1
|
Cho A, Lax G, Livingston SJ, Masukagami Y, Naumova M, Millar O, Husnik F, Keeling PJ. Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses. PLoS Genet 2024; 20:e1011218. [PMID: 38557755 PMCID: PMC11008856 DOI: 10.1371/journal.pgen.1011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel J. Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mariia Naumova
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Olivia Millar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Edwards KF, Hayward C. The dimensionality of infection networks among viruses infecting microbial eukaryotes and bacteria. Ecol Lett 2024; 27:e14383. [PMID: 38344874 DOI: 10.1111/ele.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024]
Abstract
Diverse viruses and their hosts are interconnected through complex networks of infection, which are thought to influence ecological and evolutionary processes, but the principles underlying infection network structure are not well understood. Here we focus on network dimensionality and how it varies across 37 networks of viruses infecting eukaryotic phytoplankton and bacteria. We find that dimensionality is often strikingly low, with most networks being one- or two-dimensional, although dimensionality increases with network richness, suggesting that the true dimensionality of natural systems is higher. Low-dimensional networks generally exhibit a mixture of host partitioning among viruses and nestededness of host ranges. Networks of bacteria-infecting and eukaryote-infecting viruses possess comparable distributions of dimensionality and prevalence of nestedness, indicating that fundamentals of network structure are similar among domains of life and different viral lineages. The relative simplicity of many infection networks suggests that coevolutionary dynamics are often driven by a modest number of underlying mechanisms.
Collapse
Affiliation(s)
- Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Colleen Hayward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
3
|
Meyer C, Jackson VLN, Harrison K, Fouskari I, Bolhuis H, Artzy-Randrup YA, Huisman J, Monier A, Brussaard CPD. Temperature modulates dominance of a superinfecting Arctic virus in its unicellular algal host. THE ISME JOURNAL 2024; 18:wrae161. [PMID: 39173010 PMCID: PMC11370638 DOI: 10.1093/ismejo/wrae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Complex virus-virus interactions can arise when multiple viruses coinfect the same host, impacting infection outcomes with broader ecological and evolutionary significance for viruses and host. Yet, our knowledge regarding virus competition is still limited, especially for single-celled eukaryotic host-virus systems. Here, we report on mutual interference of two dsDNA viruses, MpoV-45T and MpoV-46T, competing for their Arctic algal host Micromonas polaris. Both viruses affected each other's gene expression and displayed reduced genome replication during coinfection. MpoV-45T was the dominant virus, likely due to interference in the DNA replication of is competitor. Even when its coinfection was delayed, the dominant virus still prevailed while genome production of the other virus was strongly suppressed. This contrasts with typical superinfection exclusion, where the primary infection prevents secondary infection by other viruses. Higher temperature made the suppressed virus a stronger competitor, signifying that global warming is likely to alter virus-virus interactions in Arctic waters.
Collapse
Affiliation(s)
- Claudia Meyer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Victoria L N Jackson
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Keith Harrison
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Ioanna Fouskari
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
| | - Yael A Artzy-Randrup
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
4
|
Listmann L, Peters C, Rahlff J, Esser SP, Schaum CE. Seasonality and Strain Specificity Drive Rapid Co-evolution in an Ostreococcus-Virus System from the Western Baltic Sea. MICROBIAL ECOLOGY 2023; 86:2414-2423. [PMID: 37268771 PMCID: PMC10640450 DOI: 10.1007/s00248-023-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Marine viruses are a major driver of phytoplankton mortality and thereby influence biogeochemical cycling of carbon and other nutrients. Phytoplankton-targeting viruses are important components of ecosystem dynamics, but broad-scale experimental investigations of host-virus interactions remain scarce. Here, we investigated in detail a picophytoplankton (size 1 µm) host's responses to infections by species-specific viruses from distinct geographical regions and different sampling seasons. Specifically, we used Ostreococcus tauri and O. mediterraneus and their viruses (size ca. 100 nm). Ostreococcus sp. is globally distributed and, like other picoplankton species, play an important role in coastal ecosystems at certain times of the year. Further, Ostreococcus sp. is a model organism, and the Ostreococcus-virus system is well-known in marine biology. However, only few studies have researched its evolutionary biology and the implications thereof for ecosystem dynamics. The Ostreococcus strains used here stem from different regions of the Southwestern Baltic Sea that vary in salinity and temperature and were obtained during several cruises spanning different sampling seasons. Using an experimental cross-infection set-up, we explicitly confirm species and strain specificity in Ostreococcus sp. from the Baltic Sea. Moreover, we found that the timing of virus-host co-existence was a driver of infection patterns as well. In combination, these findings prove that host-virus co-evolution can be rapid in natural systems.
Collapse
Affiliation(s)
- Luisa Listmann
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany.
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany.
| | - Carina Peters
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany
| | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Departement of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - C-Elisa Schaum
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany
| |
Collapse
|
5
|
Diversity and Evolution of Mamiellophyceae: Early-Diverging Phytoplanktonic Green Algae Containing Many Cosmopolitan Species. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genomic revolution has bridged a gap in our knowledge about the diversity, biology and evolution of unicellular photosynthetic eukaryotes, which bear very few discriminating morphological features among species from the same genus. The high-quality genome resources available in the class Mamiellophyceae (Chlorophyta) have been paramount to estimate species diversity and screen available metagenomic data to assess the biogeography and ecological niches of different species on a global scale. Here we review the current knowledge about the diversity, ecology and evolution of the Mamiellophyceae and the large double-stranded DNA prasinoviruses infecting them, brought by the combination of genomic and metagenomic analyses, including 26 metabarcoding environmental studies, as well as the pan-oceanic GOS and the Tara Oceans expeditions.
Collapse
|
6
|
Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. THE ISME JOURNAL 2021; 15:3129-3147. [PMID: 33972727 PMCID: PMC8528832 DOI: 10.1038/s41396-021-00989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
Collapse
|
7
|
Collins S, Schaum CE. Growth strategies of a model picoplankter depend on social milieu and pCO 2. Proc Biol Sci 2021; 288:20211154. [PMID: 34315257 PMCID: PMC8316809 DOI: 10.1098/rspb.2021.1154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022] Open
Abstract
Phytoplankton exist in genetically diverse populations, but are often studied as single lineages (single strains), so that interpreting single-lineage studies relies critically on understanding how microbial growth differs with social milieu, defined as the presence or absence of conspecifics. The properties of lineages grown alone often fail to predict the growth of these same lineages in the presence of conspecifics, and this discrepancy points towards an opportunity to improve our understanding of the factors that affect lineage growth rates. We demonstrate that different lineages of a marine picoplankter modulate their maximum lineage growth rate in response to the presence of non-self conspecifics, even when resource competition is effectively absent. This explains why growth rates of lineages in isolation do not reliably predict their growth rates in mixed culture, or the lineage composition of assemblages under conditions of rapid growth. The diversity of growth strategies observed here are consistent with lineage-specific energy allocation that depends on social milieu. Since lineage growth is only one of many traits determining fitness in natural assemblages, we hypothesize that intraspecific variation in growth strategies should be common, with more strategies possible in ameliorated environments that support higher maximum growth rates, such as high CO2 for many marine picoplankton.
Collapse
Affiliation(s)
- Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, IEB, Ashworth Laboratories, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - C. Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Castillo YM, Forn I, Yau S, Morán XAG, Alonso-Sáez L, Arandia-Gorostidi N, Vaqué D, Sebastián M. Seasonal dynamics of natural Ostreococcus viral infection at the single cell level using VirusFISH. Environ Microbiol 2021; 23:3009-3019. [PMID: 33817943 DOI: 10.1111/1462-2920.15504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 μm. Ostreococcus has been extensively studied as a model system to investigate viral-host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, Spain
| | - Néstor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| |
Collapse
|
9
|
Demory D, Weitz JS, Baudoux AC, Touzeau S, Simon N, Rabouille S, Sciandra A, Bernard O. A thermal trade-off between viral production and degradation drives virus-phytoplankton population dynamics. Ecol Lett 2021; 24:1133-1144. [PMID: 33877734 DOI: 10.1111/ele.13722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Marine viruses interact with microbial hosts in dynamic environments shaped by variation in abiotic factors, including temperature. However, the impacts of temperature on viral infection of phytoplankton are not well understood. Here we coupled mathematical modelling with experiments to explore the effect of temperature on virus-phytoplankton interactions. Our model shows the negative consequences of high temperatures on infection and suggests a temperature-dependent threshold between viral production and degradation. Modelling long-term dynamics in environments with different average temperatures revealed the potential for long-term host-virus coexistence, epidemic free or habitat loss states. We generalised our model to variation in global sea surface temperatures corresponding to present and future seas and show that climate change may differentially influence virus-host dynamics depending on the virus-host pair. Temperature-dependent changes in the infectivity of virus particles may lead to shifts in virus-host habitats in warmer oceans, analogous to projected changes in the habitats of macro-, microorganisms and pathogens.
Collapse
Affiliation(s)
- David Demory
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anne-Claire Baudoux
- Sorbonne Université, CNRS, UMR 7144 - Ecology of Marine Plankton, Station Biologique de Roscoff, Roscoff, 29860, France
| | - Suzanne Touzeau
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, 06902, France.,Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Natalie Simon
- Sorbonne Université, CNRS, UMR 7144 - Ecology of Marine Plankton, Station Biologique de Roscoff, Roscoff, 29860, France
| | - Sophie Rabouille
- Sorbonne Université, CNRS, UMR 7621 - Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, 66650, France
| | - Antoine Sciandra
- Sorbonne Université, CNRS, UMR 7093 - Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, 06230, France
| | - Olivier Bernard
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, 06902, France
| |
Collapse
|
10
|
Zimmerman AE, Bachy C, Ma X, Roux S, Jang HB, Sullivan MB, Waldbauer JR, Worden AZ. Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. Environ Microbiol 2019; 21:2148-2170. [PMID: 30924271 PMCID: PMC6851583 DOI: 10.1111/1462-2920.14608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/16/2019] [Accepted: 03/23/2019] [Indexed: 01/01/2023]
Abstract
In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
Collapse
Affiliation(s)
| | - Charles Bachy
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Xiufeng Ma
- Department of the Geophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Simon Roux
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Ho Bin Jang
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | - Matthew B. Sullivan
- Department of MicrobiologyEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
- Department of CivilEnvironmental and Geodetic Engineering, The Ohio State UniversityColumbusOHUSA
| | | | - Alexandra Z. Worden
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
- Ocean EcoSystems Biology Unit, Marine Ecology DivisionGEOMAR Helmholtz Centre for Ocean Research KielKielDE
| |
Collapse
|
11
|
Bachy C, Charlesworth CJ, Chan AM, Finke JF, Wong CH, Wei CL, Sudek S, Coleman ML, Suttle CA, Worden AZ. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ Microbiol 2018; 20:2898-2912. [PMID: 29749714 DOI: 10.1111/1462-2920.14273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.
Collapse
Affiliation(s)
- Charles Bachy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Christina J Charlesworth
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jan F Finke
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chee-Hong Wong
- Lawrence Berkeley National Laboratory, Sequencing Technology Group, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Chia-Lin Wei
- Lawrence Berkeley National Laboratory, Sequencing Technology Group, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.,Departments of Botany, and Microbiology & Immunology, and Institute of Oceans & Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| |
Collapse
|
12
|
Demory D, Baudoux AC, Monier A, Simon N, Six C, Ge P, Rigaut-Jalabert F, Marie D, Sciandra A, Bernard O, Rabouille S. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME JOURNAL 2018; 13:132-146. [PMID: 30116039 DOI: 10.1038/s41396-018-0248-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 11/09/2022]
Abstract
Photosynthetic picoeukaryotesx in the genus Micromonas show among the widest latitudinal distributions on Earth, experiencing large thermal gradients from poles to tropics. Micromonas comprises at least four different species often found in sympatry. While such ubiquity might suggest a wide thermal niche, the temperature response of the different strains is still unexplored, leaving many questions as for their ecological success over such diverse ecosystems. Using combined experiments and theory, we characterize the thermal response of eleven Micromonas strains belonging to four species. We demonstrate that the variety of specific responses to temperature in the Micromonas genus makes this environmental factor an ideal marker to describe its global distribution and diversity. We then propose a diversity model for the genus Micromonas, which proves to be representative of the whole phytoplankton diversity. This prominent primary producer is therefore a sentinel organism of phytoplankton diversity at the global scale. We use the diversity within Micromonas to anticipate the potential impact of global warming on oceanic phytoplankton. We develop a dynamic, adaptive model and run forecast simulations, exploring a range of adaptation time scales, to probe the likely responses to climate change. Results stress how biodiversity erosion depends on the ability of organisms to adapt rapidly to temperature increase.
Collapse
Affiliation(s)
- David Demory
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA. .,Sorbonne University, UPMC Univ Paris 06, INSU-CNRS, UMR 7093, Laboratoire Océanographique de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-mer, France. .,University of Côte d'Azur, INRIA, BIOCORE team, BP93, 06902, Sophia-Antipolis Cedex, France.
| | - Anne-Claire Baudoux
- Sorbonne University, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Adam Monier
- Biosciences, University of Exeter, Exeter, UK
| | - Nathalie Simon
- Sorbonne University, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Christophe Six
- Sorbonne University, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Pei Ge
- Sorbonne University, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Fabienne Rigaut-Jalabert
- Sorbonne University, UPMC Univ Paris 06, CNRS, Fédération de Recherche FR2424, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Dominique Marie
- Sorbonne University, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Antoine Sciandra
- Sorbonne University, UPMC Univ Paris 06, INSU-CNRS, UMR 7093, Laboratoire Océanographique de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-mer, France
| | - Olivier Bernard
- University of Côte d'Azur, INRIA, BIOCORE team, BP93, 06902, Sophia-Antipolis Cedex, France.
| | - Sophie Rabouille
- Sorbonne University, UPMC Univ Paris 06, INSU-CNRS, UMR 7093, Laboratoire Océanographique de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-mer, France.
| |
Collapse
|
13
|
Prasinovirus Attack of Ostreococcus Is Furtive by Day but Savage by Night. J Virol 2018; 92:JVI.01703-17. [PMID: 29187539 PMCID: PMC5790953 DOI: 10.1128/jvi.01703-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.
Collapse
|
14
|
Simon N, Foulon E, Grulois D, Six C, Desdevises Y, Latimier M, Le Gall F, Tragin M, Houdan A, Derelle E, Jouenne F, Marie D, Le Panse S, Vaulot D, Marin B. Revision of the Genus Micromonas Manton et Parke (Chlorophyta, Mamiellophyceae), of the Type Species M. pusilla (Butcher) Manton & Parke and of the Species M. commoda van Baren, Bachy and Worden and Description of Two New Species Based on the Genetic and Phenotypic Characterization of Cultured Isolates. Protist 2017; 168:612-635. [PMID: 29028580 DOI: 10.1016/j.protis.2017.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
Abstract
The green picoalgal genus Micromonas is broadly distributed in estuaries, coastal marine habitats and open oceans, from the equator to the poles. Phylogenetic, ecological and genomic analyses of culture strains and natural populations have suggested that this cosmopolitan genus is composed of several cryptic species corresponding to genetic lineages. We performed a detailed analysis of variations in morphology, pigment content, and sequences of the nuclear-encoded small-subunit rRNA gene and the second internal transcribed spacer (ITS2) from strains isolated worldwide. A new morphological feature of the genus, the presence of tip hairs at the extremity of the hair point, was discovered and subtle differences in hair point length were detected between clades. Clear non-homoplasious synapomorphies were identified in the small-subunit rRNA gene and ITS2 spacer sequences of five genetic lineages. These findings lead us to provide emended descriptions of the genus Micromonas, of the type species M. pusilla, and of the recently described species M. commoda, as well as to describe 2 new species, M. bravo and M. polaris. By clarifying the status of the genetic lineages identified within Micromonas, these formal descriptions will facilitate further interpretations of large-scale analyses investigating ecological trends in time and space for this widespread picoplankter.
Collapse
Affiliation(s)
- Nathalie Simon
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| | - Elodie Foulon
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Daphné Grulois
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Christophe Six
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Yves Desdevises
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7232, BIOM, Observatoire Océanologique, 66650 Banyuls/Mer, France
| | - Marie Latimier
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Florence Le Gall
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Margot Tragin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Aude Houdan
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Evelyne Derelle
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7232, BIOM, Observatoire Océanologique, 66650 Banyuls/Mer, France
| | - Fabien Jouenne
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Dominique Marie
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Sophie Le Panse
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), FR2424, Imaging Core Facility, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Daniel Vaulot
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06 and Centre National de la recherche Scientifique (CNRS), UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Birger Marin
- Botanisches Institut, Biozentrum Köln, Universität zu Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| |
Collapse
|
15
|
Maat DS, Biggs T, Evans C, van Bleijswijk JDL, van der Wel NN, Dutilh BE, Brussaard CPD. Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses. Viruses 2017; 9:v9060134. [PMID: 28574420 PMCID: PMC5490811 DOI: 10.3390/v9060134] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming).
Collapse
Affiliation(s)
- Douwe S Maat
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Tristan Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Claire Evans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
- Ocean Biogeochemistry & Ecosystems Research Group, National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK.
| | - Judith D L van Bleijswijk
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
16
|
Ruiz E, Baudoux AC, Simon N, Sandaa RA, Thingstad TF, Pagarete A. Micromonas versus virus: New experimental insights challenge viral impact. Environ Microbiol 2017; 19:2068-2076. [DOI: 10.1111/1462-2920.13733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/13/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Eliana Ruiz
- Department of Biology; University of Bergen; Bergen Norway
| | - Anne-Claire Baudoux
- CNRS, UMR 7144 (Adaptation et Diversité en Milieu Marin), Station Biologique de Roscoff; Sorbonne Universités; UPMC Univ Paris 06 Roscoff 29680 France
| | - Nathalie Simon
- CNRS, UMR 7144 (Adaptation et Diversité en Milieu Marin), Station Biologique de Roscoff; Sorbonne Universités; UPMC Univ Paris 06 Roscoff 29680 France
| | | | | | | |
Collapse
|
17
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
18
|
Demory D, Arsenieff L, Simon N, Six C, Rigaut-Jalabert F, Marie D, Ge P, Bigeard E, Jacquet S, Sciandra A, Bernard O, Rabouille S, Baudoux AC. Temperature is a key factor in Micromonas-virus interactions. ISME JOURNAL 2017; 11:601-612. [PMID: 28085157 DOI: 10.1038/ismej.2016.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 11/09/2022]
Abstract
The genus Micromonas comprises phytoplankton that show among the widest latitudinal distributions on Earth, and members of this genus are recurrently infected by prasinoviruses in contrasted thermal ecosystems. In this study, we assessed how temperature influences the interplay between the main genetic clades of this prominent microalga and their viruses. The growth of three Micromonas strains (Mic-A, Mic-B, Mic-C) and the stability of their respective lytic viruses (MicV-A, MicV-B, MicV-C) were measured over a thermal range of 4-32.5 °C. Similar growth temperature optima (Topt) were predicted for all three hosts but Mic-B exhibited a broader thermal tolerance than Mic-A and Mic-C, suggesting distinct thermoacclimation strategies. Similarly, the MicV-C virus displayed a remarkable thermal stability compared with MicV-A and MicV-B. Despite these divergences, infection dynamics showed that temperatures below Topt lengthened lytic cycle kinetics and reduced viral yield and, notably, that infection at temperatures above Topt did not usually result in cell lysis. Two mechanisms operated depending on the temperature and the biological system. Hosts either prevented the production of viral progeny or maintained their ability to produce virions with no apparent cell lysis, pointing to a possible switch in the viral life strategy. Hence, temperature changes critically affect the outcome of Micromonas infection and have implications for ocean biogeochemistry and evolution.
Collapse
Affiliation(s)
- David Demory
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Villefranche/mer, France.,BIOCORE-INRIA, BP93, Sophia-Antipolis Cedex, France
| | - Laure Arsenieff
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| | - Nathalie Simon
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| | - Christophe Six
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| | - Fabienne Rigaut-Jalabert
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Fédération de Recherche FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Dominique Marie
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| | - Pei Ge
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| | - Estelle Bigeard
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| | | | - Antoine Sciandra
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Villefranche/mer, France
| | | | - Sophie Rabouille
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Villefranche/mer, France
| | - Anne-Claire Baudoux
- Sorbonne Universités, UPMC Univ Pierre et Marie Curie (Paris 06), CNRS, Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
19
|
Yau S, Hemon C, Derelle E, Moreau H, Piganeau G, Grimsley N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog 2016; 12:e1005965. [PMID: 27788272 PMCID: PMC5082852 DOI: 10.1371/journal.ppat.1005965] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae. We propose that chromosome 19 of O. tauri is specialized in defence against viral attack, a constant threat for all planktonic life, and that the most likely cause of resistance is the over-expression of numerous predicted glycosyltransferase genes. O. tauri thus provides an amenable model for molecular analysis of genome evolution under environmental stress and for investigating glycan-mediated host-virus interactions, such as those seen in herpes, influenza, HIV, PBCV and mimivirus.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Evelyne Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
- * E-mail:
| |
Collapse
|