (55% and 7%) and Dangerous Reef, Spencer Gulf (36% and 49%), respectively. This study reports the first case of antimicrobial resistant E. coli in free-ranging Australian sea lions through the identification of class 1 integrons from an individual pup at Seal Bay. A significant relationship between phylotype and total white cell count (WCC) was identified, with significantly higher WCC seen in pups with human-associated phylotypes at Dangerous Reef. The difference in phylotype distribution and presence of human-associated E. coli suggests that proximity to human populations can influence sea lion gut microbiota. The identification of antimicrobial resistance in a free-ranging pinniped population provides crucial information concerning anthropogenic influences in the marine environment.
Collapse
|
25
|
Stork C, Kovács B, Rózsai B, Putze J, Kiel M, Dorn Á, Kovács J, Melegh S, Leimbach A, Kovács T, Schneider G, Kerényi M, Emödy L, Dobrindt U. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens. Front Microbiol 2018; 9:214. [PMID: 29491858 PMCID: PMC5817090 DOI: 10.3389/fmicb.2018.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising candidates for a more detailed assessment of relevant fitness traits in urine and their suitability for therapeutic bladder colonization.
Collapse
Affiliation(s)
- Christoph Stork
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Beáta Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.,First Department of Internal Medicine, University of Pécs, Pécs, Hungary
| | - Barnabás Rózsai
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Matthias Kiel
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ágnes Dorn
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Judit Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | | | | | - György Schneider
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Monika Kerényi
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Levente Emödy
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Draft Genome Sequence of
Escherichia coli
Strain SN137, a Bacterium with Extracellular Proteolytic Activity on Immunoglobulins and Persistence in Human Tissue Blood. GENOME ANNOUNCEMENTS 2018; 6:6/3/e01455-17. [PMID: 29348341 PMCID: PMC5773726 DOI: 10.1128/genomea.01455-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The draft genome sequence of Escherichia coli strain SN137 is reported here. The genome comprises 172 contigs, corresponding to 4.9 Mb with 50% G+C content, and contains several genes related to pathogenicity that explain its survival in human hematic tissue.
Collapse
|
27
|
Dixit OVA, O'Brien CL, Pavli P, Gordon DM. Within-host evolution versus immigration as a determinant of Escherichia coli diversity in the human gastrointestinal tract. Environ Microbiol 2017; 20:993-1001. [PMID: 29266651 DOI: 10.1111/1462-2920.14028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022]
Abstract
When a human host harbors two or more strains of Escherichia coli, the second strain is more likely to be a member of the same phylogroup rather than a different phylogroup. This outcome may be the consequence of a within host evolution event or an independent immigration/establishment event. To determine the relative importance of these two events in determining E. coli diversity in a host, a collection of multiple E. coli isolates recovered from each of 67 patients undergoing colonoscopies was used. Whole genome sequence data were available for one example of every REP-fingerprint type identified in a patient. Sequence type (ST) and single-nucleotide polymorphism (SNP) analyses revealed that 83% of strains observed in the host population were a consequence of immigration/establishment events. Restricting the analysis to hosts harboring two or more strains belonging to the same phylogroup revealed that in about half of these cases, the presence of a second strain belonging to the same phylogroup was the consequence of an independent immigration/establishment event. Thus, the results of this study show that despite hosts being exposed to a diversity of E. coli via their food, factors related to the host also determine what E. coli strains succeed in establishing.
Collapse
Affiliation(s)
- Ojas V A Dixit
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| | - Claire L O'Brien
- Medical School, Australian National University, Canberra, ACT, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, ACT, Australia
| | - Paul Pavli
- Medical School, Australian National University, Canberra, ACT, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, ACT, Australia
| | - David M Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| |
Collapse
|
28
|
Vangchhia B, Blyton MDJ, Collignon P, Kennedy K, Gordon DM. Factors affecting the presence, genetic diversity and antimicrobial sensitivity of Escherichia coli in poultry meat samples collected from Canberra, Australia. Environ Microbiol 2017; 20:1350-1361. [PMID: 29266683 DOI: 10.1111/1462-2920.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Abstract
To investigate the factors determining the clonal composition of Escherichia coli in poultry meat samples, 306 samples were collected from 16 shops, representing three supermarket chains and an independent butchery located in each of the four town centers of Canberra, Australia, during the summer, autumn and winter. A total of 3415 E. coli isolates were recovered and assigned to a phylogenetic group using the Clermont quadruplex PCR method, fingerprinted using repetitive element palindromic (REP) PCR and screened for their antimicrobial susceptibility profiles. The probability of detecting E. coli and the number of fingerprint types detected per sample, as well as the phylogroup membership of the isolates and their antimicrobial sensitivity profiles varied, with one or more of retailer, store, meat type, season and husbandry. The results of this study demonstrate that poultry meat products are likely to be contaminated with a genetically diverse community of E. coli and suggest that factors relating to the nature of the meat product and distribution chain are determinants of the observed diversity.
Collapse
Affiliation(s)
- Belinda Vangchhia
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia.,Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Michaela D J Blyton
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Science Rd, Richmond, NSW 2753, Australia
| | - Peter Collignon
- Infectious Disease and Microbiology, Canberra Hospital, Woden, ACT, Australia.,Medical School, Australian National University, Canberra, ACT, Australia.,ACT Pathology, Canberra, ACT, Australia
| | - Karina Kennedy
- Infectious Disease and Microbiology, Canberra Hospital, Woden, ACT, Australia.,Medical School, Australian National University, Canberra, ACT, Australia
| | - David M Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| |
Collapse
|
29
|
O'Brien CL, Bringer MA, Holt KE, Gordon DM, Dubois AL, Barnich N, Darfeuille-Michaud A, Pavli P. Comparative genomics of Crohn's disease-associated adherent-invasive Escherichia coli. Gut 2017; 66:1382-1389. [PMID: 27196580 DOI: 10.1136/gutjnl-2015-311059] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Adherent-invasive Escherichia coli (AIEC) are a leading candidate bacterial trigger for Crohn's disease (CD). The AIEC pathovar is defined by in vitro cell-line assays examining specific bacteria/cell interactions. No molecular marker exists for their identification. Our aim was to identify a molecular property common to the AIEC phenotype. DESIGN 41 B2 phylogroup E. coli strains were isolated from 36 Australian subjects: 19 patients with IBD and 17 without. Adherence/invasion assays were conducted using the I-407 epithelial cell line and survival/replication assays using the THP-1 macrophage cell line. Cytokine secretion tumour necrosis factor ((TNF)-α, interleukin (IL) 6, IL-8 and IL-10) was measured using ELISA. The genomes were assembled and annotated, and cluster analysis performed using CD-HIT. The resulting matrices were analysed to identify genes unique/more frequent in AIEC strains compared with non-AIEC strains. Base composition differences and clustered regularly interspaced palindromic repeat (CRISPR) analyses were conducted. RESULTS Of all B2 phylogroup strains assessed, 79% could survive and replicate in macrophages. Among them, 11/41 strains (5 CD, 2 UCs, 5 non-IBD) also adhere to and invade epithelial cells, a phenotype assigning them to the AIEC pathovar. The AIEC strains were phylogenetically heterogeneous. We did not identify a gene (or nucleic acid base composition differences) common to all, or the majority of, AIEC. Cytokine secretion and CRISPRs were not associated with the AIEC phenotype. CONCLUSIONS Comparative genomic analysis of AIEC and non-AIEC strains did not identify a molecular property exclusive to the AIEC phenotype. We recommend a broader approach to the identification of the bacteria-host interactions that are important in the pathogenesis of Crohn's disease.
Collapse
Affiliation(s)
- Claire L O'Brien
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Marie-Agnès Bringer
- INRA UMR1324, CNRS UMR6265, Université Bourgogne-Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, Dijon, France.,UMR1071 Inserm/University of Auvergne, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - David M Gordon
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anaëlle L Dubois
- UMR1071 Inserm/University of Auvergne, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR1071 Inserm/University of Auvergne, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | | | - Paul Pavli
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Day-to-Day Dynamics of Commensal Escherichia coli in Zimbabwean Cows Evidence Temporal Fluctuations within a Host-Specific Population Structure. Appl Environ Microbiol 2017; 83:AEM.00659-17. [PMID: 28411228 DOI: 10.1128/aem.00659-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
To get insights into the temporal pattern of commensal Escherichia coli populations, we sampled the feces of four healthy cows from the same herd in the Hwange District of Zimbabwe daily over 25 days. The cows had not received antibiotic treatment during the previous 3 months. We performed viable E. coli counts and characterized the 326 isolates originating from the 98 stool samples at a clonal level, screened them for stx and eae genes, and tested them for their antibiotic susceptibilities. We observed that E. coli counts and dominant clones were different among cows, and very few clones were shared. No clone was shared by three or four cows. Clone richness and evenness were not different between cows. Within each host, the variability in the E. coli count was evidenced between days, and no clone was found to be dominant during the entire sampling period, suggesting the existence of clonal interference. Dominant clones tended to persist longer than subdominant ones and were mainly from phylogenetic groups A and B1. Five E. coli clones were found to contain both the stx1 and stx2 genes, representing 6.3% of the studied isolates. All cows harbored at least one Shiga toxin-producing E. coli (STEC) strain. Resistance to tetracycline, penicillins, trimethoprim, and sulfonamides was rare and observed in three clones that were shed at low levels in two cows. This study highlights the fact that the commensal E. coli population, including the STEC population, is host specific, is highly dynamic over a short time frame, and rarely carries antibiotic resistance determinants in the absence of antibiotic treatment.IMPORTANCE The literature about the dynamics of commensal Escherichia coli populations is very scarce. Over 25 days, we followed the total E. coli counts daily and characterized the sampled clones in the feces of four cows from the same herd living in the Hwange District of Zimbabwe. This study deals with the day-to-day dynamics of both quantitative and qualitative aspects of E. coli commensal populations, with a focus on both Shiga toxin-producing E. coli and antibiotic-resistant E. coli strains. We show that the structure of these commensal populations was highly specific to the host, even though the cows ate and roamed together, and was highly dynamic between days. Such data are of importance to understand the ecological forces that drive the dynamics of the emergence of E. coli clones of particular interest within the gastrointestinal tract and their transmission between hosts.
Collapse
|
31
|
Figler HM, Dudley EG. The interplay of Escherichia coli O157:H7 and commensal E. coli: the importance of strain-level identification. Expert Rev Gastroenterol Hepatol 2016; 10:415-7. [PMID: 26885676 DOI: 10.1586/17474124.2016.1155449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hillary M Figler
- a The Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , PA , USA
| | - Edward G Dudley
- b Department of Food Science, and Center for Immunology and Infectious Disease , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
32
|
Madoshi BP, Kudirkiene E, Mtambo MMA, Muhairwa AP, Lupindu AM, Olsen JE. Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania. PLoS One 2016; 11:e0168160. [PMID: 27977751 PMCID: PMC5158034 DOI: 10.1371/journal.pone.0168160] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022] Open
Abstract
While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.
Collapse
Affiliation(s)
- Balichene P. Madoshi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Livestock Training Agency – Mpwapwa Campus, Mpwapwa, Dodoma
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Madundo M. A. Mtambo
- Tanzania Industrial Research Developments Organisation, TIRDO Complex, Dar es Salaam, Tanzania
| | - Amandus P. Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Athumani M. Lupindu
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
33
|
Vangchhia B, Abraham S, Bell JM, Collignon P, Gibson JS, Ingram PR, Johnson JR, Kennedy K, Trott DJ, Turnidge JD, Gordon DM. Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F Escherichia coli in Australia. MICROBIOLOGY-SGM 2016; 162:1904-1912. [PMID: 27666313 DOI: 10.1099/mic.0.000367] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unlike Escherichia coli strains belonging to phylogroup B2, the clinical significance of strains belonging to phylogroup F is not well understood. Here we report on a collection of phylogroup F strains recovered in Australia from faeces and extra-intestinal sites from humans, companion animals and native animals, as well as from poultry meat and water samples. The distribution of sequence types was clearly non-random with respect to isolate source. The antimicrobial resistance and virulence trait profiles also varied with the sequence type of the isolate. Phylogroup F strains tended to lack the virulence traits typically associated with phylogroup B2 strains responsible for extra-intestinal infection in humans. Resistance to fluoroquinolones and/or expanded-spectrum cephalosporins was common within ST648, ST354 and ST3711. Although ST354 and ST3711 are part of the same clonal complex, the ST3711 isolates were only recovered from native birds being cared for in a single wildlife rehabilitation centre, whereas the ST354 isolates were from faeces and extra-intestinal sites of dogs and humans, as well as from poultry meat. Although ST354 isolates from chicken meat in Western Australia were distinct from all other ST354 isolates, those from poultry meat samples collected in eastern Australia shared many similarities with other ST354 isolates from humans and companion animals.
Collapse
Affiliation(s)
- Belinda Vangchhia
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, 116 Daley Road, Acton, Australian Capital Territory 2601, Australia
| | - Sam Abraham
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Jan M Bell
- Microbiology and Infectious Disease, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Peter Collignon
- Infectious Disease and Microbiology, Canberra Hospital, Woden, Australian Capital Territory 2606, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory 0200, Australia.,ACT Pathology, Canberra, Australian Capital Territory, Australia
| | - Justine S Gibson
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| | - Paul R Ingram
- Department of Microbiology, PathWest, Fiona Stanley Hospital, Perth, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - James R Johnson
- VA Medical Center and Department of Medicine, University of Minnesota, Infectious Diseases (111F), 1 Veterans Drive, Minneapolis, MN 55417, USA
| | - Karina Kennedy
- Infectious Disease and Microbiology, Canberra Hospital, Woden, Australian Capital Territory 2606, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Darren J Trott
- School of Animal and Veterinary Science, University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - John D Turnidge
- Australian Commission on Safety and Quality in Health Care, New South Wales, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David M Gordon
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, 116 Daley Road, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|